BT3C扫频仪的使用.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章频率特性测试仪及其应用

早期频率特性的测量用逐点测绘的方法来实现。在整个测量过程中,应保持输入到被测网络信号的幅度不变,记录不同频率下相应输出的电压,根据所得到的数据,就可以在坐标纸上描绘出该网络的幅频特性曲线。显然,这种方法不仅操作繁锁、费时,而且有可能因测量频率间隔不够密而漏掉被测曲线上的某些细节,使得到的曲线不够精确。

扫频测量法是将等幅扫频信号加至被测电路输入端,然后用示波器来显示信号通过被测电路后振幅的变化。由于扫频信号的频率是连续变化的,在示波器屏幕上可直接显示出被测电路的幅频特性。

扫频信号发生器

扫描电压

发生器

(扫描信号)通用电子

示波器

被测电路峰值

检波器

(扫频X

Y

信号)

图6-1 扫频法测量电路的幅频特性

扫频测量法的仪器连接如图6-1所示。扫描电压发生器一方面为示波器X轴提供扫描信号,一方面又用来控制等幅振荡的频率,使其产生按扫描规律频率从低到高周期性重复变化的扫频信号输出。扫频信号加至被测电路,其输出电压由峰值检波器检波,以反映输出电压随频率变化的规律。

扫频法利用扫描电压连续自动地改变频率,利用示波器直观地显示幅度随频率的变化,与点频测量法相比较,由于扫频信号频率是连续变化的,不存在测试频率的间断点,因此不会漏掉突变点,且能够观察到电路存在的各种冲激变化,如脉冲干扰等。调试电路过程中,可以一边调整电路元件,一边观察显示的曲线,随时判明元件变化对幅频特性产生的影响,迅速查找电路存在的故障。

扫频仪又称频率特性图示仪,这是将扫频信号源及示波器的X-Y显示功能结合为一体,并增加了某些附属电路而构成的一种通用电子仪器,用于测量网络的幅频特性。

一、扫频仪的基本工作原理

扫频仪的原理方框图如图6-2所示。

扫描电压发生器产生的扫描电压既加至X轴,又加至扫频信号发生器,使扫频信号的频率变化规律与扫描电压一致,从而使得每个扫描点与扫频信号输出的频率有一一对应的确定关系。扫描信号的波形可以是锯齿波,也可以是正弦波,因为光点的水平偏移与加至X 轴的电压成正比,即光点的偏移位置与X轴上所加电压有确定的对应关系,而扫描电压与扫频信号的输出瞬时频率又有一一对应关系,故X轴相应地成为频率坐标轴。

(a) 方框图(b)波形图

图6-2 扫频仪的原理方框图

扫频信号加至被测电路,检波探头对被测电路的输出信号进行峰值检波,并将检波所得信号送往示波器Y轴电路,该信号的幅度变化正好反映了被测电路的幅频特性,因而在屏幕上能直接观察到被测电路的幅频特性曲线。

为了标出X轴所代表的频率值,需另加频标信号。该信号是由作为频率标记的晶振信号与扫频信号混频而得到的。

下面以产品BT3型扫频仪为例对各部分加以说明。

(一)对扫频信号源的要求

扫频信号发生器是扫频仪的心脏。实际上它就是频率可控的正弦振荡器,其工作大原理和调频振荡器相似,但扫频振荡器的扫频宽度远大于调频振荡器的频偏,前者中心频率变动范围也比后者大得多。扫频振荡器除具有一般正弦振荡器所具有的工作特性外,还需满足如下要求:

1.中心频率范围宽,且可连续调节。中心频率是指扫频信号从低频到高频之间中心位置的频率。不同测试对象对中心频率有不同频段要求,如高频段、中频段和音频段等。

2.扫频宽度(常叫频偏)要宽,并可任意调节。频偏是指调频波中的瞬时频率和中心频率之间的差值。显然,频偏应能覆盖被测电路的通频带,以便测绘该电路完整的频率特性曲线。如测试电视接收的图象中频通道,要求频偏达±5MHz,测试伴音中频通道时,频偏只需0.5MHz。

3.寄生调幅要小。理想的调频波应是等幅波。只有在扫频信号幅度保持恒定不变的情况下,被测电路输出信号的包络才能表征该电路的幅频特性曲线,否则会导致错误结果。

4.良好的扫频线性度。当扫频信号的频率和调制信号间成直线关系时,示波管的水平轴则变成线性的频率轴,这时幅频特性曲线上的频率标尺将均匀分布,便于观察,否则导致曲线畸变。

