螺栓螺纹有限元分析
Abaqus螺栓有限元分析
Abaqus螺栓有限元分析1.分析过程1.1.理论分析1.2.简化过程如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;C.忽略螺栓和螺母的圆角等细节;1.3.Abaqus中建模查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图错误!文档中没有指定样式的文字。
-1所示。
同样的方式,我们建立螺母的3D模型nut,如图错误!文档中没有指定样式的文字。
-2所示。
图错误!文档中没有指定样式的文字。
-1图错误!文档中没有指定样式的文字。
-2建立材料属性并将其赋予模型。
在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。
在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图错误!文档中没有指定样式的文字。
-4所示。
建立截面。
点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图错误!文档中没有指定样式的文字。
-5所示。
将截面属性赋予模型。
选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。
如图错误!文档中没有指定样式的文字。
-3所示。
同样,给螺母nut赋予截面属性。
图错误!文档中没有指定样式的文字。
-3图错误!文档中没有指定样式的文字。
-4图错误!文档中没有指定样式的文字。
-5然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance命令对模型进行移动,最终的装配结果如图错误!文档中没有指定样式的文字。
螺栓螺纹三维接触有限元分析
机械 2010年第5期 总第37卷 计算机应用技术 ・31・———————————————收稿日期:2009-12-06作者简介:李波(1981-),湖北武汉人,硕士研究生,主要研究方向为机械结构分析。
螺栓螺纹三维接触有限元分析李波(华中科技大学 机械科学与工程学院,湖北 武汉 430074)摘要:在对螺栓螺纹的分析中,一般采用的方法是将螺栓简化为轴对称,建立轴对称有限元模型进行分析,即使是建立三维模型也是忽略了螺纹部分对整个有限元模型分析的影响。
在一些特殊的分析情况下,这样会大大降低分析的精度。
比如,在对螺栓螺纹防松机理方面的研究中,就必须考虑螺纹部分及其接触对整个分析过程的影响,而采用单一的有限元软件又很难完成。
正是基于这一原因,根据UG 、HyperMesh 和ANSYS 软件的特点,综合运用其长处可以完成螺栓螺纹从几何建模、网格划分、分析计算到结果处理的整个过程.实例表明,综合运用各种软件,有利于发挥每种软件的优点,大大提高有限元分析的效率。
关键词:螺栓螺纹;UG ;HyperMesh ;ANSYS ;三维接触中图分类号:TH131.3 文献标识码:A 文章编号:1006-0316 (2010) 05-0031-03Three-dimensional contact ofthreaded bolt finite element analysisLI Bo(Mechanical Engineering College ,Huazhong University of Science and Technology ,Wuhan 430074,China) Abstract :Generally, we using axis symmetry in the screw thread of bolt finite element analyse. Even though, neglecting the effect of screw thread to the whole three-dimensional finite element model. Reducing precision in some special occasion. For instance ,in research of preventing screw thread of bolt from loosening, it must take into account of the compact of the screw thread and the contact. But it hard to accomplish the mission in using single software. With the issues that finite element analysis using single software is complicated and low efficient ,the UG ,HyperMesh and ANSYS softwares are synthetically applied in the course of modeling ,plotting finite element grids ,calculating and analyzing ,and result dealing based on their respective characteristic .The example indicates that the comprehensive application of various finite element softwares can exert their corresponding advantages and make the analysis more efficient .Key words :threaded bolt ;UG ;HyperMesh ;ANSYS ;three-dimensional contact有限元法是随着计算机的发展而迅速发展起来的一种现代计算方法。
