模拟量干扰解决方案
模拟量信号干扰分析及11种解决秘诀
模拟量信号干扰分析及11种解决秘诀关键词:PLC 模拟量 信号干扰1、概述随着科学技术的发展,PLC 在工业控制中的应用越来越广泛。
PLC 控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。
自动化系统中所使用的各种类型PLC ,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。
要提高PLC 控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。
2、电磁干扰源及对系统的干扰影响PLC 控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。
其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。
共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。
共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。
共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。
差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
3、PLC 控制系统中电磁干扰的主要来源有哪些呢?(1) 来自空间的辐射干扰:空间的辐射电磁场(EMI )主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。
变频器对西门子PLC模拟量输入通道干扰故障解决实例
变频器对西门子PLC模拟量输入通道干扰故障解决实例Inverter to Siemens PLC Analog Input Channel Interference Fault Resolution Example山东化工技师学院 刘伟杰(Liu Weijie)基于西门子PLC300模拟量模块接收现场仪表4~20mA信号,受到变频器MM420运行中存在的干扰问题,现场仪表进行校验台效验成标准的压力变送器送到现场进行安装调试,给PLC模拟量模块提供4-20mA信号反馈,变频器未启动的情况下根据五点效验0%、25%、50%、75%、100%液位均在正常测量范围,无明显大幅度波动。
启动变频器运行后,现场仪表出现4-20mA电流不稳定、满量程漂移、液位出现大幅度波动。
根据变频器出现的干扰问题,我们做出一系列的抵抗干扰和一些合理的解决措施。
关键词:变频器;模拟量;干扰Abstract: Siemens PLC300 analog module receives 4~20mA signal of field instrument and suffers pure interference in the operation of frequency converter. The pressure transmitter which verifies the bench effect standard of field instrument is sent to the site for installation and debugging. It provides 4-20mA signal feedback to the analog module of PLC. When the frequency converter is not started, 0%, 25%, 50%, 75% and 100% liquid level are normal according to five-point effect. There is no significant fluctuation in the measurement range. After starting the frequency converter, field instruments appear, 4-20mA current is unstable, full range drift, and liquid level fluctuates greatly. According to the interference problem of frequency converter, we have made a series of anti-interference and some reasonable solutions.Key words: Inverter; Analog; Interference【中图分类号】TP29 【文献标识码】B 【文章编号】1561-0330(2019)03-097-041.1 实验装置介绍A5300型过控仪表实验系统侧重于掌握各类工业传感器原理、安装和应用以及各类仪表的使用。
抗干扰处理方法
PLC抗干扰处理办法一、模拟量抗干扰处理办法1.1 、模拟量类型:1.1.1 模拟量输入类型(可根据客户需求定制)1.1.2 模拟量输出类型1.2 模拟量输入抗干扰处理办法特点:1. 测温范围广:2. K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000C,短期1200 C。
3. E 型:在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用4. J型:既可用于氧化性气氛(使用温度上限750C),也可用于还原性气氛(使用温度上限950C),并且耐H2及CO气体腐蚀,多用于炼油及化工;5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400C,短期1600 C。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;1 .热电偶不能和强电放在一个线槽内2. 使用隔离型热电偶(信号线与屏蔽线分开的热电偶)处理方法:1. 检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;1. 冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)2. 将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开3. 加104 瓷片电容、磁环做防干扰处理4. 开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线5. 集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
