填料塔的简单介绍及其相应计算

合集下载

填料塔的计算

填料塔的计算

一、填料塔的计算(一) 操作条件的确定1.1吸取剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸取塔的工艺尺寸的运算2.1基础物性数据①液相物性数据关于低浓度吸取过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔依照上式运算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平稳常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸取过程为低浓度吸取,平稳关系为直线,最小液气比按下式运算,即2121min /X m Y Y Y )V L(--=关于纯溶剂吸取过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径运算采纳Eckert 通用关联图运算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量运算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在承诺范畴内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。

填料塔的简单介绍及其相应计算要点

填料塔的简单介绍及其相应计算要点

10
3.7 裙座轴向应力校核 ............................................
10
3.7.1 裙座底截面的组合应力 ..................................
10
4.7.2 裙座检查孔和较大管线引出孔截面处组合应力 ..............
表 1 塔设备的投资及重量在过程设备中所占的比例
装置名称
化工及石油化工
炼油及煤化工 化纤
塔设备投资的比 例( %) 25.4
34.85 44.9
装置名称
60 万, 120 万 t/a 催化裂化 30 万 t/a 乙烯 4.5 万 t/a 丁二烯
塔设备重量的比 例( %) 48.9
25.3 54
实现气(汽) —液相或液 —液相之间的充分接触,从而达到相际传质和传热 的目的。塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等 单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产 品产量、质量、成本以及环境保护、 “三废”处理等都有较大的影响。因此对设 备的研究一直是工程界所关注的热点。 随着石油、 化工的发展, 塔设备的合理造 型及设计将越来越受到关注和重视。
图 2.1 填料塔的总体结构
1.2 板式塔
以塔板作为气、 液接触和传质的基本构件, 液体自上而下流入各层塔板, 形 成液池,气体以鼓泡或喷射的形式自下而上穿过各层塔板的筛孔、液池,使气、 液两相密切接触而传质和传热。 两相的组分浓度呈阶梯式变化, 板式塔属于逐级 接触型的气、液传质设备。如图 2.2 为板式塔的总体结构。
料塔两大类 , 人们又按板式塔的塔盘结构和填料塔所用的填料 , 细分为多种塔型。 目前工业上应用最广泛的是填料塔及板式塔。

填料塔的计算范文

填料塔的计算范文

填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。

其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。

本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。

一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。

2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。

3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。

4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。

5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。

6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。

二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。

现在我们按照上述步骤进行料塔的计算。

1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。

2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。

3.结构形式:选择筒形料塔。

5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。

6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。

三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。

关于填料吸收塔的计算

关于填料吸收塔的计算

关于填料吸收塔的计算
一、填料吸收塔的选择
1、填料类别选择:根据吸收塔吸收的物质种类,选择合适的填料类别,常用的填料类别有木屑填料、砂填料、树状填料、活性炭填料等。

2、填料形状选择:主要有管纹、柱状、棒状、球状、椭圆形、橄榄形、螺旋形等,选择可以有效提高填料的吸收效率。

一般来说,填料的形状应该根据应用的环境和条件进行选择,有利于吸收、湿式换汽、减少内堵塞等,可以提高吸收塔的运行效率。

3、填料尺寸选择:填料的尺寸应用于容易更换,根据场地空间的垂直面积,选择合适大小的填料,可以使吸收塔的收缩比例适宜,可以使负载分布均匀,有利于增加填料的使用寿命。

4、填料材质选择:根据填料对吸收的物质的耐腐蚀程度,选择一种耐腐蚀的材质,如不锈钢、碳钢、铝、硬质合金等,同时应考虑填料的结构强度。

一般来说,填料材质的耐腐蚀性与结构强度成反比。

1、吸收塔的结构尺寸计算:根据散热塔的工作要求,确定塔的结构形式、形状和尺寸。

一般来说,根据吸收塔的实际空间来确定,若有特殊要求,可根据塔的层数、直径和填料的尺寸,作出相应的更改。

填料塔设计详细计算过程

填料塔设计详细计算过程

第一章设计任务依据和要求一、设计任务及操作条件:1、混合气体(空气中含SO2气体的混合气)处理量为:106Kmol/h2、混合气组成:SO2含量为6.7% (mol% ),空气为:93.3 %(mol%)3、要求出塔净化气含SO2为:0.148 %(mol%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25℃,水入塔温度为20℃。