螺纹连接预紧力有限元分析及实验研究
螺纹连接预紧力有限元分析及实验研究摘要:本文运用有限元理论,以ANSYS软件为分析平台,建立了螺栓连接的有限元模型,分析了螺栓在预紧过程中各圈螺纹副的受力情况,通过积分求得了螺纹副间的摩擦力矩,确定了预紧力与预紧力矩之间的关系,并通过实验进行了验证,得到一个可以应用到工程实际中的预紧扭矩系数值,为提高扭矩法控制螺纹连接预紧力的精度和建立各种型号螺栓连接的预紧力—扭矩关系数据库奠定了基础。
关键词:螺纹连接预紧力扭矩系数有限元1 引言螺纹连接结构简单,拆装方便,是机械结构中应用最广泛连接方式。
受轴向预紧力的螺纹连接应用最为广泛。
施加合适的螺纹连接预紧力,能提高结构的承载能力、改善结构的应力分布、增加结构的工作可靠性。
预紧力过大,将导致结构承载能力的下降,螺栓在载荷作用下会发生螺纹屈服、松脱、延迟断裂;预紧力不足,被连接件在载荷作用下会产生间隙或松动,改变螺栓的受力状态,降低螺栓强度,降低疲劳强度。
预紧力控制不均匀,将导致螺栓受力不均,个别螺栓超过设计载荷,导致螺栓组整体强度下降,整个机械结构、设备安装连接失效。
因此,预紧力控制对机械结构显得尤为重要。
目前控制螺纹预紧力的方法有四种,即螺栓伸长法,扭矩法,扭矩—转角法和屈服点法。
螺栓伸长法、屈服点法这二种方法因为其工程实用性差,控制成本高,现在只在实验室研究中应用;扭矩-转角法则因其设备昂贵,并且应用起来不方便,主要应用于发动机缸盖联接等重要特殊部位。
扭矩法在工程中应用最方便、最广泛,经济性最好,但控制精度需要提高。
目前,通过力矩控制法来控制预紧力是经济型最高的控制方法,并且大范围的应用,但是在通过预紧力与预紧扭矩的关系,求取扭矩系数K值的时候,螺纹连接采用的是简化模型,认为整个螺旋副上的受力均等,这个模型有很大的局限性,因为实际情况,每圈螺纹的受力情况都是不同的,从而求得的K值不准确,从而预紧后得到预紧力的离散度大,使得扭矩控制法的精度受到影响。
往往在实际操作中,有很多螺纹没有达到预紧目的,对设备运行的可靠性影响很大。
(完整)螺栓连接的有限元分析
1 概述螺栓是机载设备设计中常用的联接件之一.其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。
在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。
螺栓是否满足强度要求,关系到机载设备的稳定性和安全性.传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化.没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。
通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷.用有限元分析软件MSC。
Patran/MSC。
Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。
因此,有限元在螺栓强度校核中的应用越来越广泛.2 有限元模型的建立对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。
多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接.在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。
主从节点之间位移约束关系使得从节点跟随主节点位移变化。
比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用.梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。
通过参数设置,使梁元与螺栓几何属性一致.本文分别用算例来说明这两种方法的可行性。
2.1 几何模型如图1所示组合装配体,底部约束。
两圆筒连接法兰通过8颗螺栓固定.端面受联合载荷作用。
图1 三维几何模型2。
2 单元及网格抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。
法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。
在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。
螺栓连接地有限元分析报告
1 概述螺栓是机载设备设计中常用的联接件之一。
其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。
在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。
螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。
传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。
没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。
通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。