6. 信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
7. 交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设8. 采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLG9. 采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。
1.2.2 PT100特点:1. 测温范围:-99.9~499.9 C,线距越长线损越大1. 三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端2. 线距1.5m 左右,若测温距离长需使用特殊的延长线(线损小)3. 滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V 的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。
模拟量干扰的11种解决方法
模拟量干扰的11种解决方法
模拟量干扰的11种解决方法
1、加1:1信号隔离器
2、加磁环
3、PLC供电加隔离变压器
4、开关量信号和模拟量信号分开走;
5、模拟信号最好采用单独屏蔽线。
信号类型最好采用4-20mA;
6、模拟信号负载是电磁阀类的,最好能选1.5的线;
7、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
8、PLC输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在PLC侧接地;
9、信号线缆要远离强干扰源,如变频器、大功率硅整流装置和大型动力设备;
10、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
11、为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地,但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。
影响模拟量传感器的外界干扰因素和抗干扰措施
影响模拟量传感器的外界干扰因素和抗干扰措施模拟量传感器信号传输过程中干扰的形成必需具备三项因素,即干扰源、干扰途径以及对噪声敏感性较高的接收电路。
影响模拟量传感器的外界干扰主要有以下几种:1、静电感应干扰静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。
2、电磁感应干扰当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。
这种状况在传感器使用的时候常常遇到,尤为留意。
3、漏电流感应干扰由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特殊是传感器的应用环境湿度增大,导致绝缘体的绝缘电阻下降,这时漏电电流会增加,由此引发干扰。
尤其当漏电流流入到测量电路的输入级时,其影响就特殊严峻。
4、射频干扰干扰主要是大型动力设备的启动、操作停止时产生的干扰以及高次谐波干扰。
5、其他干扰主要指的是系统工作环境差,还简单受到机械干扰、热干扰和化学干扰等等。
通过以上概述,我们了解传感器的干扰来源主要有两种途径:一是由电路感应产生干扰;二是由外围设备以及通信线路的感应引入干扰。
我们得认真分析外界干扰的来源,信号传输线路以及敏感程度,做好接地处理和传感器信号线屏蔽措施,有可能的话远离干扰源。
模拟量传感器抗干扰技术1、屏蔽技术利用金属材料制成容器。
将需要爱护的电路包在其中,可以有效防止电场或磁场的干扰,此种方法称为屏蔽。
屏蔽又可分为静电屏蔽、电磁屏蔽和低频磁屏蔽等。
2、静电屏蔽依据电磁学原理,置于静电场中的密闭空心导体内部无电场线,其内部各点等电位。
用这个原理,以铜或铝等导电性良好的金属为材料,制作密闭的金属容器,并与地线连接,把需要爱护的电路值r其中,使外部干扰电场不影响其内部电路,反过来,内部电路产生的电场也不会影响外电路。
这种方法就称为静电屏蔽。
3、电磁屏蔽对于高频干扰磁场,利用电涡流原理,使高频干扰电磁场在屏蔽金属内产生电涡流,消耗干扰磁场的能量,涡流磁场抵消高频干扰磁场,从而使被爱护电路免受高频电磁场的影响。
模拟量信号干扰
6、模拟量信号的传输距离有多远
Байду номын сангаас
答电压型的模拟量信号由于输入端的内阻很高模拟量模块为1兆欧极易
引入干扰所以讨论电压信号的传输距离没有什么意义。一般电压信号是用在控制设备柜内
电位器设置或者距离非常近、电磁环境好的场合。
电流型信号不容易受到传输线沿途的电磁干扰因而在工业现场获得广泛的应用。
兆欧以上极易引入 干扰一般电压变送器用在控制设备柜内电位器设置或者距离非常
近、电磁环境好的场合。
2电流型信号不容易受到传输线沿途的电磁干扰因而在工业现场获得广泛的应
用。
3电流信号可以传输比电压信号远得多的距离。
4信号输出端的负载能力必须大于信号输入端的内阻与传输线电阻之和。
一般模拟量模块有共地端M假如出现上述问题可以把输入信号的负端连接到
M端上以消除共模电压过大而带来的干扰。但应该注意这种方式适合于变送器允许把
负端连接在一起的情况。
5、电压变送器和电流变送器在使用上有何不同之处 ?
