2020中考数学二次函数解题方法
初三数学二次函数求面积最值问题的4种方法
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
解 法 三 :切 线 法 。这 其 实 属 于 高 中 内 容 。但 是 ,基 础 好 的 同 学 也 很 容 易 理 解 ,可 以 看 看 , 提前了解一下。
二次函数面积最值问题的 4 种解法
二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。特别是 在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。 而求三角形面积的最值问题,更是常见。今天,方老师介绍二次函数考试题型种,面积 最值问题的 4 种常用解法。 同学们,只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就 好。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的。
2024年中考数学方法、技巧:二次函数中的最值问题
中考数学方法、技巧9-二次函数中的最值问题题型分析
题型一【铅垂高系列】
中考高频考点,常常考在压轴题部分,最常见以考查面积的最值为考点,做法常常作铅锤高,利用坐标法构造面积的二次函数,求得面积最值.
题型二【线段和差最值篇】
中考高频考点,常常考查将军饮马,和的最小值(利用两边之和大于第三边求解),或者线段差的最大值(利用三角形两边之差小于第三边来求解);还有期间涉及到的隐圆问题,也和最值有关。
题型三【构造二次函数模型求最值】
设坐标,构造二次函数,也叫做设坐标法。
题型四【加权线段最值】
利用阿氏圆或者胡不归模型(以上内容公众号中都有的哦),将加权线段进行转化,进而求得最值。
题型五【几何构造最值篇】
几何构造常考于特殊的边和角度时,利用构造特殊图形进行求解。
2020年中考数学压轴解答题10 二次函数与线段关系及最值定值问题(学生版)
备战2020中考数学之解密压轴解答题命题规律专题10 二次函数与线段关系及最值定值问题【类型综述】图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用. 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【方法揭秘】由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A 的坐标为(3, 4),点B 是x 轴正半轴上的一个动点,设OB =x ,AB =y ,那么我们在直角三角形ABH 中用勾股定理,就可以得到y 关于x 的函数关系式.类型二,图形的翻折.已知矩形OABC 在坐标平面内如图2所示,AB =5,点O 沿直线EF 翻折后,点O 的对应点D 落在AB 边上,设AD =x ,OE =y ,那么在直角三角形AED 中用勾股定理就可以得到y 关于x 的函数关系式.图1 图2【典例分析】【例1】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由; (3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【例2】如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【例3】抛物线2(0)y ax bx c a =++≠与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.已知(2,0)A -,抛物线的对称轴l 交x 轴于点(1,0)D . (1)求出,,a b c 的值;(2)如图1,连接BC ,点P 是线段BC 下方抛物线上的动点,连接,PB PC .点,M N 分别在y 轴,对称轴l 上,且MN y ⊥轴.连接,AM PN .当PBC ∆的面积最大时,请求出点P 的坐标及此时AM MN NP ++的最小值;(3)如图2,连接AC ,把AOC ∆按照直线y x =对折,对折后的三角形记为A OC ∆'',把A OC ∆''沿着直线BC 的方向平行移动,移动后三角形的记为A O C ∆''''',连接DA '',DC '',在移动过程中,是否存在DA C ∆''''为等腰三角形的情形?若存在,直接写出点C ''的坐标;若不存在,请说明理由.【例4】如图在锐角△ABC 中,BC =6,高AD =4,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN ∥BC,以MN 为边长向下作正方形MPQN,设MN =x,正方形MPQN 与△ABC 公共部分的面积为y . (1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值;(2)如图(2),当PQ 落△ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?【例5】如图,抛物线y=12-x2+mx+m(m>0)的顶点为A,交y轴于点C.(1)求出点A的坐标(用含m的式子表示);(2)若直线y=﹣x+n经过点A,与抛物线交于另一点B,证明:AB的长是定值;(3)连接AC,延长AC交x轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于E、F两点.若∠ECF=90°,求m的值.【例6】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B 点的坐标为(3,0),与y轴交于点C(0,﹣3).(1)求二次函数解析式;(2)若点Q为抛物线上一点,且S△ABQ=12S△ACQ,求点Q的坐标;(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若HM HNHP⋅=5,求m的值.【变式训练】1.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.2.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________3.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.4.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 方向以2/s 的速度向点D 运动,过P 点作PE ∥BC 交AC 于点E ,过E 点作EF ⊥BC 于点F ,设△ABP 的面积为S 1,四边形PDFE 的面积为S 2,则点P 在运动过程中,S 1+S 2的最大值为______.5.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC V ,使点C 在x 轴上,BAC 90.M ∠=o 为BC 的中点,则PM 的最小值为______.6.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P,以MP 为对角线作矩形MNPQ,连结NQ,则对角线NQ 的最大值为_________.7.如图,在平面直角坐标系中,过A (-1,0)、B (3,0)两点的抛物线交y 轴于点C,其顶点为点D,设△ACD 的面积为S 1,△ABC 的面积为S 2.小芳经探究发现:S 1︰S 2是一个定值.这个定值为________.8.如图,在平面直角坐标系中,有二次函数23333y x x =--+,顶点为H ,与x 轴交于A 、B 两点(A 在B 左侧),易证点H 、B 关于直线3:33l y x =+对称,且A 在直线l 上.过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,则HN NM MK ++的最小值为________9.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.10.如图,在矩形ABCD 中,AB=18,AD=12,点M 是边AB 的中点,连结DM,DM 与AC 交于点G ,点E,F 分别是CD 与DG 上的点,连结EF,(1)求证:CG=2AG .(2)若DE=6,当以E,F,D 为顶点的三角形与△CDG 相似时,求EF 的长.(3)若点E 从点D 出发,以每秒2个单位的速度向点C 运动,点F 从点G 出发,以每秒1个单位的速度向点D 运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG 的面积的最小值.11.如图①,抛物线y=a(x 2+2x-3)(a≠0)与x 轴交于点A 和点B,与y 轴交于点C,且OC=OB.(1)直接写出点B 的坐标是( , ),并求抛物线的解析式;(2)设点D 是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC 上的点E 关于直线l 的对称点E'恰好在线段BD 上,求点E 的坐标;(3)若点F 为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF 的面积是△ABC 面积的一半时,求此时点F 的坐标.12.如图,抛物线y =﹣x 2+mx +2与x 轴交于点A ,B ,与y 轴交于点C ,点A 的坐标为(1,0) (1)求抛物线的解析式(2)在抛物线的对称轴l 上找一点P ,使PA +PC 的值最小,求出点P 的坐标 (3)在第二象限内的抛物线上,是否存在点M ,使△MBC 的面积是△ABC 面积的12?若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线212y x mx n =++交x 轴于A 、B 两点,直线y=kx+b 经过点A,与这条抛物线的对称轴交于点M (1,2),且点M 与抛物线的顶点N 关于x 轴对称.(1)求抛物线的函数关系式;(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;(3)在(2)的条件下,求△AQC面积的最大值.14.如图,抛物线y=﹣12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长.(2)点P 为线段AB .上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H,点F 为y 轴上一点,当∆PBE 的面积最大时,求PH + HF + 12FO 的最小值. (3)在(2)中,PH+HF+12方FO 取得最小值时,将∆CFH 绕点C 顺时针旋转60°后得到∆CF'H',过点F'作CF'的垂线与直线AB 交于点Q,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.16.已知,二次函数24y x x c =-+的图像与x 轴的一个交点为O(0,0),点P (m,0)是x 轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x 轴另一个交点的坐标; (2)如图2,过点P 作x 轴的垂线交直线33y x =与点C,交二次函数图像于点D, ①当PD=2PC 时,求m 的值;如图3,已知A (3,-3)在二次函数图像上,连结AP,求12AP OP +的最小值;(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.17.如图1,已知抛物线y =ax2+bx +c 经过A(-3,0),B (1,0 ),C (0,3 )三点,其顶点为D,对称轴是直线l , l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求∆PBC 周长的最小值;(3)如图2,若 E 是线段AD 上的一个动点(E 与A, D 不重合),过 E 点作平行于y 轴的直线交抛物线于点 F ,交x 轴于点G ,设点 E 的横坐标为m ,四边形AODF 的面积为S 。
2020年中考数学复习专题之二次函数的综合应用问题
二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。
中考数学压轴题,二次函数解题方法
二次函数是初中数学学习的重点也是难点,作为压轴题也是拉开中考分数差距的一个重要部分。
但是很多同学并不能准确快速的理解和掌握。
中考要拿高分,同学们要有这样的心态,会的题的不丢分,不会的题争取多拿分。
所以,我们在解压轴题时,首先就要有必胜的信心;其次要有扎实的基础知识和熟练的解题技能;此外我们要掌握常用的解题方法。
今天给大家分享几种常用的关于二次函数综合题的解题方法:1. 利用坐标系,建立数形结合意识从近几年各地中考二次函数综合题来看,大部分都是与坐标系有关的,它的特点是建立点与坐标之间的对应关系。
我们可以用代数方法研究几何图形的性质;还可以借助几何图形直观得到某些代数问题的答案。
比如:在函数图像中构造三角形(特殊的四边形)这样一来增加了题目的难度,既考查大家对函数知识的掌握程度,又能够通过增加几何的内容,让同学们把代数和几何结合起来,考查同学们利用所学知识解决问题的能力。
2. 利用直线或抛物线,掌握函数与方程直线与抛物线是一次函数与二次函数所表示的图像,是初中数学两类重要函数。
因此,无论是求它的解析式还是研究它的性质,都离不开函数与方程。
例如,利用待定系数法来确定函数解析式,我们需要根据已知条件列方程或方程组解之而得。
特别提醒大家,解题时要仔细计算,千万别马虎,方程计算的每一步都要认真检查,这对最后解答的正确非常重要。
所以,同学们在平时要重视对方程解答的练习。
3. 条件或结论的多变,注意分类讨论分类讨论,是检测同学们思维的准确性和严密性,涉及这种类型的试题,一般是通过条件的多变性或结论的不确定性来进行考查。
有些问题,如果不注意对各种情况进行分类讨论,就有可能造成错解或漏解,近几年,用分类讨论解题已成为新的热点。
例如:二次函数中关于函数图象开口方向的问题需要考虑两种情况;二次函数中有关三角形相似的情况要考虑到三种情况并根据条件进行取舍等,这些基本情形,大家在做题时要考虑到,避免留下疏漏。
4. 综合多个知识点,灵活运用等价转换初中数学中的转换思想大体包括由已知向未知的转换,由复杂向简单的转换,而解答二次函数综合题,要注意的是不同知识点之间的联系与转换。
2020年初三数学下册中考专题复习 二次函数面积最值问题(含答案)