用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。
因此,有限元在螺栓强度校核中的应用越来越广泛。
2 有限元模型的建立对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。
多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。
在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。
主从节点之间位移约束关系使得从节点跟随主节点位移变化。
比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。
梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。
通过参数设置,使梁元与螺栓几何属性一致。
本文分别用算例来说明这两种方法的可行性。
2.1 几何模型如图1所示组合装配体,底部约束。
两圆筒连接法兰通过8颗螺栓固定。
端面受联合载荷作用。
图1 三维几何模型2.2 单元及网格抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。
法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。
在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。
经验公式与有限元分析相结合的螺栓强度校核方法
经验公式与有限元分析相结合的螺栓强度校核方法1. 概述螺栓是应用广泛的可拆卸紧固件,实际工程中经常需要进行螺栓强度校核和选型。
机械设计手册中给出了螺栓选型的经验公式,这些公式是合理有效的,但需要明确输入螺栓的轴向和横向载荷,这些载荷通常很难用理论计算或经验估计方法确定。
有限元分析能够处理螺栓连接的结构,但有限元分析中的螺栓连接通常是做了大量简化,导致螺栓应力结果不准确,无法作为螺栓校核选型的依据。
因此,本文考虑将经验公式与有限元分析相结合来进行螺栓校核选型。
通过有限元分析来确定螺栓所受的轴向和横向载荷,以此作为经验公式的输入,完成螺栓校核选型计算。
关于螺栓选型,需要明确最小拉力载荷和保证载荷这两个概念。
当试验拉力达到最小拉力载荷时,要求螺栓不得发生断裂。
在试件上施加保证载荷后,其永久伸长量(包括测量误差),不应大于12.5微米。
最小拉力载荷和保证载荷的具体数值参见GB/T 3098.1-2000~ GB/T 3098.17-2000。
跟螺栓选型相关的几个标准规范如下:· GB/T 3098-2000 紧固件机械性能· GB/T 16823.1-1997 螺纹紧固件应力截面积和承载面积· QC/T 518-2007 汽车用螺纹紧固件紧固扭矩· GB/T 5277-1985 紧固件螺栓和螺钉通孔2. 螺栓强度校核经验公式2.1 受横向载荷普通紧螺栓在预紧力作用下,压紧被连接件,被连接件间产生摩擦力,抵抗横向载荷。
螺栓杆受拉伸扭转综合作用。
如果连接件之间的摩擦力不足以抵消横向载荷,则被连接件发生横向错动,螺杆可能被剪断。
图1受横向载荷普通紧螺栓其强度校核计算公式如下: 螺栓所受横向外载荷为F A 。
为产生足够的摩擦力抵抗F A ,所需最小预紧力F p 为:上式中,K f 为可靠性系数,一般取1.1-1.3;m 为结合面数目;f为结合面摩擦系数。
按照最小预紧力F p 计算螺栓应力σ,进而确定所需的螺栓屈服强度σs ,最终可选定螺栓公称直径和强度等级。
高强度螺栓螺纹根部应力集中的有限元分析
因此, 不建议用增大螺栓螺距的方法来缓解螺纹 根部的应力集中。
%# 结论
(&) 在螺栓与螺母的联接组合中, 离支承面 越近, 螺栓螺纹根部的应力越大, 其最大应力出现 在螺栓与螺母啮合第一扣的螺栓螺纹根部, 因此 此处最容易发生断裂, 这与螺栓的实际断裂位置 是一致的, 说明本文建立的有限元接触分析模型 是正确的, 分析结果是可靠的。 (’ ) 对于标准 ($) 粗牙螺栓, 增大螺纹根部 圆角半径可以显著降低螺栓螺纹根部的应力, 从 而缓 解 应 力 集 中, 当 半 径 从 *" )+,, 增 大 到 &" *$,,时, 应力值降低超过 &!- , 但是当半径增 大到一定程度后, 继续增大半径对螺纹根部应力 的影响较小。 (! ) 减小 ($) 螺栓的螺纹深度, 使得螺纹根 部圆角半径进一步增大, 可以进一步降低螺栓螺 纹根部的应力。而且在半径相同的情况下, 螺纹 深度越小, 螺纹根部的应力也越小。 (% ) 依靠增大螺距来降低 ($) 螺栓螺纹根部 的应力, 效果不明显。 参考文献:
) ) 普通三角形螺纹根部应力集中系数大, 使得 现在使用的高强度螺栓存在严重的安全隐患, 而 且也严重影响了螺栓向更高强度发展。某 /%0 高强度螺栓从螺栓与螺母啮合的第一扣处螺纹根 部发生断裂, 严重影响了结构的安全可靠性。因 此, 有必要研究 /%0 高强度螺栓螺纹根部的应力 集中情况, 寻求减少螺纹根部应力集中、 改善螺纹 处应力分布的途径, 从而确保 /%0 高强度螺栓的 安全使用。 减少螺栓螺纹根部应力集中、 改善应力分布一 般可以通过以下方法实现: 一是增大螺纹根部的圆 角半径; 二是增大螺栓螺纹根部直径 ( 即减小螺纹 深度) ; 三是改变螺栓与螺母联接的结构
Abaqus螺栓有限元分析(汇编)
将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。如图13所示。同样,给螺母nut赋予截面属性。
1.