二、设计内容:1、设计方案的确定。

2、填料吸收塔的塔径、填料层高度及填料层压降的计算。

3、填料塔附属结构的选型与设计。

4、填料塔工艺条件图。

三、H2O-SO2在常压20℃下的平衡数据X Y X Y0.00281 0.0776 0.000423 0.007630.001965 0.00513 0.000281 0.00420.001405 0.0342 0.0001405 0.001580.000845 0.0185 0.0000564 0.000660.000564 0.0112四、气体及液体的物性数据1、气体的物性:气体粘度()0.0652/G u kg m h =⋅气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ=2、液体的物性:液体粘度µL =3.6 kg /(m ·h); 液体扩散系数D L =5.3×10-6m 2/s; 密度ρL =998.2 kg /m 3;液体表面张力 4273/92.7110/L dyn cm kg h σ==× 五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二章 SO 2净化技术和设备 一、SO 2的来源、性质及其危害二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。

主要有自然来源和人为来源两大类:自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。

填料塔计算和设计说明书

填料塔计算和设计说明书

填料塔设计2012-11-20一、填料塔构造填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

在填料的上方安装填料压板,以限制填料随上升气流的运动。

液体从塔顶参加,经液体分布器喷淋到填料上,并沿填料外表流下。

气体从塔底送入,经气体分布装置〔小直径塔一般不设置〕分布后,与液体呈逆流接触连续通过填料层空隙,在填料外表气液两相密切接触进展传质。

填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。

二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。

填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

散装填料根据构造特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何构造可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的根本参数,主要包括比外表积、空隙率、填料因子等。

1.比外表积:单位体积填料层的填料外表积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比外表积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,外表流体阻力越小。

三、填料塔设计根本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进展填料塔的构造设计,构造设计包括塔体设计及塔内件设计两局部。

四、填料塔设计1.填料的选择填料应根据别离工艺要求进展选择,对填料的品种、规格和材质进展综合考虑。

应尽量选用技术资料齐备,适用性能成熟的新型填料。

对性能相近的填料,应根据它的特点进展技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计填料塔计算和设计Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

在填料的上方安装填料压板,以限制填料随上升气流的运动。

液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。

填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。

二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。

填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。

三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。

四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。

填料塔计算公式

填料塔计算公式

填料塔计算公式填料塔是化工、环保等领域中常用的气液传质设备,要想设计和操作好填料塔,掌握相关的计算公式那可是相当重要!先来说说填料塔的塔径计算公式。

这就好比给塔选一件合适的“衣服”,太大了浪费材料,太小了又影响工作效率。

塔径的计算主要考虑气体的体积流量、空塔气速等因素。

计算公式大致是:D = √(4Vs / πu),这里的 D 表示塔径,Vs 是气体体积流量,u 是空塔气速。

咱就拿一个实际例子来说吧,之前我在一个化工厂实习的时候,就碰到了填料塔塔径计算的问题。

当时厂里要对一个旧的填料塔进行改造,以提高生产效率。

我们首先得确定气体的流量,这可不是个简单的事儿,得通过各种测量仪表,像流量计啥的,获取准确的数据。

然后再根据工艺要求和经验,确定合适的空塔气速。

这个空塔气速的选择可不能马虎,选高了,气体阻力增大,能耗增加;选低了,塔的处理能力又不够。

我们那时候是反复讨论、计算,才最终确定了一个比较理想的塔径。

再来说说填料层高度的计算公式。

这就像是给塔盖房子,得盖多高才能让气液充分接触,完成传质任务呢?常用的计算公式有传质单元数法和等板高度法。

传质单元数法呢,需要先计算出传质单元数,然后乘以传质单元高度,就得到了填料层高度。

等板高度法呢,是先确定理论板数,再乘以等板高度。

我记得有一次,在设计一个新的填料塔时,为了确定填料层高度,我们可是费了好大的劲儿。

先是在实验室里做小试,模拟实际的操作条件,测量各种数据。

然后根据实验结果进行计算和分析,不断调整参数,优化设计方案。

那几天,我们办公室的灯常常亮到很晚,大家都在为了这个项目努力。

还有填料的压降计算也不能忽视。

压降大了,会增加能耗;压降小了,又可能影响传质效果。

总之,填料塔的计算公式虽然看起来有点复杂,但只要我们认真研究,结合实际情况,多做实验和计算,就一定能设计出性能优良的填料塔,为生产和环保事业做出贡献。

希望我讲的这些能让您对填料塔的计算公式有更清楚的了解,在实际应用中少走弯路,提高工作效率和质量!。

丙酮与水填料塔塔径的计算

丙酮与水填料塔塔径的计算

丙酮与水填料塔塔径的计算摘要:一、填料塔概述二、丙酮与水填料塔塔径的计算方法1.设计基本参数2.计算公式及步骤3.影响塔径的因素三、填料塔塔高的计算1.塔高与塔径的关系2.计算公式及步骤3.影响塔高的因素四、填料塔标准塔径系列五、总结与展望正文:一、填料塔概述填料塔是一种常见的化工设备,广泛应用于化工、石油、环保等行业。