2020年初三数学下册中考专题复习二次函数面积最值问题1.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.4.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.5.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.7.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.8.如图A(0,3),B(3,0),C(1,0)分别是抛物线:y=ax2+bx+c(a≠0)上的三点,点P为抛物线上一动点.(1)求此抛物线的解析式.(2)当△PAB是以AB为一直角边的直角三角形时,求此时点P的坐标.(3)若点P在抛物线上A、B两点之间移动时,是否存在一个位置,使△PAB的面积最大?若存在,请求此时点P的坐标.若不存在,请说明理由.9.如图,抛物线y=ax2+bx+c经过A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.点P为直线AE上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的表达式;(2)当t为何值时,△PAE的面积最大?并求出最大面积;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C (0,﹣3)(1)求出该抛物线的函数关系式及对称轴(2)点P是抛物线上的一个动点,设点P的横坐标为t(0<t<3).当△PCB的面积的最大值时,求点P的坐标(3)在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,求P点的坐标.11.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.12.如图1,在平面直角坐标系中,直线y=x﹣与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线,垂足为E,交直线AB于点C,作PD⊥AB于点D,交x轴于点F.(1)求该抛物线的解析式;(2)求sin∠ACE的值;(3)连接PA、PB(如图2所示),设△PAB的面积为S,点P的横坐标为x,求S关于x的函数关系式,并求出S的最大值.13.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.14.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.15.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,P为抛物线上的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P的纵坐标为2时,求点P的横坐标;(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.17.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.18.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D 的坐标和△DBC的面积;若不存在,请说明理由.19.如图1,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于C点,对称轴x=﹣,点N(n,0)是线段AB上的一个动点(N与A、B两点不重合),请回答下列问题:(1)求出抛物线的解析式,并写出C点的坐标;(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.20.抛物线y=ax2+bx+c与x轴交于点A(1,0)和点B(5,0),与y轴交于点C(0,3).该抛物线与直线相交于C,D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M,N.(1)求该抛物线所对应的函数解析式;(2)连结PC,PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.2.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A ′(3,0);当x=0时,y=3,则A(0,3);(2)∵四边形ABOC为平行四边形,∴AB∥OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3)=×3×1=,∴OB==,S△AOB又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=()2=()2=,=×=;∴S△C′OD(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为().3.【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S△P AB=•PH•x B=(﹣m2+12m),取得最大值为:,当m=2.5时,S△P AB答:△PAB的面积最大值为.4.【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,则S△MOC∵﹣<0,故x=,最大值为.故当点M(,)时,S△MOC5.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)∴S△PBC×4=﹣2(t﹣2)2+8,最大值为8,此时t2﹣3t﹣4=﹣6,∴当t=2时,S△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.6.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=16﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,=2S△PCB=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∴S四边形PBQC∵0<t<4,=16∴当t=2时,S四边形PBQC最大7.【解答】解:(1)∵由题意得解得:,∴y=﹣x2+2x+.(2)设直线AB为:y=kx+b.则,解得直线AB的解析式为y=+.如图所示:记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+).∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,∴S=AE•DC+CD•BF=CD(AE+BF)=DC=m2+m+5.∴S=m2+m+5.∵﹣<0,∴当m=时,S有最大值.∴当m=时,m+=×+=.∴点C(,).8.【解答】解:(1)将A(0,3),B(3,0),C(1,0)代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点P的坐标为(m,m2﹣4m+3).∵点A的坐标为(0,3),点B的坐标为(3,0),∴AP2=(m﹣0)2+(m2﹣4m+3﹣3)2=m4﹣8m3+17m2,BP2=(m﹣3)2+(m2﹣4m+3)2=m4﹣8m3+23m2﹣30m+18,AB2=(3﹣0)2+(0﹣3)2=18.分两种情况考虑:①当∠BAP=90°时,AB2+AP2=BP2,即18+m4﹣8m3+17m2=m4﹣8m3+23m2﹣30m+18,整理,得:m2﹣5m=0,解得:m1=0(舍去),m2=5,∴点P的坐标为(5,8);②当∠ABP=90°时,AB2+BP2=AP2,即18+m4﹣8m3+23m2﹣30m+18=m4﹣8m3+17m2,整理,得:m2﹣5m+6=0,解得:m3=2,m3=3(舍去),∴点P的坐标为(2,﹣1).综上所述:当△PAB是以AB为一直角边的直角三角形时,点P的坐标为(5,8)或(2,﹣1).(3)存在,如图过点P作PD∥y轴交直线AB于点D.设直线AB的解析式为y=kx+d(k≠0),将A(0,3),B(3,0)代入y=kx+d,得:,解得:,∴直线AB的解析式为y=﹣x+3.设点P的坐标为(n,n2﹣4n+3)(0<n<3),则点D的坐标为(n,﹣n+3),∴PD=(﹣n+3)﹣(n2﹣4n+3)=﹣n2+3n,=OB•PD=﹣n2+n=﹣(n﹣)2+.∴S△P AB∵﹣<0,取得最大值,此时最大值为,∴当n=时,S△P AB∴当△PAB的面积取最大值时,点P的坐标为(,﹣).9.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴==,∴t=时,△PAE的面积最大,最大值是.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,∴,即t2﹣t﹣1=0,解得:t=或t=<0(舍去),综上可知存在满足条件的点P,t的值为1或.10.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线与y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1∴设抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,对称轴为直线x=1;(2)设P(t,t2﹣2t﹣3),S△PCB=S△POC+S△POB﹣S△BOC=×3t+×3×|t2﹣2t﹣3|﹣=∵a=<0,∴函数有最大值,当t=时,面积最大,∴P()(3)设Q(1,n)),①当PQ、PC为平行四边形的对角线时,P(4,n+3),∴42﹣2×4﹣3=n+3,n=2,∴P(4,5);②当CQ、BP为平行四边形的对角线时,P(﹣2,n﹣3),∴(﹣2)2﹣2×(﹣2)﹣3=n﹣3,n=8,∴P(﹣2,5);综上所述,以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,P点的坐标(4,5),(﹣2,5).11.【解答】解:(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;把C(0,3)代入y=﹣x+m,解得m=3,∴直线CD的解析式为y=﹣x+3,解方程组,解得或,∴D点坐标为(,);(2)存在.设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,∴S△PCD当m=时,△CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m =,综上所述,m的值为或或.12.【解答】解:(1)当x=﹣8时,y=x﹣=﹣,则B(﹣8,﹣),当y=0时,x﹣=0,解得x=2,则A(2,0),把B(﹣8,﹣),A(2,0)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式y=﹣x2﹣x+;(2)当x=0时,y=x﹣=﹣,则G(0,﹣),在Rt△AOG中,∵OG=,OA=2,∴AG==,∴sin∠AGO===,∵PC⊥x轴,∴PC∥OG,∴∠ACE=∠AGO,∴sin∠ACE=;(3)设P(x,﹣x2﹣x+),则C(x,x﹣),∴PC=﹣x2﹣x+﹣(x﹣)=﹣x2﹣x+4,∴S=•(2+8)•(﹣x2﹣x+4)=﹣x2﹣x+20=﹣(x+3)2+,当x=﹣3时,S的最大值为.13.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.14.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.15.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QCP==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,=S△AFQ+S△CFQ∴S△ACQ=FQ•AG+FQ•DG=FQ(AG+DG)=FQ•AD=×2(t﹣)=﹣+t=﹣(t2+4﹣4t﹣4)=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.16.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴l为x=﹣1,∴A(﹣3,0),∴解得:,∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).(2)设点P(x,2)即y=﹣x2﹣2x+3=2,解得x1=﹣1或x2=﹣﹣1,∴点P(﹣1,2)或(﹣﹣1,2).(3)设点P(x,y),则y=﹣x2﹣2x+3,=S△OBC+S△OAP+S△OPC,∵S四边形BCP A∴=,∵﹣<0,∴当x=﹣时,四边形PABC的面积有最大值,所以点P(﹣,).17.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△P AQ+S△PCQ=×(﹣m2+m)×6∵S△P AC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).18.【解答】解:(1)∵B点的坐标为B(8,0),∴﹣16+8b+4=0,解得b=,∴抛物线的解析式为y═﹣+x+4,对称轴方程为x=﹣=3;(2)∵由(1)知,抛物线的对称轴方程为x=3,B(8,0)∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.∵∠AOC=∠COB=90°,∴△AOC∽△COB.(3)设BC解析式为y=kx+b,把(8,0),(0,4)分别代入解析式得,,解得,解得y=﹣x+4,作DH⊥x轴,交BC于H.设D(t,﹣t2+t+4),H(t,﹣t+4),S△BCD=DH•OB=×(﹣t2+t+4+t﹣4)×8=﹣t2+8t=﹣(t2﹣8t+42﹣16)=﹣(t﹣4)2+16,当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6).19.【解答】解:(1)∵抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,不妨设抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2.∴C(0,2).(2)分两种情形:①当AN=AC时,如图1中,∵AC==2,∴n﹣(﹣4)=2,∴n=2﹣4.②当NA=NC时,如图2中,在Rt△NOC中,OC=2,∵NC=NA=n﹣(﹣4)=n+4,ON=n,∴n2+22=(n+)2,解得n=﹣.综上所述,当n=2﹣4或﹣时,△ANC是等腰三角形.(3)如图3中,由题意可知:直线BC的解析式为y=﹣2x+2,直线AC的解析式为y=x+2,设N(n,0),易知N在线段OB上时,△CDN的面积较小,不妨设n<0,∵ND∥BC,设ND的解析式为y=﹣2x+b,代入(n,0)可得b=2n,∴ND的解析式为y=﹣2x+2n,由,可得点D的纵坐标:y D=(8+2n),=S△AOC﹣S△ADN﹣S△CON∴S△CDN=[2×4﹣2|n|﹣(8+2n)(n+4)=﹣(n+)2+,∵﹣<0,∴当n=﹣时,△DCN的面积最大,最大值为.20.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、点B(5,0)和点C(0,3),因为与y轴相较于点C,所以c=3.∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的垂线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t ∴S△PCD﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;(3)存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
中考数学复习指导:如何求解二次函数最值不在顶点处的问题