1.1.
1.2.
如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;
B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;
图112
图113
图114
第六步,定义接触面。接触面是Abaqus分析中非常重要的一环。进入Abaqus中的Interaction模块,先在Tools->Surface菜单中设置我们要定义的两个相互接触的面。如图115所示,螺栓上的接触面主要是螺纹的下表面,按着Shift键依次将其选中。如图116所示,螺母上的接触面主要是螺纹的上表面,同样按着Shift键依次将其选中。设置接触面的属性。选择Interaction->Manager->Creat中创建接触面,类型选择面和面接触,选择Mechanical->TangentialBehavior,输入摩擦系数为0.14,选择Mechanical->NormalBehavior,接受默认设置,最终设置如图117所示。选择Interaction->Creat,创建螺栓和螺母之间的接触,接触,类型选择刚刚定义的接触类型,设置结果如图118所示。
5_UG有限元螺栓连接分析实例_沈春根
蛛网连接; CBAR 或 CBEAM 单元
1D单元; RBE2 或 RBE3ቤተ መጻሕፍቲ ባይዱ单元
0.2 基础- 定义螺栓特征和尺寸
A 螺栓头的直径,使用孔的边或孔的中心点来定义螺栓头的位置; B 螺栓的总长度,包括螺栓头。如果在螺纹孔中创建螺栓,则必须指定螺栓长度。 C 螺栓螺母的直径,使用孔的边或孔的中心点来定义螺栓头的位置。 D 螺栓轴直径,可通过1D 单元关联的梁横截面来控制直径。 E 螺栓的有效螺纹长度。对于螺纹孔中的螺栓,必须指定有效螺纹长度。
0.3 基础- 螺栓螺母连接FEM模型
头部孔端面 单元节点
1D单元
螺母孔端面 单元节点
0.4 基础- 螺纹连接FEM模型
头部孔端面 单元节点
1D单元
和螺纹连接 对应单元节 点
1.1螺栓螺母连接实例-指定螺栓头部及其尺寸
1.2螺栓螺母连接实例-指定螺母及其尺寸
1.3螺栓螺母连接实例-其他参数默认并确定
定义1D 属性
1.4螺栓螺母连接实例- 定义1D属性
截面尺 寸 材料,也 可自定义 材料
1.5螺栓螺母连接实例- 查看导航器窗口数据 结构及其对应关系
1.6螺栓螺母连接实例- 解算结果(垂直方向变形)
底板之间不施加 面面接触约束
底板之间施加面 面接触约束
1.7螺栓螺母连接实例-螺栓轴和接触面结果
UG有限元教学和培训 – 系列专题5
UG NX 有限元
螺栓连接分析实例
江苏大学 沈春根 2011年2月 第1版 2017年3月 第2版 UG NX8.5版本以上
目录
螺栓连接有限元基础
螺栓螺母连接实例;
螺栓螺钉连接实例; 带预紧力螺栓螺钉连接实例;
螺栓连接 ansys有限元分析
螺栓联接的有限元分析问题描述如图所示,两个长方形平板通过两个螺栓连接在一起,具体几何尺寸如下:L1=0.05m,L2=0.03,L3=0.03,L4=0.09,W=0.07,板子的厚度H=0.008m,螺母半径R1=0.008m,螺母厚度H1=0.004,两个螺栓的中心距L=0.03m,螺杆半径R2=0.05,模型采用SOLID186单元模拟板子,采用接触向导定义接触对,材料参数:板材的弹性模量为2.1E11pa,泊松比0.3,应力应变关系为双线性等向强化,其中屈服强度为400Mpa,切线模量为2E10pa,螺栓的弹性模量为 2.1E11pa,泊松比为0.32,应力-应变关系为双线性等向强化,其中屈服强度600Mpa,切线模量为2E10pa。