它主要用于气液相的传质和传热过程,如丙酮与水的分离。

填料塔的设计涉及多个参数,其中塔径和塔高是关键的尺寸参数。

二、丙酮与水填料塔塔径的计算方法1.设计基本参数在计算填料塔塔径之前,需要先确定一些基本参数,如操作压力、操作温度、液相流量、气相流量等。

这些参数可以根据工艺要求和使用条件进行选择。

2.计算公式及步骤填料塔塔径的计算公式为:D = (Ql / (π * ρl * g * N))^(1/3)其中,D为塔径,Ql为液相流量,ρl为液相密度,g为重力加速度,N为填料层数。

3.影响塔径的因素填料塔的塔径受多种因素影响,如操作条件、工艺要求、设备材料等。

在实际设计中,需要根据具体情况进行调整。

三、填料塔塔高的计算1.塔高与塔径的关系填料塔的塔高与塔径之间存在一定的关系。

在设计时,可以根据塔径和填料层数来确定塔高。

2.计算公式及步骤填料塔塔高的计算公式为:H = (N * L) + H0其中,H为塔高,N为填料层数,L为每层填料的高度,H0为塔底高度。

3.影响塔高的因素填料塔的塔高受多种因素影响,如填料层数、填料高度、操作压力等。

在实际设计中,需要根据具体情况进行调整。

四、填料塔标准塔径系列根据我国相关标准和规范,填料塔的标准塔径系列分为若干个档次。

设计时,可以根据工艺要求和使用条件选择合适的塔径。

五、总结与展望本文详细介绍了丙酮与水填料塔塔径和塔高的计算方法,以及影响塔径和塔高的因素。

在实际设计中,可以根据这些方法和因素进行填料塔的尺寸计算。

填料塔塔径和阻力的计算

填料塔塔径和阻力的计算

对数坐标:该图中的横坐标轴(x轴)是对数坐标。在此
轴上,某点与原点的实际距离为该点对应数的对数值, 但是在该点标出的值是真数。为了说明作图的原理,作 一条平行于横坐标轴的对数数值线.
填料塔内的流体力学特性
如图,曲线1、2、3表示不同液体喷淋量下,
填料层的ΔP~u关系,称为填料操作压降线。
在一定的喷淋量下,压降随空塔气速的变化曲线分为三段: 1.当气速低于A点时,气体流动对液膜的曳力很小,液体流 动不受气流的影响,填料表面上覆盖的液膜厚度基本不变, 因而填料层的持液量不变,该区域称为恒持液量区。此时
填料塔塔径和阻力的计算填料塔塔径的计算压强降的计算填料塔塔径和阻力的计算由于所以其中r831焦耳摩尔为普适气体常数或者摩尔气体常数典型的吸收净化流程吸收剂的冷却新吸收剂的加入吸收液取出去再生加工或经处理后排放吸收净化法工艺配置
填料塔塔径和阻力的计算
填料塔内的流体力学特性
填料层的压降
•在逆流操作的填料塔中,从塔顶喷淋下来的液体,依靠重力 在填料表面成膜状向下流动,上升气体与下降液膜的摩擦阻力 形成了填料层的压降。 •填料层压降与液体喷淋量L及气速u有关,在一定的气速下, 液体喷淋量越大,压降越大;在一定的液体喷淋量下,气速越 大,压降也越大。
由于 所以
压强降的计算
(1) (2)
理想气体状态方程是 PV=nRT 。 其中 R=8.31 焦耳 / (摩尔 ·开) 为普适气体常数或者摩尔气体常数
吸收净化法工艺配置
典型的吸收净化流程
¾吸收剂的冷却 ¾新吸收剂的加入 ¾吸收液取出去再生加工或经处理后排放
ΔP~u为一直线,位于干填料压降线的左侧,且基本上与干
填料压降线平行。 2.当气速超过A点时,气体对液膜的曳力较大,对液膜流动 产生阻滞作用,使液膜增厚,填料层的持液量随气速的增加 而增大,此现象称为拦液。开始发生拦液现象时的空塔气速 称为载点气速,曲线上的折点A,称为载点。