如何求解二次函数最值不在顶点处的问题如何求解二次函数最值不在顶点处的问题有一类二次函数的最值问题,它的自变量x 的取值范围为全体实数中的“某一段”,欲解x 的这段范围内的函数最值问题,应视情况而定:当x 的“某一段”范围分布在对称轴的两侧时,函数最值就是二次函数的最值;当x 的“某一段”范围分布在对称轴的左侧或右侧时,要根据对称轴两侧二次函数的增减性来确定最值,常常在“端点”处的纵坐标值就是此段范围内的函数的最大值或最小值.例1 当-2≤x ≤1时,二次函数y =-(x -m )2 + m 2 + 1有最大值4,则实数m 的值为( )(A) -74 (B)(C) 2 或-74分析 这里,二次函数中自变量x 的范围不是一切实数,而是实数范围中的“某一段”.x 的“某一段”有可能在对称轴x = m 的左侧,也有可能在直线x = m 的右侧,也有可能在直线x = m 的两侧.此三种情况均可画出对应的“草图”以增强问题分析的直观性. 解 抛物线开口向上,对称轴为直线x = m .① x 的“某一段”分布在对称轴的右侧即m <-2,如图1,函数值y 随x 的增大而减小,所以当x =-2时函数值最大,即 -(-2-m )2 + m 2 + 1=4.解得m =-74,这与m <-2相矛盾,故此种情形不存在. ② x 的“某一段”分布在对称轴的两侧即-2≤m ≤1,如图2,当x = m 时函数值最大,即为二次函数的最大值,即 m 2 + 1=4.解得m =,但m 舍去.③ x 的“某一段”分布在对称轴的左侧即m >1,如图3,函数值y 随x 的增大而增大,所以当x = 1时函数值最大,即-(1-m )2 + m 2 + 1=4,解得m =2.综上,m 的值为2.故选C .评注 情况①③的对称轴都没有在指定的x 的取值范围内,所以两种情况下的最值求解,依据的是二次函数对称轴一侧的增减性,而不是利用的最值公式;情况②的对称轴在指定的x 的范围内,最值为二次函数在全体实数范围内的最值.例2 已知二次函数y = x 2 + bx + c (b ,c 为常数).(1) 当b =2,c =-3时,求二次函数的最小值;(2) 当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3) 当c =b 2时,若在自变量x 的值满足b ≤x ≤b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.分析 第(1) 问求二次函数在全体实数范围内的最值,利用的是最值公式.第(2) 问根据已知条件,可得关于x 的方程x 2 + bx + 4=0,利用判别式=0,得b =±4. 第(3) 问抛物线开口方向向上,与y 轴的交点 (0,c 2) 在y 轴的正半轴上,据此画出“草图”.抛物线与x 轴的交点有可能都落在x 轴的正半轴上,也有可能都落在x 轴的负半轴上;又因函数的最小值是指定自变量x 范围内的最小值,应从自变量x 的指定范围与对称轴x =-2b 的位置关系的三种情况出发逐一分析. 解 (1) y 最小=241(3)241××−−×=-4.(2) 由题意,得x 2 + bx + 4=0,方程有两个相等的实数根,故△=b 2-4×1×4=0,解得b =±4.所以二次函数的解析式为y = x 2 + 4x + 5,或y = x 2-4x + 5.(3) y =x 2 + bx + b 2,对称轴x =-2b 与x 指定范围的位置关系有三种情况: (i) 当b ≤x ≤b +3分布在对称轴x =-2b 的右侧时,则 -2b <b ,得b >0. 对称轴右侧的函数值y 随x 值的增大而增大,当x =b 时函数值最小,即b 2+b 2+b 2=21,解得b=但b=b(ii) 当b ≤x ≤b + 3分布在对称轴x =-2b 的左侧时,有 -2b>b + 3,得b <-2.对称轴左侧的函数值y 随x 值的增大而减小,当x =b +3时函数值最小,即 (b + 3)2 + b (b + 3) + b 2=21,解得b =-4,b =1.但b=1舍去,所以b =-4.(iii) 当b ≤x ≤b + 3分布在对称轴x =-2b 的两侧时,有 6<-2b <b +3,得-2<b <0. 此时,抛物线顶点纵坐标的值即为最小值,即2244b b −=21整理,得b 2=28,解得b =±但b=±综上,得y = x 2 x + 7,或y = x 2-4x +16.总之,求二次函数的最值,必须根据其自变量的取值范围进行分析和讨论.。
【精品】2020中考数学考点举一反三讲练第13讲 二次函数及其应用 (学生版)
第13讲 二次函数及其应用一、考点知识梳理【考点1 二次函数的图像及性质】1.二次函数的概念:一般地,如果两个变量x 和y 之间的函数关系,可以表示成y =ax 2+bx +c(a ,b ,c 是常数,且a ≠0),那么称y 是x 的二次函数,其中,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项. 2.三种表示方法:(1)一般式:y =ax 2+bx +c(a ≠0);(2)顶点式:y =a(x -h)2+k(a ≠0),其中二次函数的顶点坐标是(h ,k);(3)交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1,x 2为抛物线与x 轴交点的横坐标. 3.三种表达式之间的关系 顶点式――→确定一般式――→因式分解两点式 4.图像性质二次函数y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)a >0时开口向上, 对称轴:直线x =-b 2a ,顶点坐标:⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ,增减性:在对称轴的左侧,即x <-b 2a 时,y 随x 的增大而减小;在对称轴的右侧,即当x >-b2a 时,y 随x 的增大而增大,简记为“左减右增”a <0时开口向下,对称轴:直线x =-b 2a ,顶点坐标:⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ,增减性:在对称轴的左侧,即当x <-b 2a 时,y 随x 的增大而增大;在对称轴的右侧,即当x >-b2a 时,y 随x 的增大而减小,简记为“左增右减”【考点2 二次函数的实际应用】1.二次函数的实际应用为每年的必考点,题型多为选择、解答题,有以下两种常考类型:(1)单纯二次函数的实际应用;(2)与一次函数结合的实际应用.2.出题形式有三种:(1)以某种产品的销售为背景;(2)以公司的工作业绩为背景;(3)以某公司装修所需材料为背景.3.设问方式主要有:(1)列函数关系式并求值;(2)求最优解;(3)求最大利润及利润最大时自变量的值;(4)求最小值;(5)选择最优方案.【考点3 二次函数的图像与方程的关系】二次函数与一元二次方程的关系:1.当抛物线与x轴有两个交点时,两交点的横坐标就是对应的一元二次方程的两个不相等的实数根.2.当抛物线与x轴只有一个交点时,该交点的横坐标就是对应的一元二次方程的两个相等的实数根.3.当抛物线与x轴没有交点时,对应的一元二次方程无实数根.【考点4 二次函数的图像与几何图形的关系】1.平移:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.平移步骤:(1)将抛物线表达式转化为顶点式y=a(x-h)2+k,确定其顶点坐标;(2)保持抛物线的形状不变,平移顶点坐标(h,k)即可.2.二次函数与几何图形的面积问题,是最常见的数形结合问题,首先要根据题意画出草图,结合图形分析其中的几何图形的特点,再求出面积等相关数据.【考点5 二次函数的图像其它函数的关系】二次函数与一次函数、二次函数与反比例函数、两个二次函数之间的关系是近几年中考的常考题型,需要把每个函数的性质了解清楚,点的坐标适合每个函数的表达式,然后再结合图像特点,总结规律。
2020年中考数学考前冲刺复习:二次函数的动点问题
2020年中考数学考前冲刺复习:二次函数的动点问题1.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.2.如图所示,抛物线y=ax2+bx+4的顶点坐标为(3,),与y轴交于点A.过点A作AB∥x轴,交抛物线于点B,点C是第四象限的抛物线上的一个动点,过点C作y轴的平行线,交直线AB于点D.(1)求抛物线的函数表达式;(2)若点E在y轴的负半轴上,且AE=AD,直线CE交抛物线y=ax2+bx+4于点F.①求点F的坐标;②过点D作DG⊥CE于点G,连接OD、ED,当∠ODE=∠CDG时,求直线DG的函数表达式.3.如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y 轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.4.《函数的图象与性质》拓展学习展示:【问题】如图①,在平面直角坐标系中,抛物线G1:y=ax2+bx+与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,则a=,b=.【操作】将图①中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,G2在y轴左侧的部分与G1在y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G对应的函数解析式.【探究】在图②中,过点C作直线l平行于x轴,与图象G交于D,E两点,如图③.求图象G在直线l上方的部分对应的函数y随x的增大而增大时x的取值范围.【应用】P是抛物线G2对称轴上一个动点,当△PDE是直角三角形时,直接写出P点的坐标.5.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B,C;(2)当P点运动到(﹣1,﹣2)时,判断PB与⊙C的位置关系,并说出理由;(3)是否存在点P,使得△PBC是以BC为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(4)连接PB,若E为PB的中点,连接OE,则OE的最大值=.6.如图①,直线与x轴、y轴分别交于A,B两点,将△ABO沿x轴正方向平移后,点A、点B的对应点分别为点D、点C,且四边形ABCD为菱形,连接AC,抛物线y=ax2+bx+c经过A、B、C三点,点P为AC上方抛物线上一动点,作PE⊥AC,垂足为E.(1)求此抛物线的函数关系式;(2)求线段PE长度的最大值;(3)如图②,延长PE交x轴于点F,连接OP,若△OPF为等腰三角形,请直接写出点P 的坐标.7.如图①,直线y=﹣x﹣3分别与x轴、y轴交于点B,C,抛物线y=ax2+bx+c经过B,C 两点,且与x轴的另一交点为A(1,0).(1)求抛物线的函数解析式;(2)如图①,点P在第三象限内的抛物线上.①连接AC,PB,PC,当四边形ABPC的面积最大时,求点P的坐标;②G为x轴上一点,当PG+AG取得最小值时,求点P的坐标;(3)如图②,Q为x轴下方抛物线上任意一点,D是抛物线的对称轴与x轴的交点,直线AQ,BQ分别交抛物线的对称轴于点M,N.问:DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.如图,已知抛物线y=ax2+bx+c与直线y=x+相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于点D,抛物线的顶点为M.(1)求抛物线的表达式及点M的坐标;(2)设P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求此时△PAB的面积及点P的坐标;(3)Q为x轴上一动点,N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应)时,求点Q的坐标.9.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.10.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.11.如图,二次函数y=+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)直接写出二次函数的解析式;(2)当P,Q运动到t秒时,将△APQ沿PQ翻折,若点A恰好落在抛物线上D点处,求出D点坐标;(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请直接写出E点坐标;若不存在,请说明理由.12.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点F恰好落在y轴上,求出对应的点P的坐标.13.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.14.如图,在平面直角坐标系中,已知抛物线C1:y=x2+6x+2的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2,直线l:y=kx+b经过M,N两点.(1)求点M的坐标,并结合图象直接写出不等式x2+6x+2<kx+b的解集;(2)若抛物线C2的顶点D与点M关于原点对称,求p的值及抛物线C2的解析式;(3)若抛物线C1与x轴的交点为E、F,试问四边形EMBD是何种特殊四边形?并说明其理由.15.如图1,已知抛物线y=﹣x2+2x+3与x轴相交于A、B两点(A左B右),与y轴交于点C.其顶点为D.(1)求点D的坐标和直线BC对应的一次函数关系式;(2)若正方形PQMN的一边PQ在线段AB上,另两个顶点M、N分别在BC、AC上,试求M、N两点的坐标;(3)如图2,E是线段BC上的动点,过点E作DE的垂线交BD于点F,求DF的最小值.参考答案1.解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得x=1或5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有,解得:,∴直线PC的解析式为y=3x﹣5,设直线交x轴于D,则D(,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=,∴BE=,∴E(,0)或E′(,0),则直线PE的解析式为y=﹣6x+22,∴Q(,﹣5),直线PE′的解析式为y=﹣x+,∴Q′(,﹣5),综上所述,满足条件的点Q的坐标为:(,﹣5)或(,﹣5).2.解:(1)∵抛物线y=ax2+bx+4的顶点坐标为(3,),∴y=a(x﹣3)2+=ax2﹣6ax+9a+,∴9a+=4,∴a=﹣,∴抛物线解析式为y=﹣x2+x+4;(2)如图1,设C(m,﹣m2+m+4);∵AD=AE,AD∥x轴,CD∥y轴,∴AD=AE=m,∵OA=4,∴OE=m﹣4,∵点E在y轴的负半轴上,∴E(0,4﹣m),设CE的解析式为:y=kx+b,则,解得,∴CE的解析式为:y=(﹣)x+4﹣m,解法一:∴﹣x2+x+4=(﹣)x+4﹣m,∴﹣x2+(m﹣1)x+m=0,x2+(4﹣m)x﹣4m=0,(x+4)(x﹣m)=0,x 1=﹣4,x2=m,∴定点F(﹣4,﹣6);解法二:CE的解析式为:y=(﹣)x+4﹣m=(﹣x﹣1)m+x+4,由画图可知:F是直线CE上的定点,∴﹣x﹣1=0,∴x=﹣4,∴定点F(﹣4,﹣6);②如图2,过E作EH⊥CD于H,交DG于Q,连接OQ,由①知:OE=m﹣4,∵∠DAE=∠ADH=∠EHD=90°,AD=AE,∴四边形AEHD是正方形,∴∠EDH=45°,AD=AE=DH=EH,∵∠ODE=∠CDG,∴∠ODE+∠EDQ=∠EDQ+∠CDG=45°,即∠ODQ=45°,∴∠ADO+∠CDG=45°,在OA的延长线上取AP=QH,连接PD,∵∠PAD=∠QHD=90°,AD=DH,∴△PAD≌△QHD(SAS),∴PD=DQ,∠ADP=∠CDG,AP=QH,∴∠ADP+∠ADO=45°=∠ODQ,∵OD=OD,∴△PDO≌△QDO(SAS),∴OP=OQ,∵EH=DH,∠EHC=∠DHQ,∠GEH=∠CDG,∴△EHC≌△DHQ(ASA),∴CH=QH=﹣(m﹣4)==AP,∴OQ=OP=4+,∵OE=m﹣4,EQ=EH﹣QH=m﹣()=﹣m,在Rt△OEQ中,由勾股定理得:OE2+EQ2=OQ2,∴(m﹣4)2+(﹣)2=(4+)2,m3﹣10m2﹣24m=0,解得:m1=0(舍),m2=12,m3=﹣2(舍),∴D(12,4),Q(6,﹣8),设直线DG的解析式为:y=kx+b,则,解得,∴直线DG的函数表达式为:y=2x﹣20.3.解:(1)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(2)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).4.