1电压型的模拟量信号由于输入端的内阻很高一般PLC的模拟量模块都是1
电流信号可以传输比电压信号远得多的距离。理论上电流信号的传输距离受到以
下几个因素的制约
1信号输出端的带载能力以欧姆数值表示
2信号输入端的内阻
3传输线的静态电阻值来回是双线
信号输出端的负载能力必须大于信号输入端的内阻与传输线电阻之和。当然实际情
为什么模拟量是一个变动很大的不稳定的值
答可能是如下原因
1可能使用了一个自供电或隔离的传感器电源两个电源没有彼此连接即模拟
量输入模块的电源地和传感器的信号地没有连接。这将会产生一个很高的上下振动的共模电
抗干扰处理方法
PLC抗干扰处理办法一、模拟量抗干扰处理办法1.1、模拟量类型:1.1.1模拟量输入类型(可根据客户需求定制)1.1.2 模拟量输出类型1.2模拟量输入抗干扰处理办法特点:1.测温范围广:2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。
3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;注意:1.热电偶不能和强电放在一个线槽内2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶)处理方法:1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开3.加104瓷片电容、磁环做防干扰处理4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。
9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。
1.2.2 PT100特点:1.测温范围:-99.9~499.9℃,线距越长线损越大注意:1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小)3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。
模拟量传感器如何抗干扰,有哪些措施?
模拟量传感器如何抗干扰,有哪些措施?传感器的抗干扰是非常重要,但也是非常令人头疼的问题,尤其是在工业现场,环境恶劣,周围大功率设备较多,模拟量在传输的时候很容易被干扰,导致接收端出错或者信号不稳定,引起控制器的误判。
如何提高传感器的抗干扰性、提高信号的传输质量,一直是各设备厂商所要努力的方向。
1 从设计/选型上严谨考虑干扰问题不管是从研发角度,还是从设备选型的较多,尽量避开模拟量。
在做方案的初期就要考虑到周围设备、周围环境的情况,在选型传感器、设计设备接口的时候尽量避免模拟量的远传,优先选用数字通讯接口。
比如选择RS485接口的设备或者CAN总线接口的设备,这类通讯接口的传输距离比较远,受干扰较小,还可以加中继扩展距离。
尽量做到在源头上就能避免掉模拟量。
2 尽量选择电流型的模拟量电压信号和电流信号是两个非常重要的模拟量信号。
比如0-5V和4-20mA在工业上就应用较多。
电压信号容易受到线阻的影响导致信号衰减非常严重,所以电压信号不适合远传。
对传输距离有要求的话,可以考虑采用电流信号,相对于电压信号而言,电流信号传输距离较远且受干扰情况要优于电压信号。
3 采用信号转换器如果现场的设备型号和传输信号已经确定,可以选择采用信号转换器的方式来实现信号的转换,可以将模拟量信号转化成数字量信号传输。
如将电压信号转换为电流信号,将电压、电流信号转换为RS485/CAN通讯等,可大大降低模拟信号的受干扰程度。
4 对大功率设备做好接地处理工业现场有很多大功率的设备,如大功率电机、变频器等。
这类设备在工作的时候对周围的弱电设备干扰较为严重。
可以选择电抗器、大功率设备接地等方式减缓对周围设备的影响。
同时,在布线时,将信号线可电力线分开。
信号的干扰是一直存在的问题,一定要结合实际情况,采取有效的措施方能保证信号的传输质量。
西门子PLC系统中模拟量干扰引起的故障分析及解决
14随着现代工业自动化程度的不断提高,自动化设备的运行稳定性显得至关重要,而由干扰引起控制系统的故障层出不穷,严重影响设备正常运行。
本文通过现场模拟量显示满量程故障分析,减轻干扰带来的破坏,最终达到消除干扰目的。