填料塔的计算范文

填料塔的计算范文

填料塔的计算范文填料塔是一种常见的化工设备,广泛应用于石油、化工、制药、冶金等领域。

它既可以用于物理吸附、化学吸附和蒸馏等过程,也可以用于分离、净化、吸收和反应等操作。

填料塔的设计和计算是确保设备正常运行和达到预期效果的关键步骤,本文将介绍填料塔的计算方法和相关问题。

填料塔的设计和计算需要考虑以下几个方面:塔径的确定、填料高度的确定、液体负荷的确定、气液流量的确定和塔底液体的冷却。

首先,确定塔径是设计填料塔的第一步。

在一定程度上,填料塔的塔径决定了设备的规模和投资成本。

塔径的确定通常基于液相线速度和气相线速度的经验公式。

液相线速度一般在0.3-0.7m/s,而气相线速度一般在0.7-2.0m/s。

根据所需处理的物质性质和运行条件,选择合适的液相线速度和气相线速度,就可以计算出初步的塔径。

其次,确定填料高度是设计填料塔的重要步骤。

填料高度的选择取决于所需的传质效率和分离效果。

填料高度越高,传质效率和分离效果越好,但同时也增加了设备的投资成本。

填料高度的计算通常基于传质速率和质量传递系数的经验公式。

传质速率与填料高度成正比,而质量传递系数与填料表面积成正比。

通过确定所需的传质效率和分离效果,就可以计算得到合适的填料高度。

然后,确定液体负荷是设计填料塔的重要步骤。

液体负荷是指单位塔体积内液体的流量。

液体负荷的选择取决于填料的覆盖度和液相混合的要求。

覆盖度一般在50-80%之间,液相混合要求则根据工艺需求决定。

液体负荷的计算通常基于液体流量和填料容积的经验公式。

通过确定所需的覆盖度和液相混合要求,就可以计算得到合适的液体负荷。

接下来,确定气液流量是设计填料塔的重要步骤。

气液流量的选择取决于所需的气液接触时间和气液相对速度。

气液接触时间一般在0.1-10秒之间,气液相对速度则根据具体情况决定。

气液流量的计算通常基于气相流量和液相流量的经验公式。

通过确定所需的气液接触时间和气液相对速度,就可以计算得到合适的气液流量。

填料塔计算部分要点

填料塔计算部分要点

填料塔计算部分要点
一、填料塔简介
填料塔是一种用于换热、搅拌和分离固液混合物的工艺设备。

它具有广泛的应用,如分离液体、气体、液体和固体,以及蒸馏、萃取、松弛和干燥等工序。

由于其灵活性和可靠性,填料塔在化工、石油炼制、精细化工和冶金等行业中得到了广泛的应用,是传统的碱法精细化工的重要设备之一、此外,由于101工业流程的改进和提升,填料塔也成为生产线自动化设备中的主要构件。

填料塔通常由填料泵、填料塔本体、流速计、压力表、流量计以及连接件组成,其中最重要的元件是填料塔本体,它的主要作用是将介质传送到填料塔的上部分,然后沿着填料塔的周围区域流动并通过不同的介质逐渐混合,直到最终输出。

二、填料塔计算要点
1.填料体积:首先要确定填料体积,该体积是指填料塔内部空间的容积,所以在绘制填料塔时,应该将设备内部的介质容积计算入内。

2.体积流量:体积流量是指介质从填料塔进入到填料空间时泵出来的流量,所以在计算过程中,应将体积流量的大小纳入考虑。

3.平均流速:平均流速是指平均的由介质流过填料塔空间的速度,应该考虑的因素有介质的密度、温度及填料塔空间的容积。

化工设备之填料塔

化工设备之填料塔

化工设备之填料塔引言填料塔是化工生产中常用的一种设备,用于进行气体或液体的传质与传热操作。

填料塔通过将流体引导经过填料层,增大接触面积,从而提高传质传热效率。

本文将从填料塔的定义、结构、工作原理、应用领域等方面进行详细介绍。

一、填料塔的定义填料塔(Packed tower)是一种用于气体液体传质、传热的设备。

其结构包括塔体、填料层、进出口管道、槽外冷凝器等部分。

填料塔的塔体一般由塔筒、进出料口、塔底及塔顶等组成。

二、填料塔的结构填料塔的结构主要包括以下几个部分:1. 塔筒塔筒是填料塔的主体部分,一般由圆柱形或方形的金属材料制成。

塔筒的内部通常经过抛丸除锈、防腐处理等工艺,以提高其耐腐蚀性能。

2. 填料层填料层是填料塔的核心部分,其作用是增大流体接触面积。

常见的填料材料包括金属、陶瓷、塑料等,其形状有条形、环形、片状等多种。

3. 进出口管道填料塔的进出口管道用于引导流体进入和流出塔体。

进口管道通常设置在塔底,而出口管道则设置在塔顶。

4. 槽外冷凝器槽外冷凝器是填料塔中常用的辅助设备,用于将气体冷凝成液体。

冷凝后的液体可以回流到塔底,进一步提高传质效率。

三、填料塔的工作原理填料塔的工作原理是通过在塔内设置填料层,使流体在填料层上形成薄膜状,增加液体和气体之间的接触面积,从而促进传质和传热的发生。

具体的工作原理如下:1.液体从塔顶通过喷淋器均匀地引入填料层,流经填料层后形成薄膜状。

2.气体从塔底通过进口管道引入塔内,顺着填料层向上流动。

3.在填料层的作用下,液体和气体之间进行传质传热,液体中的溶质逐渐均匀地分布到气体中。

4.溶质逐渐从气体中传到液体中,达到传质的目的。

5.冷凝的气体在填料层中与液体接触,被冷凝器冷凝成液体后回流到塔底。

6.反复循环以上步骤,直到达到预定的传质、传热效果。

四、填料塔的应用领域填料塔广泛应用于化工、石油、冶金、环保等行业,其主要应用领域包括:1.吸附分离:填料塔在吸附分离过程中起到重要作用,可用于气体分离、液体分离等。