解:【问题】y=ax2+bx+=a(x+1)(x﹣3),解得:a=,b=1,故答案为:﹣,1;【操作】抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,G1:y=ax2+bx+=﹣x2+x+=﹣(x﹣1)2+2,G2:y=﹣(x﹣1+3)2+2+=﹣x2﹣2x+,当x≥0时,y=﹣x2﹣2x+,当x<0时,y=﹣x2+x+;【探究】C点的坐标为(0,).当y=时,,解得:x1=0,x2=2,∴E(2,),当时,,解得:x1=0,x2=﹣4,∴D(﹣4,),∵,,∴抛物线G1的顶点为(1,2),抛物线G2的顶点为(﹣2,),∴﹣4<x<﹣2或0<x<1时,函数y随x的增大而增大;【应用】如图,过点P作x轴的平行线交过点D与x轴的垂线于点M,交过E点与x轴的垂线于点N,设点P(﹣2,m),则EN=﹣m,PN=4,DM=﹣m,PM=2,∵∠EPN+∠MPD=90°,∠MDP+∠DPM=90°,∴∠EPN=∠MDP,∴tan∠EPN=tan∠MDP,即,即,解得:m=±2,故点P的坐标为:.5.解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:(3,0),(0,﹣4);(2)如图(2),当P点运动到(﹣1,﹣2)时,即处于点P1位置,此时,P(P1)B与⊙C相切;∵P 1(﹣1,﹣2),而点B 、C 的坐标分别为(3,0)、(0,﹣4), ∴P 1B 2=20,P 1C 2=5,BC 2=25,故P 1B 2+P 1C 2=BC 2, ∴CP 1⊥P 1B , ∴P 1B 与⊙C 相切;(3)存在点P ,使得△PBC 为直角三角形,当PB 与⊙相切时,△PBC 为直角三角形,如图(2), 连接BC , ∵OB =3.OC =4, ∴BC =5, ∵CP 2⊥BP 2,CP 2=,∴BP 2=2,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F , 则△CP 2F ∽△BP 2E ,=,设OF =P 2E =2x ,FP 2=OE =x , ∴BE =3﹣x ,CF =2x ﹣4, ∴=2, ∴x =,2x =,∴FP2=,EP2=,∴P2(,﹣),由(2)知,P1符合条件,即P1(﹣1,﹣2);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣);(4)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=5+,∴OE的最大值为故答案为:.6.解:(1)∵当x=0时,y=2,当y=0时,x=﹣2,∴,∴BC=AB==4,∴,∴,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)过点P作PH⊥x轴于H,交AC于点G,设直线AC为:y=kx+t,则,解得,∴.设,则,∴=,∵,∴∠BAO=60°,∵四边形ABCD为菱形,∴∠CAD=30°,∴∠PGE=∠AGH=60°,∴,∴===,∵,∴当x=1时,PE最大,最大值为;(3)由(2)知:∠CAD=30°=∠EAF,则∠AFE=90°﹣∠EAF=60°,当△OPF为等腰三角形,则△OPF为等边三角形,则直线OP的倾斜角为60°,设直线OP的表达式为:y=x②,联立①②并解得:x =﹣2±2,∵点P 为AC 上方抛物线上一动点,即﹣2<x <4, 故x =﹣2+2, 故点P (﹣2+2,6﹣2).7.解:(1)在y =﹣x ﹣3中,令x =0,得y =﹣3;令y =0,得x =﹣3. ∴B (﹣3,0),C (0,﹣3).设抛物线的函数解析式为y =a (x +3)(x ﹣1). 将点C (0,﹣3)代入,得a =1. ∴抛物线的函数解析式为y =x 2+2x ﹣3;(2)①如图1,过点P 作PE ⊥x 轴于点E ,交BC 于点F .设点P 的坐标为(t ,t 2+2t ﹣3),则点F 的坐标为(t ,﹣t ﹣3). ∴PF =﹣t ﹣3﹣(t 2+2t ﹣3)=﹣t 2﹣3t .∴S 四边形ABPC =S △BPC +S △ABC =PF •OB +AB •OC =(﹣t 2﹣3t )+6=.∵<0,∴当t =时,S 四边形ABPC 取得最大值.∴此时点P 的坐标为;②如图2,作点P 关于x 轴的对称点P ',PP '交x 轴于点I ,连接AP ,AP ',过点P 作PJ ⊥AP '于点J ,交x 轴于点G .当GJ =AG 时,PG +AG 取得最小值,此时sin ∠GAJ =.∴tan ∠GAJ =.设点P 的坐标为(t ,t 2+2t ﹣3),则PI =﹣t 2﹣2t +3,AI =﹣t +1. 由对称的性质,得∠PAI =∠GAJ , ∴tan ∠PAI =,即.解得t 1=,t 2=1(舍去).∴此时点P 的坐标为;(3)DM +DN 是定值.如图3,过点Q 作QH ⊥x 轴于点H .∵ND ⊥x 轴, ∴QH ∥ND .∴△BQH ∽△BND ,△AMD ∽△AQH . ∴,.设点Q 的坐标为(k ,k 2+2k ﹣3),则HQ=﹣k2﹣2k+3,BH=3+k,AH=1﹣k.∵D是抛物线的对称轴与x轴的交点,∴AD=BD=2.∴,.∴DN=2﹣2k,DM=2k+6.∴DM+DN=2k+6+2﹣2k=8.∴DM+DN是定值,该定值为8.8.解:(1)把点B(4,m)代入y=x+中,得m=,∴B(4,),把点A(﹣1,0)、B(4,)、C(0,﹣)代入抛物线中,得,解得∴抛物线的解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,∴点M的坐标为(1,﹣2).(2)∵点P为直线AB下方抛物线上一动点,∴﹣1<x<4,如图1所示,过点P作y轴的平行线交AB于点H,设点P的坐标为(m,m2﹣m﹣),则点H(m,m+),S △PAB =•HP •(x B ﹣x A )=•(﹣m 2+m +2)×5=﹣(m ﹣)2+,∵﹣<0,∴当m =时,S 最大,最大为,此时点P (,﹣).(3)如图2所示,令y =0,解得x 1=﹣1,x 2=3, ∴D (3,0),∵M (1,﹣2),A (﹣1,0), ∴△AMD 为等腰直角三角形, 设点N 的坐标为(n ,n 2﹣n ﹣), ∵△QEN ≌△MFQ (AAS ),∴FQ =EN =2,MF =EQ =n 2﹣n ﹣, ∴n 2﹣n ﹣+1=n +2, 解得n =5或﹣1(舍), ∴点Q 的坐标为(7,0),根据对称性可知,点Q 的坐标为(﹣5,0)时也满足条件, ∵△ADM 是等腰直角三角形,∴当点Q 是AD 的中点,N 与A 或D 重合时,△QMN ∽△MAD , 此时Q (1,0)时.综上所述:点Q 的坐标为(7,0)或(﹣5,0)或(1,0). 9.解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC=,设点E(0,m),则AE=,CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE时,=,∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE时,=|m+3|,∴m=﹣3±,∴E(0,﹣3+)或(0,﹣3﹣),③当AE=CE时,=|m+3|,∴m=﹣,∴E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+2或t=1﹣2,∴Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).10.解:(1)把O(0,0),A(3,3)代入得:,解得:,则抛物线解析式为y=﹣x2+4x;(2)设直线OA解析式为y=kx,把A(3,3)代入得:k=1,即直线OA解析式为y=x,∵PB⊥x轴,∴P,C,B三点纵坐标相等,∵B(m,0),∴把x=m代入y=x中得:y=m,即C(m,m),把x=m代入y=﹣x2+4x中得:y=﹣m2+4m,即P(m,﹣m2+4m),∵P在直线OA上方,∴PC=﹣m2+4m﹣m=﹣m2+3m(0<m<3),当m=﹣=时,PC取得最大值,最大值为=.11.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴二次函数的解析式为;(2)如图,D点关于PQ与A点对称,过点Q作FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形.∵FQ∥OC,∴,∴,∴,,∴.∵DQ=AP=t,∴.∵D在二次函数上,∴,∴,或t=0(与A重合,舍去),∴;(3)存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).如图,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),∴AB=4,OA=3,OC=4,∴,AQ=4.∵QD∥OC,∴,∴,∴,.①作AQ的垂直平分线,交x轴于E,此时AE=EQ,即△AEQ为等腰三角形.设AE=x,则EQ=x,DE=|AD﹣AE|=|﹣x|,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0),点E在x轴的负半轴上;②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0);③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,或OA+AE=7,∴E(﹣1,0)或(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).12.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入抛物线解析式得,解得,∴抛物线的解析式为;(2)①如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,则,∵OB=4为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵﹣<0且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,∴;②∵点C(2,0),∴CO=2,如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,∠HPC=∠OCF,∠PHC=∠COF,PC=FC,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,.13.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.14.解:(1)令y=x2+6x+2中x=0,则y=2,∴N(0,2);∵y=x2+6x+2=(x+2)2﹣4,∴M(﹣2,﹣4).观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,∴不等式x2+6x+2<kx+b的解集为﹣2<x<0;(2)∵y=x2+6x+2抛物线C1:的顶点为M(﹣2,﹣4),沿x轴翻折后的对称点坐标为(﹣2,4).∵抛物线C2的顶点与点M关于原点对称,∴抛物线C2的顶点坐标为(2,4),∴p=2﹣(﹣2)=4.∵抛物线C2与C1开口大小相同,开口方向相反,∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2;(3)令y=x2+6x+2=0,则x=﹣2,即点E、F的坐标分别为(﹣2﹣,0)、(﹣2+,0),点M(﹣2,﹣4);同理点A、B、D的坐标分别为(2﹣,0)、(2+,0)、(2,4),由点的对称性知,DM、EB相互平分,故四边形EMBD是平行四边形,经验证该四边形不是矩形、菱形,故四边形EMBD是平行四边形.15.解:(1)y=﹣x2+2x+3,令x=0,则y=3,令y=0,则x=﹣1或3,故点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),则函数的对称轴为x=1,故点D(1,4);设直线BC的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+3;(2)如图1,由点A、C的坐标,同理可得直线AC的表达式为:y=3x+3,设点M(m,﹣m+3),点N(n,3n+3),由题意得:NP=MQ=PQ,即m﹣n=﹣m+3=3n+3,解得:m=,n=﹣,故M(,),N(,);(3)如图2,当以DF为直径的圆与BC有公共点,即圆相切于直线BC时,DF最小,设以DF为直径的圆的圆心为R,半径为r,∵圆相切于直线BC,故ER⊥BC,由点C、D的坐标知,直线CD的倾斜角为45°,而直线BC与x轴负半轴的夹角为45°,故直线CD与BC的夹角为90°,即CD⊥BC,由点B、C、D的坐标知,BD==,同理CD=,∴ER∥CD,故△BER∽△BCD,即,则,解得:r=,DF最小值为2r==.。
中考数学二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位⑶ 根据图象的位置判断二次函数ax2+bx+c=0中置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a>0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线y ax2 bx 3(a≠0)与x 轴交于点A(1,0)和点 B (-3,0),与y 轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△ CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)如图②,若点 E 为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE 面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标-①C 为顶点时,以 C 为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P。
二次函数最值问题解题技巧
二次函数最值问题解题技巧二次函数最值问题是高中数学中常见的一类问题,也是中考、高考中经常出现的题型之一。
解题时需要掌握一些解题技巧,下面就介绍一些二次函数最值问题的解题技巧。
1. 求最值的方法二次函数的最值可以通过求解二次函数的顶点来得到,顶点即为最值点。
二次函数的顶点公式为:(-b/2a , f(-b/2a))。
其中,a、b、c分别为二次函数的系数,f(x)表示函数值。
2. 求最值的条件要求二次函数的最值,必须先要满足二次函数的a值不为0,否则该函数就不是二次函数。
其次,需要根据二次函数的符号来判断最值,当a>0时,函数的最小值为f(-b/2a),当a<0时,函数的最大值为f(-b/2a)。
3. 求最值的步骤求解二次函数的最值,一般可以分为以下几个步骤:(1)将二次函数化简为标准形式:y=ax+bx+c。
(2)求出二次函数的顶点坐标:(-b/2a , f(-b/2a))。
(3)判断二次函数的最值:当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。
(4)用最值来解题:根据题目要求,将二次函数的x值代入函数中求出对应的y值,从而得到函数的最值。
4. 拓展除了方法和步骤外,还有一些需要注意的点:(1)二次函数最值问题常常伴随着图像问题,需要将函数的图像画出来,从而更直观地理解问题。
(2)对于一些复杂的二次函数,可以借助计算器等工具来求解,但需要掌握求解方法和步骤。
(3)对于二次函数最值问题的解题,需要练习多种不同类型的题目,从而提高解题能力。
总之,掌握二次函数最值问题的解题技巧,需要学生在学习中不断积累,多加练习,从而提高数学解题能力。