载荷及边界条件:螺栓连接模型承受螺栓预拉伸应力和外拉伸两种载荷,因此计算中采用两个载荷步进行加载,第一个载荷设置螺栓的预拉伸力为1000N,第二个载荷步设置板子的右端承受60Mpa的拉力固定约束在板子左端一、建立有限元模型(1)定义单元类型本实例分析的问题中涉及到大变形,故选用Solid186单元类型来建立本实例的模型。
本接触问题属于面面接触,目标面和接触面都是柔性的,将使用接触单元TARGE170和CONTA174来模拟接触面。
接触单元在分析过程中使用接触向导时可以自动添加,这里就不再添加。
下面为定义单元类型的具体操作过程。
1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete,将弹出Element Types (单元类型)对话框。
单击对话框中的Add按钮,将弹出Library of Element Types (单元类型库)对话框。
2.在单元类型库对话框中,靠近左边的列表中,单击“Structural Solid”一次,使其高亮度显示,指定添加的单元类型为结构实体单元。
然后,在靠近右边的列表中,单击“Brick 8node 186”一次,选定单元类型Solid186 为第一类单元。
Abaqus螺栓有限元分析报告
图16
第四步,对模型进行网格划分。进入Abaqus中的Mesh模块,然后选择Bolt零件,使用按边布种的方式对其进行布种,布种结果如图17所示。在菜单Mesh->Control中进行如图18所示的设置使用自由网格划分,其余设置使用默认。在菜单Mesh->Element type中选用如图19所示的设置。按下Mesh图标,对工件进行网格划分,最终的结果如图110所示。同样的方式对螺母模型nut进行网格划分,最终结果见图111所示。
图119
图120
表1
标号
A
B
C
应力(MPa)
319.477
1029.56
1103.2
1.
1.1.
1.2.
如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;
B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;
C.忽略螺栓和螺母的圆角等细节;
1.3.
查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图11所示。同样的方式,我们建立螺母的3D模型nut,如图12所示。
图11
图12
建立材料属性并将其赋予模型。在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图14所示。
基于有限元分析的螺栓建模方法研究
0 引 言螺栓联接常用于连接两个或两个以上的部件,具有价格低、成本小、传递载荷大等优点,被广泛地应用在工程机械中,是最常用的连接方式之一[1-3]。
螺栓结构校核考虑因素较多,需要从几何结构和载荷校核等多方面进行分析。
通常情况下,螺栓一旦出现接触面滑移或者间隙情况,即认为螺栓失效,这种情况下需要进行螺栓有限元分析(FEA )[4-6]。
模型是FEA 的前提,准确地建立螺栓模型的成为螺栓可靠性校核的关键。
鉴于分析目的的不同,螺栓模型的选取也不同,本文中给出了螺栓连接5种建模方式并进行了讨论。
1 螺栓结构分析1.1 螺栓刚度如图1所示,在拧紧过程中,螺栓会受到沿轴向的拉伸力,使螺栓伸长。
根据胡克定律,螺栓的伸长量可由施加在螺栓上的预紧力除以“弹簧刚度”确定,“弹簧刚度”与螺栓材料的弹性模量、横截面积和长度相关,螺栓的“弹簧刚度”通常被称为螺栓刚度(K ),螺栓刚度由下式计算:KK =FF ∆xx = AALLE (1)其中:F 为螺栓内残余预紧力,A 为螺栓横截面积,L 为螺栓拉伸长度,E 为杨氏模量。
计算螺栓刚度K ,需要确定螺栓尺寸和联接组件厚度。
联接组件厚度包括螺栓杆长度(L 1),未啮合长度(L Gew ),过渡或者缩小直径段长度(L 2),见图2。