填料塔计算部分范文

填料塔计算部分范文

填料塔计算部分范文填料塔是一种常用的固体分离设备,适用于化工、石油、制药等多个行业。

它的主要功能是通过不同填料层的接触和作用,将气体和液体的混合物分离为洁净的组分。

在填料塔的设计和计算中,需要考虑多个参数和工艺要求,包括填料选择、填料层高度、气体和液体流量等。

下面将详细介绍填料塔计算的相关部分。

首先,填料的选择是填料塔计算的关键步骤之一、填料的种类繁多,包括板式填料、环状填料、网状填料等。

不同的填料具有不同的特性,如表面积、孔隙率、压降等。

在选择填料时,需要考虑操作条件、物料性质和设备成本等因素。

通常情况下,需要选取一种具有较大表面积和孔隙率的填料,以提高分离效果。

其次,填料层高度的计算是填料塔设计的重要部分。

填料层高度一般根据物料质量传递要求、液体停留时间和压降等因素来确定。

物料质量传递要求通常由输入和输出组分的浓度差异来衡量,较大的浓度差异需要更高的填料层高度。

液体停留时间是指液体在填料层中停留的平均时间,通常需要满足物料传递速率和回流比例的要求。

压降是指气体在填料层中通过的单位高度的压力损失,需要在一定范围内控制。

此外,填料塔计算还需要考虑气体和液体的流量。

气体的流量通常以体积流率或质量流率来表示,取决于不同的场景。

液体的流量一般由输入和输出组分的速率来确定。

在计算过程中,需要确保气体和液体能够充分接触和混合,以实现有效的分离效果。

为此,可以采用计算模型或实验数据来进行流量的估算和验证。

综上所述,填料塔计算部分的关键内容包括填料选型、填料层高度的计算、气体和液体流量的确定等。

在计算过程中,需要考虑多个因素和要求,并结合具体的工艺条件和设备特点来进行综合评估。

通过合理的填料塔计算,可以提高设备的性能和效率,实现更好的分离效果。

填料塔

填料塔

填料塔一、填料塔的概念及示意图填料塔是以塔内填料作为气液两相间接触构件的传质设备。

填料塔的塔身是一直立式圆筒(如上图所示),底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

二、填料塔的特点优点:生产能力大。

填料塔内件开孔率大,空隙率大,液泛点高。

分离效率高填料每米论级远大于板式塔,尤其在减压及常压条件下。

压降小。

空隙率高,阻力小。

持液量小、操作弹性大缺点:填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

三、填料的类型及性能评价1 填料(packings)的类型1).分类按填料形状分:网体填料、体填料按填料的装填方式分:散装填料、整填料按材质分:金属填料、料填料、瓷填料、墨填料2).常用的几种填料①拉西环(Rasching ring) :拉西环是工业上最早使用的一种填料,为外径与高度相等的圆环,通常由陶瓷或金属材料制成。