2020年中考数学一轮复习讲义(上海专版) 专题16 二次函数(解析版)
专题16 二次函数一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。
2020年中考数学新定义(二次函数)解析版
第一部分案例分析1.【最值问题】对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值,例如,如下图中的函数,它的最大值是,最小值是﹣1,它也是有界函数,其边界值是1.(1)分别判断函数和y=x+1(x>0)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣2x﹣1(a≤x≤b,a<b)的边界值是3,且这个函数的最大值也是3,求a的值及b的取值范围.【解答】解:(1)函数是有界函数,函数y=x+1(x>0)不是有界函数.对于函数有,所以其边界值为1.(2)∵函数y=﹣2x﹣1(a≤x≤b)是y随x的增大而减少的.=3,即﹣2a﹣1=3,解得a=﹣2.∴当x=a时,y最大值当x=b时,y=﹣2b﹣1.最小值∵边界值是3,∴﹣3≤﹣2b﹣1≤3∴﹣2≤b≤1∵b>a,且a=﹣2∴﹣2<b≤12【直线与抛物线点交点问题】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0、1两个不变值,其不变长度q等于1.(1)分别判断函数y=x+1,y=,y=x2﹣2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2﹣bx①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为多少?【解答】解:(1)∵函数y=x+1,令y=x,则x+1=x,无解;∴函数y=x+1没有不变值;∵函数y=,令y=x,则x=,解得:x=±,∴函数y=的不变值为±,q=﹣(﹣)=2,∵函数y=x2﹣2,令y=x,则x=x2﹣2,解得:x1=2,x2=﹣1,∴函数y=x2﹣2的不变值为:2或﹣1,q=2﹣(﹣1)=3;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0,∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x1=0,x2=,∵1≤b≤3,∴1≤x2≤2,∴1﹣0≤q≤2﹣0,∴1≤q≤2;(3)∵记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.∴函数G的图象关于x=m对称,∴G:y=,∵当x2﹣2x=x时,x3=0,x4=3;当(2m﹣x)2﹣2(2m﹣x)=x时,△=1+8m,当△<0,即m<﹣时,q=x4﹣x3=3;当△≥0,即m≥﹣时,x5=,x6=,①当﹣≤m≤0时,x3=0,x4=3,∴x6<0,∴x4﹣x6>3(不符合题意,舍去);②∵当x5=x4时,m=1,当x6=x3时,m=3;当0<m<1时,x3=0(舍去),x4=3,此时0<x5<x4,x6<0,q=x4﹣x6>3(舍去);当1≤m≤3时,x3=0(舍去),x4=3,此时0<x5<x4,x6>0,q=x4﹣x6<3;当m>3时,x3=0(舍去),x4=3(舍去),此时x5>3,x6<0,q=x5﹣x6>3(舍去);综上所述:m的取值范围为1≤m≤3或m<﹣.3.【“关联抛物线”】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A 与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线.(1)一条抛物线的“友好”抛物线有D条.A.1B.2C.3D.无数(2)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式;(3)若抛物线y=a1(x﹣m)2+n的“友好”抛物线的解析式为y=a2(x﹣h)2+k,请直接写出a1与a2的关系式为a1+a2=0.【解答】解:(1)一条抛物线的“友好”抛物线有无数条,故选:D;(2)由L3:y=2x2﹣8x+4化成顶点式,得y=2(x﹣2)2﹣4,∴C(0,4),对称轴为x=2,顶点坐标(2,﹣4).∴点C关于对称轴x=2的对称点D(4,4)设L4:y=a(x﹣h)2+k将顶点D(4,4)代入得,y=a(x﹣4)2+4再将点(2,﹣4)代入得,﹣4=4a+4解得:a=﹣2L3的友好抛物线L4的解析式为:y=﹣2(x﹣4)2+4;(3)若抛物线y=a1(x﹣m)2+n的“友好”抛物线的解析式为y=a2(x﹣h)2+k,请直接写出a1与a2的关系式为a1+a2=0,故答案为:a1+a2=0.4.【函数与几何综合问题】如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是等腰三角形;(2)若抛物线抛物线m:y=a(x﹣2)2+b(ab<0)的“抛物线三角形”是直角三角形,请求出a,b满足的关系式;(3)如图,△OAB是抛物线n:y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.【解答】解:(1)∵抛物线与x轴有两个交点关于抛物线的对称轴对称,∴“抛物线三角形”是等腰三角形;故答案为等腰;(2)∵y=a(x﹣2)2+b(ab<0)的“抛物线三角形”是直角三角形,∴此“物线三角形”是等腰直角三角形,抛物线的顶点坐标为(2,b),把y=0代入y=a(x﹣2)2+b得a(x﹣2)2+b=0,解得x=2±,∴抛物线y=a(x﹣2)2+b(ab<0)与x轴两交点的坐标为(2+,0),(2﹣,0),∴抛物线y=a(x﹣2)2+b(ab<0)与x轴两交点之间的线段长=2,∴|b|=×2,∴b2=﹣,∴ab=﹣1;(3)存在.作AH⊥OB于H点,如图,把y=0代入y=﹣x2+b′x得﹣x2+b′x=0,解得x1=0,x2=b′,∴B点坐标为(b′,0),∵y=﹣x2+b′x=﹣(x﹣)2+,∴A点坐标为(,),∵矩形ABCD以原点O为对称中心,∴OA=OB=OC=OD,∴△OAB为等边三角形,∴AH=OB,∴=b′,解得b′=2,∴A点坐标为(,3),B点坐标为(2,0)∴C点坐标为(﹣,﹣3),D点坐标为(﹣2,0),设过O、C、D三点的抛物线的解析式为y=ax(x+2),把C(﹣,﹣3)代入得a•(﹣)(﹣+2)=﹣3,解得a=1,∴所求抛物线的表达式为y=x(x+2)=x2+2x.5.【函数变换问题】在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为(2,1);②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是B(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为(﹣1,2);②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值是2.【解答】解:(1)①点(2,1)的“关联点”为(2,1);②如果点A(3,﹣1)的关联点为(3,﹣1);B(﹣1,3)的“关联点”为(﹣1,﹣3),一个在函数的图象上,那么这个点是B;故答案为:(2,1),B;(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”是(﹣1,2),那么点M的坐标为(﹣1,2);②当m+1≥0时,即:m≥﹣1,N(m+1,2),∴m+1+3=2,∴m=﹣2,不符合题意,当m+1<0时,即:m<﹣1,∴N(m+1,﹣2),∴m+1+3=﹣2,∴m=﹣6,∴N(﹣5,﹣2)故答案为:(﹣1,2);(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,当﹣2<x≤0时,0<y≤4,即﹣2<a≤0;当x>0时,y=y′,即﹣4<y≤4,﹣x2+4>﹣4,解得x<2,即0<x<2,综上所述:﹣2<x<2,函数图象如图所示:观察图象可知:“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的值为2,故答案为:2.第二部分专项训练专题训练1:最值问题1.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p ≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.【解答】解:(1)是;由函数y=的图象可知,当1≤x≤2016时,函数值y随着自变量x的增大而减少,而当x=1时,y=2016;x=2016时,y=1,故也有1≤y≤2016,所以,函数y=是闭区间[1,2016]上的“闭函数”.(2)因为一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,所以根据一次函数的图象与性质,必有:①当k>0时,,解之得k=1,b=0.∴一次函数的解析式为y=x.②当k<0时,,解之得k=﹣1,b=m+n.∴一次函数的解析式为y=﹣x+m+n.故一次函数的解析式为y=x或y=﹣x+m+n.2.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数,在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数y=﹣(x<0)和y=2x﹣3(x<2)是不是有上界函数?如果是有上界函数,求其上确界;(2)如果函数y=﹣x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2﹣2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.【解答】解:(1)根据有界函数定义,y=﹣(x<0)不是有上界函数;y=2x﹣3(x <2)是有上界函数,上确界是1;(2)∵在y=﹣x+2中,y随x的增大而减小,∴上确界为2﹣a,即2﹣a=b,又b>a,所以2﹣a>a,解得a<1,∵函数的最小值是2﹣b,∴2﹣b≤2a+1,得a≤2a+1,解得a≥﹣1,综上所述:﹣1≤a<1;(3)函数的对称轴为x=a,①当a≤3时,函数的上确界是25﹣10a+2=27﹣10a,∴27﹣10a=3,解得a=,符合题意;②当a>3时,函数的上确界是1﹣2a+2=3﹣2a,∴3﹣2a=3,解得a=0,不符合题意.综上所述:a=.3.我们常常用符号f(x)表示x的函数,例如函数f(x)=x2﹣2x+1,则f(3)=32﹣2x+1=4.对于函数f(x),若存在a,b,f(x)满足以下条件:①当a<x<x0时,随着x的增大,函数值f(x)增大;②当x0<x<b时,随着x的增大,函数值f(x)减小,则称f(x0)为f(x)的一个峰值.(1)判断函数f(x)=x+1是否具有峰值;(2)求函数f(x)=x2+4x+1的峰值;(3)已知m为非零实数,当x≤m时,函数y=m(x﹣1)2+2m2的图象记为T1:当x>m时,函数y=(m2﹣1)x+2m的图象记为T2:图象T1,T2组成图象T.图象T所对应的函数记为f(x),若f(x)存在峰值,求实数m的取值范围.【解答】解:(1)函数f(x)=x+1在其值域内单调递增,故函数f(x)=x+1没有峰值.(2)函数f(x)=x2+4x+1=(x+2)2﹣3,结合二次函数图象可知:当x<﹣2时,函数图形递减;当﹣2<x时,函数图象递增.故f(﹣2)为函数f(x)=x2+4x+1的峰值,f(﹣2)=(﹣2+2)2﹣3=3,答:函数f(x)=x2+4x+1的峰值为﹣3.(3)根据x﹣1=0、m=0和m2﹣1=0,将整个x的取值分五段考虑.①当m<﹣1时,即m<0,m2﹣1>0,此时图象T1单调递增;图象T2单调递增.故当m<﹣1时,图象T所对应的函数f(x)无峰值;②当m=±1时,图象T2为平行x轴的一条射线,即在此区间f(x)为定值,故当m=±1时,图象T所对应的函数f(x)无峰值;③当﹣1<m<0时,即m<0,m2﹣1<0,此时图象T1单调递增;图象T2单调递减.且当x=m时,y=m(m﹣1)2+2m2=m3+m;y=(m2﹣1)m+2m=m3+m,即图象T在m处连续.故当﹣1<m<0时,函数f(x)存在峰值f(m).④当0<m<1时,即m>0,m2﹣1<0,此时图象T1单调递减;图象T2单调递减.故当0<m<1时,图象T所对应的函数f(x)无峰值;⑤当1<m时,结合二次函数y=m(x﹣1)2+2m2(x≤m)的图象T1可知:当x<1时,函数f(x)单调递减;当1<x≤m时,函数f(x)单调递增.即f(1)是函数f(x)的峰值.故当1<m时,图象T所对应的函数记为f(x)有峰值f(1).综上可知:若f(x)存在峰值,实数m的取值范围为﹣1<m<0或1<m.4.在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如点(1,1),(﹣,﹣),(﹣,﹣),…,都是和谐点.(1)分别判断函数y=﹣2x+1和y=x2+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,求m的取值范围.(3)直线l:y=kx+2经过和谐点P,与x轴交于点D,与反比例函数G:y=的图象交于M,N两点(点M在点N的左侧),若点P的横坐标为1,且DM+DN<3,请直接写出n的取值范围.【解答】解:(1)存在,令﹣2x+1=x,解得,∴函数y=﹣2x+1的图象上有一个和谐点(,);令x2+1=x,即x2﹣x+1=0,∵根的判别式△=(﹣1)2﹣4×1×1=﹣3<0,∴方程x2﹣x+1=0无实数根,∴函数y=x2+1的图象上不存在和谐点.(2)令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为,解得a=﹣1,.故函数,即y=﹣x2+4x﹣3,如图1,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4.(3),或0<n<1.∵y=kx+2经过和谐点P,∴y=x,∴x=kx+2,∴点P的横坐标为1,∴k=﹣1,∴直线l为:y=﹣x+2,分两种情况:①如图2,当n>0时,∵y=﹣x+2,与x轴交于点D(2,0),与y轴交于点F(0,2),∴DF=2,∴DM+DN<3,∴只要y=﹣x+2与y=有交点坐标即可,∴﹣x+2=,整理得:x2﹣2x+n=0,∴b2﹣4ac>0,∴4﹣4n>0,解得:n<1,则0<n<1;②如图3,当n<0时,当DM+DN=3,则DN=FM=,∵y=﹣x+2,与x轴交于点D(2,0),与y轴交于点F(0,2),∴可求出M(﹣,),则xy=n=﹣,则﹣<n<0.综上,当﹣<n<0或0<n<1时,反比例函数G2的图象与直线l有两个公共点M,N,且DM+DN<3.5.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.【解答】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小,∴当x=0时,y2取最大值,最大值为5×(0﹣1)2=5,②当1≤x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大,∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.专题训练2:直线与抛物线的交点1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m 与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.(1)抛物线的碟宽为4,抛物线y=ax2(a>0)的碟宽为.(2)如果抛物线y=a(x﹣1)2﹣6a(a>0)的碟宽为6,那么a=.(3)将抛物线y n=a n x2+b n x+c n(a n>0)的准蝶形记为F n(n=1,2,3,…),我们定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.