(二)BT-3型频率特性图示仪的主要技术指标:

1.中心频率(指扫描基线为100mm,在最大频偏时,对准荧光屏中心刻度线的频率):在1MHz~300MHz内可以连续调节,分三个波段实现。

2.有效扫频宽度:±0.5MHz~±7.5MHz可连续调节。

3.寄生调幅系数:≯±7.5%。

4.扫频线性度:在频偏±7.5MHz时,应>20%。

5.输出扫频信号电压:>0.1V(应接75Ω匹配负载,输出衰减置于0dB)。

6.输出电压调节方式:步进衰减(粗):0/10/20/30/40/50/60dB;

步进衰减(细):0/2/3/4/6/8/10dB。

7.检波探测器的输入电容:≯5pF (最大允许直流电压300V )。

(三)磁调制

所谓磁调制,就是用磁芯线圈作为振荡器的回路电感,利用加在磁芯励磁线圈上的调制电流来改变磁芯线圈电感量,从而达到扫(调)频的目的(或说达到振荡器所需频偏的目的)。在线性扫频条件下,扫频振荡器的瞬时频率变化规律与调制线圈中的调制电流变化规律成线性关系。为了把示波管屏幕的水平坐标变换成线性的频率坐标,要求调制电流波形必须与扫描电压波形完全相同。在感性负载的励磁线圈中产生正弦形电流要比其它波形电流方便得多。所以,磁调制采用正弦波调制信号,直接取自50Hz 交流市电。通过电位器调节输入的50Hz 市电信号幅度,可调节扫频信号频偏大小。

(四)扫频振荡器

BT3型超高频扫频仪的中心频率调节范围为1~300MHz ,分三个波段来实现。

1.第Ⅰ波段:中心频率为1~75MHz

由于相对扫频宽度太大,扫频线性度、寄生调幅的矛盾尤为突出,一般扫频器难以保证。故扫频信号通过差频法获得。

定频振荡器,电容三点式振荡器。所谓定频,就是其振荡频率为某一恒定值,没有扫频信号。借助蝶形电容的调节,振荡频率可在290MHz ~215MHz 范围内变化(面板上的“中心频率”旋钮)。

调(扫)频振荡器也是三点式电路,振荡频率为290MHz 。由于振荡线圈L 是绕在电流调制器的高频磁芯上,因而在调制电流作用下,将得到频偏>±7.5MHz 的扫频信号。

扫频、定频两信号经混频管的非线性作用后,由低通滤波器取出其差频信号。经宽频带放大器予以放大,使输出信号幅度大于0.1V 。从而得到中心频率在1MHz ~75MHz 内连续可调,而频偏为±7.5MHz 的扫频信号了。

2.第Ⅱ波段:中心频率为75MHz ~150MHz

此波段是普通的磁扫频器。由绕在高频磁芯上的L 实现扫频振荡,中心频率的连续调节通过调节振荡回路蝶形电容实现。

3.第Ⅲ波段为:中心频率为150MHZ ~300MHz

为了获得中心频率更高的扫频信号,第Ⅲ波段采用了推挽式倍频电路,得到第Ⅱ波段的二次谐波,使中心频率可在150MHZ ~300MHz 范围内连续调节。

(五)回扫图形的消隐

BT3型扫频仪中,用50Hz 正弦波作为扫频振荡器的调制信号和示波管的水平扫描信号,其扫描正程和逆程时间相同。在调制(扫描)信号的上升段,示波管电子束自左向右描绘频率特性曲线(正程);在信号的下降段,电子束按理应当自右向左沿着同一轨迹返回(逆程),扫描出同样的频率特性曲线,为什么还要将回扫图形消隐掉呢?

这是由于磁滞材料特有的“磁滞回线”引起的,即当调制电流由大到小变化时,瞬时振荡频率将不再沿原来的曲线减小,而是沿新的曲线减小,也就是说,通过被测网络后,在荧光屏上将得到不能完全重合的两条频率特性曲线,给观测带来不便。

晶体振荡器

谐波发生器

频标混频器

频标放大器低频滤波器

扫频信号外接频标信号

1MHz 10MHz

(1)(2)(3)(4)

(a) 原理图

相关文档
最新文档