拉西环结构简单,制造容易,但堆积时相邻环间易形成线接触,填料层的均匀性差,因而存在严重的向壁偏流和沟流现象,致使传质效率低。

填料塔持液量计算

填料塔持液量计算

填料塔持液量计算填料塔持液量计算是在化工工艺中常见的一种计算方法,它用于确定填料塔内液体的持液量,从而帮助工程师设计和优化工艺。

本文将从基本原理、计算方法和应用案例等方面进行介绍。

一、基本原理填料塔是一种常见的化工设备,广泛应用于各种物质的分离、萃取和反应过程中。

其基本构造是将填料装置在塔内,使流体与填料进行充分的接触和混合,从而实现传质、传热和反应等目的。

而填料塔持液量计算就是为了确定填料塔内液体的持液量,以保证塔内流体的稳定性和工艺效果的达到。

填料塔内的液体持液量是指填料塔内液体的体积或质量,通常用液体高度或液体重量来表示。

持液量的大小直接影响到填料塔的工作效果和设备的运行稳定性。

因此,准确计算填料塔持液量是设计和操作填料塔的重要前提之一。

二、计算方法填料塔持液量的计算方法有多种,常见的有重力平衡法和压力平衡法两种。

下面将分别介绍这两种方法。

1. 重力平衡法重力平衡法是通过平衡填料塔内液体的重力和塔内气体的向上流动所需的力来计算持液量。

根据阿基米德原理,塔内液体的重力可以用液体的体积和密度来表示。

而塔内气体的流动所需的力可以通过流体力学的基本原理来计算。

通过平衡这两个力,可以得到填料塔的持液量。

2. 压力平衡法压力平衡法是通过平衡填料塔内液体的静压力和塔内气体的动压力来计算持液量。

根据流体静力学的基本原理,液体静压力可以通过液体的密度、液体高度和重力加速度来计算。

而塔内气体的动压力可以通过气体的密度、气体流速和气体速度来计算。

通过平衡这两个压力,可以得到填料塔的持液量。

三、应用案例填料塔持液量计算在化工工艺中有着广泛的应用。

下面以一个分离过程为例,介绍填料塔持液量计算的应用过程。

假设有一个二元混合物,需要通过填料塔进行分离。

根据物质的性质和分离要求,确定了填料塔的高度、填料种类和操作条件等参数。

首先,根据工艺要求和设备的尺寸,确定了填料塔的直径和高度。

然后,根据填料种类和操作条件,选择了合适的填料,并计算了填料的体积和密度。

不等直径填料塔高度计算

不等直径填料塔高度计算

不等直径填料塔高度计算(实用版)目录1.填料塔的基本概念2.不等直径填料塔的特点3.填料塔高度计算的方法4.不等直径填料塔高度计算的注意事项5.实际应用案例正文一、填料塔的基本概念填料塔是一种常用的气液接触设备,主要用于进行物质的吸收、解吸、吸附、分离等过程。

它主要由塔体、填料和支持结构组成,其中塔体内充满了填料,而气体和液体分别从塔顶和塔底进入,通过填料层进行接触和反应。

二、不等直径填料塔的特点不等直径填料塔是指塔内填料的直径大小不一,这样的设计可以使得气体和液体在填料层中的流动状态更为复杂,从而提高物质传递的效果。

与等直径填料塔相比,不等直径填料塔具有更高的效率和更好的操作性能。

三、填料塔高度计算的方法填料塔的高度计算主要依据的是塔内物质的平衡关系,即塔内气体的压力、液体的流量和填料的物理性质等因素。

计算方法主要有两种,一种是理论计算法,另一种是实验测定法。

理论计算法主要依据的是填料塔的物理模型和数学模拟,而实验测定法则是通过实际操作和测量来确定填料塔的高度。

四、不等直径填料塔高度计算的注意事项在进行不等直径填料塔高度计算时,需要注意以下几点:首先,填料的选择应根据具体的工艺要求和操作条件进行;其次,计算时需要考虑到填料的密度和流动性;最后,需要考虑到塔内气体和液体的分布情况,以及填料层的压降等因素。

五、实际应用案例在某化工厂的吸收塔设计中,采用了不等直径填料塔。

通过理论计算和实验测定,确定了填料塔的高度,并在实际操作中取得了良好的效果。

不仅提高了吸收效率,降低了能耗,而且减少了操作复杂度,提高了生产效率。

总的来说,不等直径填料塔在理论和实践中都表现出了优越的性能,值得在相关领域进行推广和应用。

填料塔的简单介绍及其相应计算

填料塔的简单介绍及其相应计算

目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。

它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。

在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。

表1中所示为几个典型的实例。

表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。

塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。

因此对设备的研究一直是工程界所关注的热点。

随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。

为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。

①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。

为了便于研究和比较,人们从不同的角度对塔设备进行分类。

填料塔工艺尺寸的计算.

填料塔工艺尺寸的计算.

第三节 填料塔工艺尺寸的计算填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段3.1 塔径的计算1. 空塔气速的确定——泛点气速法对于散装填料,其泛点率的经验值u/u f =0.5~0.85贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /9.81(100/0.9173)(1.1836/998.2)=0.246053756UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 223t m /m α--填料总比表面积, 33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。

气相密度W L =5358.89572㎏/h W V =7056.6kg/h A=0.0942; K=1.75; 取u=0.7 F u=2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u == 则Fuu 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。

对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。

它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。

在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。

表1中所示为几个典型的实例。

表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。

塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。

因此对设备的研究一直是工程界所关注的热点。

随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。

为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。

①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。

为了便于研究和比较,人们从不同的角度对塔设备进行分类。

按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔。

用以实现蒸馏和吸收两种分离操作的塔设备分别称为蒸馏塔和吸收塔。

这类塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行,还要能够使接触之后的气、液两相及时分开,互不夹带。