由于这三段直径并不相等,所以需要把它们考虑成一组串联弹簧来计算总体刚度,即:1KK =1KK 1+1KK 2+1KKKK 1=EE ×AA 1LL 1, KK 2=EE ×AA 2LL 2, KK =EE ×AA LLGG ee wwGG ee ww GG ee wwGG ee ww (2)1.2 连接组件刚度被夹紧的几个联接组件,可能材料并不相同,所以各基于有限元分析的螺栓建模方法研究Researches on Bolt Modeling Method by FEA宋士超 宗 波(徐州徐工挖掘机械有限公司, 江苏 徐州 221004)摘要:螺栓结构是最常见的连接方式,通常采用有限元分析方法对其校核。
螺栓连接中预紧力的有限元分析
螺栓连接中预紧力的有限元分析摘要:利用有限元分析软件ANSYS建立了螺栓连接的有限元模型,采用了预紧力单元法和温度收缩法模拟预紧力两种方法,分析了不同载荷条件下螺栓结构的轴向变形图和轴向应力图,并将有限元分析结果与理论分析进行对比,以验证建立的有限元模型的有效性,为分析复杂结构中螺栓连接结构的简化提供了理论依据。
关键词:螺栓连接结构;预紧力单元法;有限元分析;温度收缩法0引言为了便于机器的制造、安装、运输、维修以及提高劳动生产率等,各种连接得以广泛地使用<sup>[1]</sup>。
其中,螺栓连接是最为常见的一种连接方式,其在装配时都需要施加一定的预紧力,目的是增强连接的刚度、紧密性和放松能力,防止受载后被连接件之间出现缝隙或滑移。
合适的预紧力对结构的疲劳强度是有利的,但是过大的预紧力会使连接结构失效。
因此,螺栓连接中控制预紧力十分重要。
螺栓连接结构中有限元分析中,螺栓连接预紧力的模拟对结构的应力和形变有一定的影响,特别是一些对螺纹连接紧密性要求较高的结构,如汽缸盖、轴承盖、齿轮箱等。
本文研究了螺栓结构中的预紧力,应用ANSYS软件螺栓结构建立了全尺寸三维有限元接触模型,并利用预紧力单元法和温度收缩法模拟预紧力两种方法,为复杂结构中的螺栓结构简化提供了理论依据。
1有限元法简介有限元分析的基本思想是用较简单的问题代替较复杂的问题。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。
<sup>[2]</sup>主要分为前处理、求解和后处理3个阶段。
前处理模块主要用于建立有限元模型和网格划分,后处理模块用于采集处理分析结果,并将计算结果以图形、图表、曲线形式显示或输出。
有限元求解可分为6个步骤<sup>[2]</sup>:①问题及解域定义:根据实际问题确定求解域;②求解域离散化:将求解域近似为离散域,即为有限元网格划分;③确定状态变量及控制方法:将包含边界条件的微分方程化为等价的泛函形式;④单元推导:选择合理的单元坐标系,建立单元试函数,形成单元矩阵;⑤总装求解:将单元总装成离散域的总矩阵方程;⑥联立方程组和结果求解:采用直接法、迭代法和随机法求解联立方程组。
螺栓预紧的有限元分析及计算
第))卷第!期锻压装备与制造技术Vol.55No.6CHINA METALFORMING EQUIPMENT&MANUFACTURING TECHNOLOGY Dec.2020螺栓预紧的有限元分析及计算董超,陈福建,刘刃,孙红梅,孙成丽(济南二机床集团有限公司,山东济南2500220摘要:螺栓联接在机械联接结构中具有广泛的应用,绝大多数螺栓连接都需要适当的预紧。
本文对螺栓加套筒结构的预紧进行研究,通过有限元分析及理论计算,确定合适的预紧扭矩,并对螺栓的残余预紧力及静强度进行校核,为螺栓规格与预紧扭矩的选取及强度校核提供参考。
关键词:螺栓;预紧;有限元分析;预紧扭矩;残余预紧力中图分类号:TG315.5 文献标识码:AD01:10.16316/j.issn.l672—0121.2020.06.012文章编号:1672—0121(2020)06—0055—03在机械联接结构中,螺栓联接由于具有结构简单、拆卸方便、标准化等优点而得到广泛应用。