如果F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②请判断F1,F2,…,F n的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.【解答】解:(1)∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△OAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠AOC=∠BOC=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=﹣y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.抛物线y=x2对应的a=,得碟宽为4;抛物线y=ax2(a>0),碟宽为;故答案为:,;(2)∵y=a(x﹣1)2﹣6a(a>0)∴同(1),其碟宽为,∵抛物线y=a(x﹣1)2﹣6a(a>0)的碟宽为6,∴=6,解得a=,故答案为:;(3)①∵F1的碟宽:F2的碟宽=2:1,∴=,∵a1=,∴a2=.∵y=(x﹣1)2﹣2的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣1)2+1,②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=h n﹣2=()3h n﹣3=…=()n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+,另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:,F n﹣1,F n情形,关系如图2,考虑F n﹣2F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行相等于FE,DE平行相等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=•∠GFH=•∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,,F n﹣1,F n的碟宽的右端点是在一条直线,∴F n﹣2∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(4,1),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.2.在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为(3,0);(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标;②若<tan∠ODE<2,则b的取值范围是或.【解答】解:(1)∵A(0,0),B(1.3),代入:直线y=ax+b,解得:a=3,b=0,∴直线y=3x,抛物线解析式:y=3x2,∴C(3,0).故答案为:(3,0);(2)联立直线y=ax+b与抛物线y=ax2+bx,得:ax2+(b﹣a)x﹣b=0,∴(ax+b)(x﹣1)=0,解得:x=﹣,x=1,∴A(1,a+b),B(﹣,0).点A、点B的位置如图所示;(3)①如图,∵特征点C为直线y=﹣4x上一点,∴b=﹣4a.∵抛物线y=ax2+bx的对称轴与x轴交于点D,∴对称轴.∴点D的坐标为(2,0).∵点F的坐标为(1,0),∴DF=1.∵特征直线y=ax+b交y轴于点E,∴点E的坐标为(0,b).∵点C的坐标为(a,b),∴CE∥DF.∵DE∥CF,∴四边形DECF为平行四边形.∴CE=DF=1.∴a=﹣1.∴特征点C的坐标为(﹣1,4).②由已知和已证得:C(a,b),E(0,b),F(1,0),D(﹣,0),∵<tan∠ODE<2,∴<<2,∴<||<2,解得:<|2a|<2,∴﹣1<a<﹣或<a<1,∵DE∥CF,CE∥DF,∴CE=DF,由题意可得:1+=a,(可以画出三种图象,由此得出这个结论)整理得:b=2a2﹣2a即:b=2(a﹣)2﹣当b=2(a﹣)2﹣时,当﹣1<a<﹣,可得.当<a<1时,可得﹣≤b<0综上所述:或﹣≤b<0.3.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x 称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为2;②抛物线y=﹣x2+3x+3的“特征值”为4;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=﹣c;(用含c的式子表示)②求此二次函数的表达式.(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、E,请直接写出⊙M的“特征值”为1+2.【解答】解:(1)①点A(1,3)的“坐标差”为=3﹣1=2,故答案为2;②设P(x,y)为抛物线y=﹣x2+3x+3上一点,坐标差=﹣x2+2x+3,=﹣(x﹣1)2+4,最大值为4,所以抛物线y=﹣x2+3x+3的“特征值”为4故答案为4.(2)①由题意:0﹣m=c﹣0,可得m=﹣c.②∵C(0,c),又∵点B与点C的“坐标差”相等,∴B(﹣c,0),把(﹣c,0)代入y=﹣x2+bx+c,得到:0=﹣c2﹣bc+c,∴c=1﹣b,∵二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1所以y﹣x=﹣x2+(b﹣1)x+1﹣b的最大值为﹣1,∴=﹣1,解得b=3,∴c=﹣2,∴二次函数的解析式为y=﹣x2+3x﹣2.故答案为﹣c.(3)如图,设M(2,3),作MK⊥x轴于K,交⊙M于N,MJ⊥y轴于J,作∠JMN的平分线交⊙M于T,观察图象,根据“特征值”的定义,可知点T的“坐标差”的值最大.作TF⊥x轴于E交MJ于F.易知△TMF是等腰直角三角形,∵TF=FM=,EF=KM=3,EK=FK=M=,∴OE=OK﹣EK=2﹣,TE=3+,半径为2的圆的“特征值”为3+﹣(2﹣)=1+2.故答案为1+2.4.若抛物线L:y=ax2+bx+c(a,b,c是常数且abc≠0)与直线l都经过y轴上的同一点,且抛物线的顶点在直线l上,则称抛物线L与直线l具有“一带一路”关系,并且将直线1叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点的横坐标为﹣1,求“带线”L的表达式;(2)如果抛物线y=2x2﹣4x+1与直线y=nx+1具有“一带一路”关系,如图,设抛物线与x轴的一个交点为A,与y轴交于点B,其顶点为C.①求△ABC的面积;②在y轴上是否存在一点P,使S△PBC=S△ABC,若存在,直接写出点P的坐标,若不存在,请说明理由.【解答】解:(1)∵“带线”L的顶点的横坐标为﹣1,∴y=2×(﹣1)﹣4=﹣6,∴“带线”L的顶点的(﹣1,﹣6),设L的解析式为y=a(x+1)2﹣6,∵“路线”y=2x﹣4与y轴的交点坐标是(0,﹣4),∵带线”L也经过(0,﹣4),将(0,﹣4)代入L的表达式,得a=2,“带线”L的表达式为y=2(x+1)2﹣6=2x2+4x﹣4;(2)①y=2x2﹣4x+1=2(x﹣1)2﹣1其顶点坐标是(1,﹣1),直线y=nx+1经过(1,﹣1),解得n=﹣2,直线BC的解析式为y=﹣2x+1,当y=0时,﹣2x+1=0,解得x=,即D(,0),AD=1﹣=当x=0时,y=1,即B(0,1),当y=0时,2x2﹣4x+1=0,解得x=1,即A点坐标为(1+,0),=AD•(x B﹣x C)=××(1+1)=;∴S△ABC②如图,设P(0,n),BP=|1﹣n|,=S△ABC,得由S△PBC|1﹣n|×1=×,化简得1﹣n=,或n﹣1=解得n=,n=,P点坐标为(0,)或(0,).5.如图①,直线L:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.(1)若L:y=﹣x+2,则P表示的函数解析式为y=﹣+2;若P:,则L表示的函数解析式为y=﹣2x+4.(2)如图②,若L:y=﹣3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(3)如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,求出L,P表示的函数解析式.【解答】解:(1)若l:y=﹣x+2,则A(2,0),B(0,2).∵将△AOB绕点O逆时针旋转90°,得到△COD,∴D(﹣2,0).设P表示的函数解析式为:y=a(x+2)(x﹣2),将点B坐标代入得:2=a×2×(﹣2),解得a=﹣,∴P表示的函数解析式为:y=﹣(x+2)(x﹣2),即y=﹣+2;若P:=﹣(x+4)(x﹣2),则D(﹣4,0),A(2,0).∴B(0,4).设L表示的函数解析式为:y=kx+b,将点A、B坐标代入得:,解得,,∴L表示的函数解析式为:y=﹣2x+4;故答案为:y=﹣+2;y=﹣2x+4.(2)若L:y=﹣3x+3,则A(1,0)、B(0,3),∴C(0,1)、D(﹣3,0).求得直线CD的解析式为:y=x+1.可求得P的对称轴为x=﹣1.∵以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形,∴FQ∥CE,且FQ=CE.设直线FQ的解析式为:y=x+b.∵点E、点C的横坐标相差1,∴点F、点Q的横坐标也是相差1.则|x F﹣(﹣1)|=|x F+1|=1,解得x F=0或x F=﹣2.∵点F在直线L:y=﹣3x+3上,∴点F坐标为(0,3)或(﹣2,9).若F(0,3),则直线FQ为:y=x+3,当x=﹣1时,y=2,∴Q1(﹣1,2).若F(﹣2,9),则直线FQ为:,当x=﹣1时,y=,∴Q2(﹣1,).∴满足条件的点Q有2个,如答图1所示,点Q坐标为Q1(﹣1,2)、Q2(﹣1,);(3)如图2所示,连接OG、OH.∵点G、H为斜边中点,∴OG=AB,OH=CD.由旋转性质可知,AB=CD,OG⊥OH,∴△OGH为等腰直角三角形.∵点G为GH中点,∴△OMG为等腰直角三角形.∴OG=OM=•=.∴AB=2OG=.∵L:y=mx+1,∴A(,0),B(0,1).在Rt△AOB中,由勾股定理得:OA2+OB2=AB2,即:()2+12=()2,解得:m=﹣3或m=3.∵点B在y轴正半轴,∴m=3舍去,∴m=﹣3.∴L表示的函数解析式为:y=﹣3x+1;∴B(0,1),D(﹣1,0).又A(,0),利用待定系数法求得P:y=﹣3x2﹣2x+1.专项训练3:关联抛物线1.在平面直角坐标系xOy中,给出如下定义:形如y=a(x﹣m)2+a(x﹣m)与y=a(x ﹣m)2﹣a(x﹣m)的两个二次函数的图象叫做“兄弟抛物线”.(1)试写出一对兄弟抛物线的解析式y=2(x﹣3)2+2(x﹣3)与y=2(x﹣3)2﹣2(x﹣3);(2)判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是否为兄弟抛物线?如果是,求出a 与m的值;如果不是,请说明理由;(3)若一对兄弟抛物线各自与x轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线x=2且开口向上,请直接写出这对兄弟抛物线的解析式.【解答】解:(1)抛物线y=2(x﹣3)2+2(x﹣3)与y=2(x﹣3)2﹣2(x﹣3)是兄弟抛物线;故答案为y=2(x﹣3)2+2(x﹣3),y=2(x﹣3)2﹣2(x﹣3);(2)二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线,理由如下:∵y=x2﹣x=(x﹣1)2+(x﹣1),y=x2﹣3x+2=(x﹣1)2﹣(x﹣1),∴二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线.此时a=1,m=1.(3)设对称轴为直线x=2且开口向上的抛物线解析式为y=2(x﹣2)2+k(k<0),如图,∵△PAB为直角三角形,∴△PAB为等腰直角三角形,∴AB=﹣2k,∴B(2﹣k,0),把B(2﹣k,0)代入y=2(x﹣2)2+k得2k2+k=0,解得k1=0(舍去),k2=﹣,∴A(,0),B(,0),∴抛物线解析式为y=2(x﹣)(x﹣),当y=2(x﹣)(x﹣﹣1),则与y=2(x﹣)(x﹣﹣1)成一对兄弟抛物线的另一个二次函数为y=2(x﹣)(x﹣+1)=2(x﹣)(x﹣),即y=2(x﹣)(x﹣)与y=2(x﹣)(x﹣)为兄弟抛物线;当y=2(x﹣)(x﹣+1),则与y=2(x﹣)(x﹣+1)成一对兄弟抛物线的另一个二次函数为y=2(x﹣)(x﹣﹣1)=2(x﹣)(x﹣),即y=2(x﹣)(x﹣)与y=2(x﹣)(x﹣)为兄弟抛物线.2.我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C 是点A关于直线BD的对称点(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a=1,b=﹣2.②如果顺次连接A、B、C、D四点,那么四边形ABCD为DA平行四边形B矩形C菱形D正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c﹣1).求四边形ABCD的面积.(3)如果抛物线y=的过顶抛物线是F2,四边形ABCD的面积为2,请直接写出点B的坐标.【解答】解:(1)由A、C点关于对称轴对称,得对称轴x=1.将C点坐标代入解析式,及对称轴公式,得,解得,故答案为:1,﹣2;当x=1时,y=x2,B(1,1);y=x2﹣2x=﹣1,D(1,﹣1),四边形ABCD的对角线相等互相平分,且互相垂直,四边形ABCD是正方形,故选:D.(2)∵B(2,c﹣1),∴AC=2×2=4.∵当x=0,y=c,∴A(0,c).∵F1:y=ax2+c,B(2,c﹣1).∴设F2:y=a(x﹣2)2+c﹣1.∵点A(0,c)在F2上,∴4a+c﹣1=c,∴.当x=2时,y=ax2+c=4a+c,B(2,4a+c)∴BD=(4a+c)﹣(c﹣1)=2.=AC•BD=4.∴S四边形ABCD(3)如图所示,y==(x﹣1)2+2设F2的解析式y=(x﹣1﹣a)2+2﹣b,把(1,2)代入得到a2=3b,B(1+a,2+b),C(3b+1+a,2),D(1+a,a2+2).B点在A点的右侧时,AC=2a,BD=2b,∴•2a•2b=2,∴ab=,∴a=,b=1,∴B1(,1),B在点A的左侧时,同法可得B2(1﹣,1),综上所述:B1(,1),B2(,1).3.定义:我们把二次函数y=ax2+bx+c和y=﹣ax2+bx﹣c这两个二次函数称为一对友好函数,并称函数y=ax2+bx+c是函数y=﹣ax2+bx﹣c的友好函数.函数y=﹣ax2+bx﹣c也是函数y=ax2+bx+c的友好函数.(1)请你写出一对友好函数;(2)若函数y=2x2+bx+c与它的友好函数的图象的顶点重合,求b和c的值;(3)如图,若函数y=﹣x2+bx+c的图象的顶点P是抛物线y=第一象限上的一个动点,且与x轴交于点A(x1,0)和点B(x2,0),且x1<x2,并且它的友好函数的图象与x轴交于点C(x3,0)和点D(x4,0),且x3<x4若点D和点A是线段CB的三等分点,求b和c的值.【解答】解:(1)令a=1,b=2,c=3得:y=ax2+bx+c=x2+2x+3,y=﹣ax2+bx﹣c=﹣x2+2x﹣3,∴y=x2+2x+3和y=﹣x2+2x﹣3是一对友好函数;(2)∵两个函数的顶点重合,∴两抛物线的对称轴重合,即:.∴b=0.∴两抛物线的解析式为y=2x2+c和y=﹣2x2﹣c.∵两个函数的顶点重合,∴c=﹣c.