也有按形成相际接触面的方式和按塔釜型式分类的;但是,最常用的分类是按塔的内件结构分为板式塔和填料塔两大类,人们又按板式塔的塔盘结构和填料塔所用的填料,细分为多种塔型。

目前工业上应用最广泛的是填料塔及板式塔。

1.1 填料塔以填料作为气、液接触和传质的基本构件,液体在填料表面呈膜状自上而下流动,气体呈连续相自下而上与液体作递向流动,并进行气、液两相间的传质和传热。

两相的组分浓度和温度沿塔高连续变化。

填料塔属于微分接触型的气、液传质设备。

如图2.1为填料塔的总体结构:图2.1 填料塔的总体结构1.2 板式塔以塔板作为气、液接触和传质的基本构件,液体自上而下流入各层塔板,形成液池,气体以鼓泡或喷射的形式自下而上穿过各层塔板的筛孔、液池,使气、液两相密切接触而传质和传热。

两相的组分浓度呈阶梯式变化,板式塔属于逐级接触型的气、液传质设备。

如图2.2为板式塔的总体结构。

图2.2 板式塔的总体结构无论是板式塔还是填料塔,除了各种内件之外,均由塔体、支座、人孔或手孔、除沫器、接管、吊柱及扶梯、操作平台等组成。

a.塔体塔体即塔设备的外壳,常见的塔体由等直径、等厚度的圆筒及上下封头组成。

塔设备通常安装在室外,因而塔体除了承受一定的操作压力(内压或外压)、温度外,还要考虑风载荷、地震载荷、偏心载荷。

此外还要满足在试压、运输及吊装时的强度、刚度及稳定性要求b.支座塔体支座是塔体与基础的连接结构。

因为塔设备较高、重量较大,为保证其足够的强度及刚度,通常采用裙式支座。

c.人孔及手孔为安装、检修、检查等需要,往往在塔体上设置人孔或手孔。

不同的塔设备,人孔或手孔的结构及位置等要求不同。

d.接管用于连接工艺管线,使塔设备与其他相关设备相连接。

按其用途可分为进液管、出液管、回流管、进气出气管、侧线抽出管、取样管、仪表接管、液位计接管等。

e.除沫器用于捕集夹带在气流中的液滴。

除沫器工作性能的好坏对除沫效率、分离效果都具有较大的影响。

f.吊柱安装于塔顶,主要用于安装、检修时吊运塔内件。

1.3填料塔与板式塔的比较对于许多逆流气液接触过程,填料塔和板式塔都是可以适用的,设计者必须根据具体情况进行选用。

填料塔和板式塔有许多不同点,了解这些不同点对于合理选用塔设备是有帮助的。

①填料塔操作范围较小,特别是对于液体负荷变化更为敏感。

当液体负荷较小时,填料表面不能很好地润湿,传质就效果急剧下降;当液体负荷过大时,则容易产生液泛。

设计良好的板式塔,则具有大得多的操作范围。

②填料塔不宜于处理易聚合或含有固体悬浮物的物料,而某些类型的板式塔(如大孔径筛板、泡罩塔等)则可以有效地处理这种物质。

另外,板式塔的清洗亦比填料塔方便。

③当气液接触过程中需要冷却以移除反应热或溶解热时,填料塔因涉及液体均不问题而使结构复杂化。

板式塔可方便地在塔板上安装冷却盘管。

同理,当有侧线出料时,填料塔也不如板式塔方便。

④以前乱堆填料塔直径很少大于0.5m,后来又认为不宜超过1.5m,根据近10年来填料塔的发展状况,这一限制似乎不再成立。

板式塔直径一般不小于0.6m。

⑤关于板式塔的设计资料更容易得到而且更为可靠,因此板式塔的设计比较准确,安全系数可取得更小。

⑥当塔径不很大时,填料塔因结构简单而造价便宜⑦对于易起泡物系,填料塔更适合,因填料对泡沫有限制和破碎的作用。

⑧对于腐蚀性物系,填料塔更适合,因可采用瓷质填料。

⑨对热敏性物系宜采用填料塔。

二、塔设备设计的基本步骤塔设备大多安装在室外,靠裙座底部的地脚螺栓固定在混凝土基础上,通常称为自支承式塔,除承受介质压力外,塔设备还承受各种重量(包括塔体、塔内件、介质、保温层、操作平台、扶梯等附件的重量)、管道推力、偏心载荷、风载荷及地震载荷的联合作用,由于在正常工作、停工检修、压力试验等三种工况下,塔所受的载荷并不相同,为了保证塔设备安全运行,必须对其在这三种工况下进行轴向强度及稳定性校核。

轴向载荷及稳定性强度校核的基本步骤:(1)按设计条件,初步确定塔的厚度和其他尺寸;(2)计算塔设备危险截面的载荷,包括重量、风载荷、地震载荷和偏心载荷等;(3)危险截面的轴向强度和稳定性校核;(4)设计计算裙座、其他环板、地脚螺栓等。