为保证其联接可靠性,通过对螺栓联接施加预紧扭矩从而产生预紧力将螺纹拧紧是最常用的预紧方法。
但预紧扭矩的大小需适当控制,过大的扭矩会增大螺栓的应力,过小的扭矩则会降低螺栓联接的可靠性。
为方便通过理论计算对螺栓预紧有限元分析结果进证对力的螺栓联接进行分析,联接由一个螺栓、螺母、组成。
螺栓螺纹规格为M20x2.5,材料为碳钢等为6.8的为22为40,高度为50,材为45钢。
对于联接用的螺栓联接的预紧力可按[1]:碳素钢螺栓(0.6〜0.7)!s#i(D合金钢螺栓(0.5〜0.6)!s#i(2)式中:!s—螺栓材料的限;#i——螺栓的。
1螺栓预紧的有限元分析利用NX软件建立假定的承受预紧力与轴向工力的螺栓接的。
将进力分析,为螺栓预紧。
的螺栓接1。
1.1计算两个套筒的组合刚度收稿日期:2020-07-10;修订日期:2020-08-05作者简介:董超(1986-),男,工程师,机械设计员,从事压力机设计研发。
电磁超声螺栓轴向应力测量的有限元分析与试验.docx
螺栓作为重要的连接件,广泛应用于航空航天、船舶、风力发电、桥梁、数码产品等领域,在实际工况中,螺栓上施加的应力直接影响设符的运行、结构安全和可罪性,因此对螺栓进行监测具有重要的工程意义。
螺栓轴向应力的常用无损检测方法主要有扭矩扳手法、磁敏电阻传感器法、光纤应变法和电阻应变片法等,但是这些方法尚未在工程中得到应用,而超声波法测曼螺栓轴向应力可以应用下实际工程中“传统的压电超声探头存在对材料的衣面状态要求高、无法在高温卜进行监测、需要和工件进行耦合等缺点,限制了超声波法的应用。
电磁超声作为一种新兴的超声检测方法,可以避免传统超声法测量螺栓轴力(轴向应力)的缺点,在一些领域中已经得到r广泛的应用<∙现有研究中,电蹂超声模拟多集中于探头优化方面,主要应用在测厚、无损检测等领域,而电磁超声测量螺栓轴向应力的研究较少.因此,西南交通大学材料科学与工程学院的研究人员利用软件模拟电⅛⅛超声换能器激发纵波和纵波在螺栓中的传播过程,分析r螺栓在轴向数荷状态下的应力分布,以及夹紧长度对超声传播声时差的影响,并通过模拟确认了螺栓的夹紧长度与应力系数的关系,将有限元分析结果和真实试脸结果进行对比,验证了有限元分析结果的可弊性。
1声弹效应的理论基础采用电破超尚激励洪波对姆松轴向应力进行测M,该方法结合了胡克定律和声弹效应.根据胡克定律,住物体的弹性限度内,应力与应变成正比,比值为材料的弗性模出E,可得到:Lo=Ll(l+σ∕E) (1)LO=L1+L2 (2)式中:11, L a为骗栓有效受力区间未受应力的长度和受力后的长度:。
为所受应力:L2为爆栓不受力区间的长度:Lo为螂性未受力时的总长。
根据声弹性效应,固体中的声速与应力有关,假定螺检紧固应力为单轴均匀拉伸应力,则超声波在媒松内沿轴向传播的速度与应力有线性关系,可得到:vo=vθ(l+A∙σ) (3)VC=2L0∕t0(4)式中:VO为超声波在无应力状态下的传播速次:V。
基于ANSYS软件的螺栓螺纹轴向受力有限元分析
基于ANSYS 软件的螺栓螺纹轴向受力有限元分析*钟友坤(河池学院物理与机电工程学院,广西 河池 546300)摘 要:基于ANSYS 软件的参数设计语言,从有限元模型的创建、划分网格、求解分析以及后处理等过程对螺栓螺纹进行有限元分析,对螺栓进行轴向受力进行分析测试,以改善螺栓的应力分布,提高螺栓螺纹的强度。
关键词:ANSYS;螺栓螺纹;有限元分析中图分类号:U213.5+2 文献标志码:A 文章编号:1672-3872(2017)22-0004-03 ——————————————基金项目: 2015年度广西高校科学技术研究立项项目:同步机模型设计与仿真研究(KY2015LX331);河池学院2015年校级重点科研课题立项:虚拟仿真力学实验系统的设计研究(XJ2015ZD001)作者简介: 钟友坤(1977-),男,广西岑溪人,硕士,高级实验师,研究方向:机械力学设计。