解得:c=0,所以b=0,c=0;(3)设点P的坐标为(m,),则两抛物线的解析式为y1=和y2=,令y1=0得:﹣,解得:x A=,x B=,∴AB==.令y2=0得:=0,解得:x C=,x D=,如图1:则AD==∵点D和点A是线段CB的三等分点,∴AD=AB∴.解得:m=4,∴y1=﹣(x﹣4)2+4=﹣x2+8x﹣12,所以b=8,c=﹣12.如图2;则AD==2﹣.∵点D和点A是线段CB的三等分点,∴AD=AB.∴.解得:m=,∴y1==﹣=﹣.∴b=,c=.综上所述,可知b=8,c=﹣12或b=,c=.4.在平面直角坐标系xOy中,把抛物线C1:y=x2﹣4沿x轴向右平移m(m>0)个单位长度,得抛物线C2,C1和C2的交点为点M(如图1)(1)用含m的式子来表示抛物线C2的解析式和点M的坐标;(2)定义:像C1和C2两条抛物线,是把其中一条沿水平方向向左(像向右)平移得到另一条.若两抛物线的顶点P、Q以及交点M满足∠PMQ=90°,则这样的两条抛物线互为“和谐线”.①求抛物线C1:y=x2﹣4的和谐线;②如图2,抛物线C1:y=x2﹣4与x轴正半轴的交点为A,与它的和谐线的交点为M(点M在第四象限),连接MA,过点M作MH⊥x轴,在x轴上存在一点N,使∠ONM+∠AMH=45°,求点N的坐标【解答】解:(1)∵抛物线C1:y=x2﹣4①沿x轴向右平移m(m>0)个单位长度,得抛物线C2,∴抛物线C2的解析式为y=(x﹣m)2﹣4=x2﹣2mx+m2﹣4②,联立①②得,x=,y=﹣4,∴M(,);(2)设抛物线C1:y=x2﹣4的和谐线抛物线C2的解析式为y=(x﹣m)2﹣4,∴抛物线C1的顶点P(0,﹣4),抛物线C2的顶点Q(m,﹣4),∴PQ=|m|,同(1)的方法得,M(,);由“和谐线”的定义,易知,△PMQ是等腰直角三角形,∴﹣4+4=|m|,∴m=﹣2或m=2,∴抛物线C2的解析式为y=(x﹣2)2﹣4或y=(x+2)2﹣4.(3)当点N在x轴负半轴上时,如图,由(2)知,M(1,﹣3),抛物线C2过原点,∴直线OM的解析式为y=﹣3x,过点O作OD⊥OM,截取OD=OM,∴△ODM是等腰直角三角形,∴∠ODM=45°,∵∠DON+∠MOA=90°,∠OMH+∠MOH=90°,∴∠DON=∠OMH,∵∠OMH=∠AMH,∴∠AMH=∠DON,∴直线OD的解析式为y=x,设点D的坐标为(3m,m)(m<0),∴9m2+m2=10,∴m=1(舍)或m=﹣1,∴D(﹣3,﹣1),∵M(1,﹣3),∴直线DM的解析式为y=﹣x﹣,令y=0,得﹣x﹣=0,∴x=﹣5,∴N(﹣5,0),同理可得,x轴正半轴上的一个N点的坐标为(7,0).即:满足条件的点N(﹣5,0)或(7,0).5.如果抛物线的顶点C1在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1与C2互相关联.(1)已知抛物线①y=x2+2x﹣1,则抛物线②y=﹣x2+2x+1;③y=x2+2x+1已知抛物线①互相关联的有②(填序号即可).(2)如图所示的是抛物线C1:y=(x+1)2﹣2,将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C1与C2关联.①求抛物线C2的解析式.②当t<0时,若点A为抛物线C1的顶点,点B为抛物线C2的顶点,在y轴上是否存在点C,使△ABC是以AB为斜边的直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线①y=x2+2x﹣1=(x+1)2﹣2,其顶点坐标为M(﹣1,﹣2).经验算,点M在抛物线②上,不在抛物线③上,所以,抛物线①与抛物线③不是关联的;抛物线②y=﹣x2+2x+1=﹣(x﹣1)2+2,其顶点坐标为N1(1,2),经验算点N1在抛物线①上,所以抛物线①、②是关联的,物线①与抛物线③不是关联的,故答案为:②.(2)①如图,抛物线C1:y=(x+1)2﹣2,的顶点M的坐标为(﹣1,﹣2),因为动点P的坐标为(t,2),所以点P在直线y=2上,作M关于P的对称点N,分别过点M、N作直线y=2的垂线,垂足为E、F,则ME=NF=4,所以点N的纵坐标为6.当y=6时,(x+1)2﹣2=6,解之得,x1=7,x2=﹣9.∴N(7,6)或N(﹣9,6).设抛物线C2的抛物线为y=a(x﹣7)2+6.因为点M(﹣1,﹣2)在抛物线C2上,∴﹣2=a(﹣1﹣7)2+6,a=﹣.∴抛物线C2的解析式为y=﹣(x﹣7)2+6;设抛物线C2的抛物线为y=a(x+9)2+6.因为点M(﹣1,﹣2)在抛物线C2上,∴﹣2=a(﹣1+9)2+6,a=﹣.∴抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6;②存在点C,使△ABC是以AB为斜边的直角三角形,理由如下:如图1,当t<0时,A(﹣1,﹣2),B(﹣9,6),点C为y轴上的点,可设点C的坐标为(0,c),过点B作BE⊥y轴,过点A作AF⊥y轴,若∠ACB=90°,则∠BCE+∠CBE=∠BCE+∠ACF=90°,∴∠CBE=∠ACF,又∵∠BEC=∠CFA=90°,∴△BCE∽△CAF,∴=,即=,解得c1=2+,c2=2﹣,∴存在点C,使△ABC是以AB为斜边的直角三角形,此时C(0,2+)或(0,2﹣).专项训练4:函数与几何综合1.已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式.【解答】解:(1)如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD=;∵当点A在x轴负半轴、点B在y轴正半轴上时,∴设正方形的边长为a,∴3a=CD=.∴a=,∴正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或;(2)如图2,作DE,CF分别垂直于x、y轴,∵AB=AD=BC,∠DAE=∠OBA=∠FCB,∴△ADE≌△BAO≌△CBF.。
2020人教版数学中考考点(3.4):二次函数(含答案)
2020人教版数学中考考点(3.4):二次函数【★★★★】总分:100分班级:__________ 姓名:__________ 学号:__________ 得分:__________说明:(1)本节考点:二次函数的图象、性质及应用,二次函数的三种形式,待定系数法;(2)最大难度:☆☆☆☆一、选择题(共10小题;共30分)1. 如果将抛物线向下平移个单位,那么所得新抛物线的表达式是A. B.C. D.2. 若二次函数的图象经过,,,,,则,,的大小关系是A. B. C. D.3. 已知二次函数,当时,的值随值的增大而减小,则实数的取值范围是A. B. C. D.4. 对于抛物线,当时,,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 以为自变量的二次函数的图象不经过第三象限,则实数的取值范围是A. B. 或C. D.6. 如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为A. B. C. D.7. 已知二次函数的图象如图所示,给出以下结论:①;②;③;④.其中所有正确结论的序号是A. ③④B. ②③C. ①④D. ①②③8. 定义:若点在函数的图象上,将以为二次项系数,为一次项系数构造的二次函数称为函数的一个“派生函数”.例如:点在函数的图象上,则函数称为函数的一个“派生函数”.现给出以下两个命题:(1)存在函数的一个“派生函数”,其图象的对称轴在轴的右侧(2)函数的所有“派生函数”的图象都经过同一点,下列判断正确的是A. 命题(1)与命题(2)都是真命题B. 命题(1)与命题(2)都是假命题C. 命题(1)是假命题,命题(2)是真命题D. 命题(1)是真命题,命题(2)是假命题9. 如图,正方形的边长为,动点,同时从点出发,以的速度分别沿和的路径向点运动,设运动时间为(单位:),四边形的面积为(单位:),则与之间函数关系可以用图象表示为A. B.C. D.10. 如图,在四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是A. B. C. D.二、填空题(共6小题;共18分)11. 把抛物线向右平移个单位,然后向上平移个单位,则平移后抛物线的解析式为.12. 如图,隧道的截面由抛物线和长方形构成,长方形的长是,宽是,抛物线的最高点到路面的距离为米,该抛物线的函数表达式为.13. 如图,在平面直角坐标系中,抛物线交轴的负半轴于点.点是轴正半轴上一点,点关于点的对称点恰好落在抛物线上.过点作轴的平行线交抛物线于另一点.若点的横坐标为,则的长为.14. 已知二次函数中,函数值与自变量的部分对应值如下表:则关于的一元二次方程的根是.15. 如图,抛物线与轴交于点,点,点是抛物线上的动点.若是以为底的等腰三角形,则点的坐标为.16. 已知二次函数的图象如图所示,给出以下结论:①;②;③;④;⑤,其中结论正确的是.(填正确结论的序号)三、解答题(共5小题;共52分)17. 校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度与水平距离之间的函数关系式为.求:(1)铅球的出手时的高度;(2)小明这次试掷的成绩.18. 某商店购买一批单价为元的日用品,如果以单价元销售,那么半月内可以售出件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少件.如何提高销售价,才能在半月内获得最大利润?19. 如图,某公路隧道横截面为抛物线,其最大高度为米,底部宽度为米.现以点为原点,所在直线为轴建立直角坐标系.(1)直接写出点及抛物线顶点的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架” ,使,点在抛物线上,,点在地面上,则这个“支撑架”总长的最大值是多少?20. 如图,在矩形中,,,是上的一个动点(不与,重合),过点的反比例函数的图象与边交于点.(1)当为的中点时,求该函数的解析式;(2)当为何值时,的面积最大,最大面积是多少?21. 如图,抛物线与轴交于,两点(在的左侧),与轴交于点,已知对称轴.(1)求抛物线的解析式;(2)将抛物线向下平移个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),求的取值范围;(3)设点是抛物线上任意一点,点在直线上,能否成为以点为直角顶点的等腰直角三角形?若能,求出符合条件的点的坐标;若不能,请说明理由.答案第一部分1. C2. D 【解析】经过,,二次函数的对称轴,,,与对称轴的距离最远,最近,,.3. D 【解析】如图,抛物线开口向下,在对称轴右侧的值随值的增大而减小,所以为了满足题意,直线必须在对称轴或对称轴的右侧,建立不等式即可.4. C5. A【解析】因为二次函数的图象不经过第三象限,所以抛物线在轴的上方或在轴的下方经过一、二、四象限,当抛物线在轴的上方时,因为二次项系数,所以抛物线开口方向向上,所以,,解得;当抛物线在轴的下方经过一、二、四象限时,设抛物线与轴的交点的横坐标分别为,,所以,所以,①,②,③由①得,由②得,所以此种情况不存在,所以.6. B 【解析】根据抛物线解析式计算出的顶点坐标,过点作轴于点,根据抛物线的对称性可知阴影部分的面积等于矩形的面积,然后求解即可.7. B 【解析】时,;时,;因为,所以;因为,,,所以.8. C 【解析】(1)因为在上,所以和同号,所以对称轴在轴左侧,所以存在函数的一个“派生函数”,其图象的对称轴在轴的右侧是假命题.(2)因为函数的所有“派生函数”为,所以时,,所以所有“派生函数”为经过原点,所以函数的所有“派生函数”,的图象都进过同一点,是真命题.9. B 【解析】①时,;②时, .10. C【解析】过点作,垂足为 .设,则 .,,.而,,., ..在中,,,即,又四边形的面积三角形的面积三角形的面积,.第二部分11.12.13.【解析】当时,,解得,,则,点关于点的对称点为,点的横坐标为,点的坐标为,抛物线解析式为,当时,,则,当时,,解得,,则,的长为.14. ;15.【解析】依题意,得,因为三角形是等腰三角形,所以,点在线段的垂直平分线上,线段的垂直平分线为:,解方程组:即:,解得:,所以,点的坐标为.16. ①②⑤【解析】函数与轴有两个交点,则其相应方程的判别式大于;由图象得,,对称抽;又解析式可以写成,当时,;且当时,.第三部分17. (1)当时,,铅球的出手时的高度为.(2)由题意可知,把代入解析式得:,解得,(舍去),即该运动员的成绩是米.18. 设销售单价为元,销售利润为元.根据题意,得当时,最大,这时,.所以,销售单价提高元,才能在半月内获得最大利润元.19. (1),.(2)根据顶点的坐标,可设抛物线的解析式为.将点代入解析式求得.所以这条抛物线的解析式为(3)设点的坐标为,则,.设这个支架的总长为.根据题意,得.则当时,最大所以这个"支撑架"总长的最大值是米.20. (1)在矩形中,,,,为的中点,,点在反比例函数的图象上,,该函数的解析式为.(2)由题意知,两点坐标分别为,,.当时,有最大值,最大值21. (1)因为抛物线的对称轴,,所以,因为抛物线过点,所以当时,.又因为抛物线过点,,所以所以所以抛物线的解析式为:.(2)因为,,所以直线解析式为,因为,所以顶点坐标为,因为对于直线,当时,;将抛物线向下平移个单位长度,所以当时,抛物线顶点落在上;当时,抛物线顶点落在上,所以将抛物线向下平移个单位长度,使平移后所得抛物线的顶点落在内(包括的边界),则.(3)设,,①当点在轴上方时,过点作垂直于轴,交轴与点,过点作垂直于的延长线于点,如图1.因为,所以是以点为直角顶点的等腰直角三角形,所以,,则,,在和中,所以,所以,因为,根据点坐标可得,且,所以,解得:或,所以或.②当点在轴下方时,过点作垂直于于点,过点作垂直于的延长线与点,如图 2.同理可得,所以,所以,,则,解得或.所以或.综上可得,符合条件的点的坐标是,,或.。
2020 中考数学 含参二次函数最值讨论
使用日期:2020年月日2020 中考数学培优压轴题训练【含参二次函数最值讨论问题】模型分析:【1】具体例子:已知二次函数y=-x2+4x+6.(1)当x为何值时,y有最值?是多少?(2)当一2≤x≤1时,求函数的最值.(3)当x≥4时.求函数的最值;(4)当0≤x≤5时,求函数的最值.【2】讨论:二次函数y=ax2+bx+c(a≠0),当m≤x≤n时,求其最值.(一)当a>0(a<0)时,求最小(大)值.(二)当a>0(a<0)时,求最大(小)值.例1例2 (2018•黄冈)当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A.-1 B.2 C.0或2 D.-1或2例3(2018•潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6例5(2019秋•昌江区校级期末)已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当-2≤x≤1时,0≤y≤3,求此函数关系式;③当-2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=-1,n=2,当-2≤x≤2时,此函数有最小值-4,求实数k的值.例6 (2020 白云广雅九下月考)如图①,将抛物线y=ax2(−1<a<0)平移到顶点恰好落在直线y=x−3上,设此时抛物线顶点的横坐标为m.(1)求抛物线的解析式(用含a、m的代数式表示)(2)如图②,Rt△ABC与抛物线交于A、D、 C三点,∠B=90∘,AB∥x轴,AD=2,BD:BC=1:2 .①求△ADC的面积(用含a的代数式表示)②若△ADC的面积为1,当2m−1⩽x⩽2m+1时,y的最大值为−3,求m的值。