三、塔设备的强度和稳定性计算根据课程设计的特点,着重介绍等截面、等壁厚塔设备的设计计算。

3.1塔设备的载荷分析和设计准则塔设备在操作时主要承受的以下几种载荷作用:操作压力、质量载荷、地震载荷、风载荷、偏心载荷。

各种载荷示意图及符号见图5-3。

图 5-3 塔设备各种载荷示意图及符号(a)质量载荷;(b)地震载荷;(c)风载荷;(d)偏心载荷塔设备的强度和稳定性计算通常按下列步骤计算。

① 根据GBl50-1998相应章节或参考文献1第十一章,按压力确定圆筒有效厚度e δ及封头的有效厚度eh δ;② 根据地震和风载的需要,选取若干计算截面(包括所有危险截面),并考虑制造、安装、运输的要求,设定各截面处圆筒有效厚度ei δ与裙座有效厚度es δ。

应满足ei e δδ≥,6mm es δ≥;③ 根据自支承式塔设备承受的质量载荷、风载荷、地震载荷及偏心载荷的作用,依次进行校核和计算,并应满足各相应要求,否则需重新设定圆筒的有效厚度ei δ,直至满足全部校核条件为止。

塔设备设计计算常用符号及说明见表5-3。

3.2 质量载荷塔设备的操作质量000102030405(kg)a e m m m m m m m m m =++++++: (5-1)塔设备的最大质量max max 010*******(kg)a e m m m m m m m m m =++++++: (5-2)塔设备的最小质量min min 010*******(kg)0.2a em m m m m m m m m =++++++:(5-3) 式5-3中的0.2m 02系考虑焊在壳体上部分内构件的质量,如塔盘支持圈、降液管等。

当空塔起吊时,如未装保温层、平台、扶梯,则m min 应扣除m 03和m 04。

式中的壳体和裙座质量m01按求出的壳体名义厚度n δ、封头名义厚度nh δ及裙座名义厚度ns δ计算,也可分段计算。

部分塔设备零部件,若无实际资料,可参考表5-4,计算中注意单位统一。

3.3地震载荷当发生地震时,塔设备作为悬臂梁,在地震载荷作用下产生弯曲变形。

安装在七度或七度以上地震烈度地区的塔设备必须考虑它的抗震能力,计算出它的地震载荷3.4偏心弯矩当塔设备的外侧悬挂有分离器、再沸器、冷凝器等附属设备时,可将其视为偏心载荷。

由。

于有偏心距e 的存在,偏心载荷在塔截面上引起偏心弯矩e M 。

偏心载荷引起偏心弯短沿塔高无变化,可按式(5-22)汁算:e e M m ge = (5-22)3.5最大弯矩塔设备任意计算截面I —I 处的最大弯矩max I I M -按式(5-23)计算: max 0.25I I W e I I I I I I E W e M M M M M M ----⎧+⎪⎨++⎪⎩ 取其中较大值(5-23) 塔设备底部截面0-0处的最大弯矩00max M -按式(5-24)计算:0000max 00000.25W e E W e M M M M M M ----⎧+⎪⎨++⎪⎩ 取其中较大值 (5-24)3.6 圆筒轴向应力核核校核圆简轴向应力,使之满足稳定条件。

3.6.1 圆筒轴向应力圆筒任意计算截面I —I 处的轴向应力分别铵式(5-25)、式(5-26)和式(5-27)计算:由内压和外压引起的轴向应力1σ:14i ei pD σδ=(5-25)其中设计压力p 取绝对值。

操作或者非操作时重力及垂直地震力引起的铀向应力2σ:02I I I I V i ei m g F D σπδ--±= (5-26) 其中I I V F -仅在最大弯矩为地震弯矩参与组合时计入此项。

最大弯矩引起的轴向应力3σ:max 34I I i ei M D σπδ-= (5-27) 3.6.2 圆筒稳定校核圆筒许用轴向压应力[]cr σ按式(5—28)确定:[][]=t cr KB K σσ⎧⎪⎨⎪⎩ 取其中较小值 (5-28) 圆筒最大组合压应力按式(5-29)或式(5-30)校核:对内压塔器 []23cr +σσσ≤ (5-29)对外压塔器 []123cr +σσσσ+≤ (5-30)3.6.3 圆筒拉应力校核圆筒最大组合拉应力按式(5-31)或式(5-32)校核:对内压塔器[]123+t K σσσσφ-≤(5-31) 对外压塔器 []23+t K σσσφ-≤(5-32) 如校核不能满足条件时,须重新设定有效厚度ei σ,重复上述计算,直至满足要求。

相关文档
最新文档