螺栓是机械设计中最常见的联接器件之一,它结构简单、安全可靠、易于拆装、调整方便;作为标准件的螺栓,在工程生产中成本价格低廉,批量生产方便,在不同的工件中具有很强的互换性。
基于以上特点,在交通运输以及工程项目设计中螺栓的应用十分广泛。
虽然如此,但是在当今汽车铁路船舶运输等交通工具以及机械工业生产设备中也经常会出现螺母松动脱落、螺栓磨损、螺栓断裂等现象,从而造成重大的安全事故出现。
研究表明,高应力区多发生疲劳裂纹,螺栓产生疲劳裂纹的主要高发部位是在螺栓与螺母旋合部位的第一扣螺纹处的根部[1]。
常见的普通三角螺纹因为螺纹处承受到高强度的轴向拉应力,而螺纹根部承载面积小,从而造成了螺纹根部应力集中系数较大,在长时间动载荷作用下工作的螺栓螺纹根部处经常发生疲劳破坏,产生疲劳裂纹甚至断裂的可能,严重地影响螺栓的强度,这对机械结构和设备运行安全产生了重大的影响。
基于上述原因,如何缓解螺栓螺纹根部应力集中程度、重组螺纹处应力的均匀分布,提高螺栓强度,成为了机械设计的一个重要课题。
螺栓双剪试验有限元分析
诫验■栓测螺栓双剪试验有限元分析□李艳1口冯德荣2口李召华11.空军工程大学航空机务士官学校航空修理工程系河南信阳4640002.河南航天精工制造有限公司河南信阳464000摘要:剪切强度是判断螺栓能否应用于实际工程的重要力学性能指标。
为使新设计的螺栓满足所规定的剪切强度要求,需要对螺栓进行双剪试验。
应用有限元软件建立螺栓和上下刀片的三维有限元模型,分析螺栓双剪试验过程中的应力、应变变化,得到螺栓剪断时的剪切力变化趋势。
将有限元分析数据与试验数据进行对比,验证有限元分析结果的可靠性。
关键词:螺栓双剪有限元分析中图分类号:TH114文献标志码:A文章编号$1000-4998(2021)02-0075-04Abstract:Shear strength is an ispo—ant mechanical performance index to judge whether the bolt con bc applied to the practical enginee—ng.In order to make the newly designed bolt meets the specified shear strength requirements%the bolt needs to bc subjected to a double shear test.The Units element so/wpc was used to establish the3D Units element model of the bolt and the upper and lower blades,and the stress and strain changes du—ng the bolt double shear test were analyzed,and the changing Wend of shear force when the bolt was sheared was obtained.The Units element analysis date was compared with the Wst date to ve—S the —liability of the—suits obtained by Units element analysis .Keywords:Bolt Double Shear Test Finitr Elemeet Analysis1分析背景螺栓是一种广泛应用于机械设备、建筑:程、航空装备等结构连接部位的重要紧固件⑴,可性:接影响:程设备的性能。