使用日期:2020年 月 日 2020 中考 数学 培优压轴题训练 例7 (2020 七中九下月考)在平面直角坐标系中,已知抛物线C :()0122≠-+=a x ax y 和直线b kx y l +=:,点A (-3,-3),B (1,-1)均在直线l 上.(1)若抛物线C 与直线l 有交点,求a 的值;(2)当a=-1时,二次函数()0122≠-+=a x ax y 的自变量x 满足m ≤x ≤m+2时,函数y 的最大值为-4,求m 的值;(3)若抛物线C 与线段AB 有两个交点,请直接写出a 的取值范围.例8 (2019 广州二中九上月考)已知抛物线y=x 2+(2m-1)x-2m(2321≤≤-m ),直线l 的解析式为 y=(k-1)x+2m-k+2.(1)若抛物线与y 轴交点的纵坐标为-3,试求抛物线的顶点坐标;(2)试证明:抛物线与直线l 必有两个交点; (3)若抛物线经过点(x 0,-4),且对于任意实数x ,不等式x 2+(2m-1)x-2m≥-4都成立;当k≤x≤k +4时,抛物线的最小值为2k+1.求直线l 的解析式.【巩固练习】1.(2017•乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m 的值是 .2.(2017秋•余杭区期末)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c-2,y在-2≤x≤2上的最小值是-3,求b的值。
2020中考数学专项解析:二次函数应用题
【文库独家】二次函数应用题1、(•衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种 10 棵橘子树,橘子总个数最多. 考点: 二次函数的应用. 分析: 根据题意设多种x 棵树,就可求出每棵树的产量,然后求出总产量y 与x 之间的关系式,进而求出x=﹣时,y 最大.解答: 解:假设果园增种x 棵橙子树,那么果园共有(x+100)棵橙子树,∵每多种一棵树,平均每棵树就会少结5个橙子, ∴这时平均每棵树就会少结5x 个橙子, 则平均每棵树结(600﹣5x )个橙子. ∵果园橙子的总产量为y , ∴则y=(x+100)(600﹣5x )=﹣5x 2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10. 点评: 此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键. 2、(山西,18,3分)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB=36m ,D ,E 为桥拱底部的两点,且DE∥AB,点E 到直线AB 的距离为7m ,则DE 的长为_____m.【答案】48【解析】以C 为原点建立平面直角坐标系,如右上图,依题意,得B (18,-9),设抛物线方程为:2y ax =,将B 点坐标代入,得a =-136,所以,抛物线方程为:2136y x =-,E 点纵坐标为y =-16,代入抛物线方程,-16=2136x -,解得:x =24,所以,DE 的长为48m 。
3、(鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.4、(•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?考点:二次函数的应用.分析:(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.解答:解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.点评:本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.5、(四川南充,18,8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?解析:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象得……………1′1305015030k b k b +=⎧⎨+=⎩……………2′解得1180k b =-⎧⎨=⎩ ……………3′∴函数关系式为y =-x +180. ……………4′ (2)W =(x -100) y =(x -100)( -x +180) ……………5′=-x 2+280x -18000 ……………6′ =-(x -140) 2+1600 ……………7′ 当售价定为140元, W 最大=1600.∴售价定为140元/件时,每天最大利润W =1600元 ……………8′ 6、(•滨州)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm ,高为20cm .请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计).元/件)7、(年潍坊市)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?答案:(1)在Rt △ABC 中,由题意得AC=312米,BC=36米,∠ABC=30°, 所以,330tan ,33360tan x EFBE x x DG AD =︒===︒=又AD+DE+BE=AB, 所以,334324333324x x x y -=--=(0<x <8). (2)矩形DEFG 的面积.3108)9(334324334)334324(22+--=+-=-==x x x x x xy S 所以当x=9时,矩形DEFG 的面积最大,最大面积为3108平方米.(3)记AC 为直径的半圆\、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S3,两弯新月面积为S ,则,81,81,81232221AB S BC S AC S πππ===由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S=S 3-S △ABC ,故S=S △ABC所以两弯新月的面积S=32163631221=⨯⨯(平方米) 由3216313108)9(334⨯=+--x , 即27)9(2=-x ,解得339±=x ,符合题意,所以当339±=x 米时,矩形DEFG 的面积等于两弯新月面积的31.考点:考查了解直角三角形,二次函数最值求法以及一元二次方程的解法。
2020年九年级中考数学二次函数综合题——铅垂线面积问题(无答案))
二次函数面积问题一、公式法:适用于有一边在坐标轴上或与坐标轴平行的三角形。
注意事项:1.以坐标轴上线段或以与轴平行的线段为底边,横坐标大减小,即可求出底边长。
2.以第三点到该轴的距离为三角形的高。
3.根据公式:S△=×底边×高,可求出面积。
二、铅垂线法:适用于斜三角形。
如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高h”。
三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半。
注意事项:1.找出B、C的坐标,横坐标大减小,即可求出水平宽;2.求出直线BC的解析式,A与D的横坐标相同,A与D的纵坐标大减小,即可求出铅垂高;3.根据公式:S△=×水平宽×铅锤高,可求出面积。
三.割补法:适用于四边形等图形。
O xyDC图四xyOMENA图五PxyOA BD图二ExyOA BC图一xyOA B图三例题练习1.(2012秋•桐城市校级期中)已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.2.(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;3.如图,直线y=﹣x+5与x轴交于点B,与y轴交于点D,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,D两点,点C是抛物线的顶点.(1)求抛物线的解析式;(2)点M是直线BD上方抛物线上的一个动点,其横坐标为m,过点M作x轴的垂线,交直线BD于点P,当线段PM的长度最大时,求m的值及PM的最大值;4.已知二次函数y=﹣x2﹣2x+3的图象和x轴交于点A、B,与y轴交于点C,点P是直线AC上方的抛物线上的动点.(1)求直线AC的解析式;(2)当P是抛物线顶点时,求△APC面积;(3)在P点运动过程中,求△APC面积的最大值.。
中考数学二次函数综合题解题技巧
C xxy yA OBED AC B CD G图1 图2AP O B E Cx y压轴题解题技巧练习引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
一、 动态:动点、动线1.(2010年辽宁省锦州)如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;(3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.二、 圆 2.(2010青海) 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .3.(2009年中考天水)如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO =1 3. (1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.4.(09年湖南省张家界市)在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . (1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.四、比例比值取值范围5.(2010年怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.6. (湖南省长沙市2010年)如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.(1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.B A PxC Q Oy7.(成都市2010年)在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切? 五、探究型.8. (2011湖南湘潭市,25,10分)(本题满分10分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形? 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.9.(09年重庆市)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.10.(09年湖南省长沙市)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点C (0,3).当x =-4和x =2时,二次函数y =ax 2+bx +c (a ≠0)的函数值y 相等,连结AC 、BC .(1)求实数a ,b ,c 的值;(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.六、最值类11.(2010年恩施) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四 边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在 请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.12. (2011贵州安顺,27,12分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.第12题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学二次函数解题方法
导读:我根据大家的需要整理了一份关于《2020中考数学二次函数解题方法》的内容,具体内容:二次函数是中考数学必考的知识点,也是难点之一。
下面是我为你整理的,一起来看看吧。
:自定义概念①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。
③动三...
二次函数是中考数学必考的知识点,也是难点之一。
下面是我为你整理的,一起来看看吧。
:自定义概念
①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。
③动三角形:至少有一边的长度是不确定的,是运动变化的。
或至少有一个顶点是运动,变化的三角形称为动三角形。
④动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x 标,纵坐标称为y标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标"一母示"是针对
直接动点坐标而言的。
1.求证"两线段相等"的问题:
借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是"点点"距离,还是"点轴距离",还是"点线距离",再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,把它们进行化简,即可证得两线段相等。
2."平行于y轴的动线段长度的最大值"的问题:
由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式y上-y下,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3."抛物线上是否存在一点,使之到定直线的距离最大"的问题:
(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x的的一元二次方程,由题有△=0(因为该直线与抛物线相切,只有一个交点,所以△=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切
点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
4.常数问题:
(1)点到直线的距离中的常数问题:
"抛物线上是否存在一点,使之到定直线的距离等于一个固定常数"的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:
"抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数"的问题:先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。
(3)几条线段的齐次幂的商为常数的问题:
用K点法设出直线方程,求出与抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可。
5."在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小"的问题:
先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。
:常数问题
(1)点到直线的距离中的常数问题:
"抛物线上是否存在一点,使之到定直线的距离等于一个固定常数"的问题:
先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:
"抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数"的问题:
先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。