1 数字化系统故障简述一套冲渣溢流回水系统,如图1所示设备包含超声波液位仪4台,分别连续显示并控制调节池、清水池、回用水池、污泥池的上下液位;电磁流量计3套,分别监测废水输送泵出口流量、清水池泵流量、污泥池螺杆泵处理流量;故障现象:4个液位计显示满量程,现场检查,一只回水池液位计故障,在更换新的液位计后,现场所有液位计显示正常,但上位机仍然出现模拟量显示故障,检查通讯连接正常。
液位出现信号全部显示2.7米,经过几个月的跟踪记录,每个月大概出现几次,时间没有规律,对流量计电源停电无效,而总电源停后恢复正常,由此判定PLC有干扰引起故障。
2 数字化系统故障分析与解决2.1 接地情况的分析和处理考虑交流地和信号接地不可共用,屏蔽地和保护接地应连接各自接地排,模拟信号屏蔽线接地,控制系统以及柜体的接地进行检查,发现几个液位计采用两点接地,部分液位计电缆存在破损并且与屏蔽有接触,对模拟量的现场接线屏蔽层拆除,统一采用柜体端接地[1]。
2.2 控制系统电源负载能力计算及处理考虑控制系统电源负载能力越小,干扰影响越大,系统采用s7-300plc如表1所示,通过表中各模块设计参数计算电源容量是否满足要求[2]:计算5V背板总线吸取的电流=100+200+15+110*4+50*2=855 mA<1.2A最大背板输出电流;计算24V负载电流:CPU+365+CP+DI*4+DO*2+AI*2=900+200+400+7*32*4(896)+(160+37×32)*2(2688)+30=5114mA。
电源应留有0.5-1倍余量,而且电源的效率在70-收稿日期:2018-12-10作者简介:葛培(1981—),男,江苏南通人,本科,毕业于南通工学院,电气工程师,研究方向:自动化数字控制技术应用。
变频器干扰PLC模拟量解决方法
变频器干扰PLC模拟量解决方法
当你在把系统全设计好,认为100%可以了,当你在调试的过程当中,往往会遇到变频器干扰plc系统,这时可能会头大了,本人最近也遇到过变频器干扰PLC的模拟量,在现场搞了许多天多解决不了问题,但自己却总结出一些阅历,盼望搞这行的可以仔细参考。
变频器是一个高频电器,什么叫高频了,高频的英文名简称RF,在工作时有干扰源是在所难免,干扰分为磁场干扰和高次谐波干扰,分别说明两种干扰的解决。
磁场干扰采纳隔离的方法
1,变频器的动力线与PLC信号线不能够走在一起,信号线要采纳屏蔽电缆,并加钢管进行隔离。
2,动力线的地线要与信号通道的地线不能连在一起,应为变频器工作时产生谐波电流通到大地有可能对信号通道产生干扰,所以建议分开。
3,变频器单独放一个柜子,不要同PLC放在同一个柜。
4,变频器加屏蔽网进行隔离。
5,变频器与信号通道的电源隔离,可在变频器主回路或信号通道回路加装隔离变压器。
6,在PLC模块与传感器中间加隔离放大器。
高次谐波干扰可采纳抑制法
1,在变频器输入或输出端加装电抗器滤波
2,在变频器输入端加RC型滤波器
3,在变频器输出与马达动力线之间加磁环
4,在变频器直流P+,P-之间对地加谐振电容去谐波5,降低变频器的载波频率准时间常数。
模拟量传感器的抗干扰措施
模拟量传感器的抗干扰措施1.选择合适的电缆和连接器:选择抗干扰性能好的电缆和连接器,可以有效减少外界电磁干扰对测量信号的影响。
抗干扰电缆和连接器通常使用屏蔽层和抗干扰材料以阻挡外界电磁干扰的进入。
2.电磁兼容设计:在传感器的设计阶段,应考虑电磁兼容性。
采用适当的电路布局和屏蔽措施,以减少外界电磁干扰对传感器的影响。
例如,在传感器电路设计中使用地线屏蔽和差动信号放大器,可有效减少共模干扰信号。
3.供电电源的稳定性:传感器的稳定工作需要稳定的供电电源。
因此,应选用电源稳定性好、抗干扰能力强的供电方案,如稳压电源或者电源滤波器,以减少电源波动对传感器测量信号的影响。
4.地线连结:保持传感器、仪表和系统的地电位连结良好,减小共模干扰信号对测量信号的干扰。
5.信号放大和滤波:对传感器的信号进行放大和滤波,以提高信号的稳定性和精确性。
例如,可以采用差动放大器,将差模信号放大,抑制共模干扰信号。
6.屏蔽和隔离:对传感器进行屏蔽和隔离是提高其抗干扰能力的有效手段。
可以在传感器外壳和电缆中添加金属屏蔽层,减少外界电磁干扰的侵入。
7.抗振设计:对于一些特定应用场景,传感器可能会受到振动的干扰。
在设计中应考虑传感器的机械抗振性能,避免振动对传感器测量信号的干扰。
可以采用机械隔振和防振结构等措施来解决这一问题。
8.温度补偿:温度是影响传感器测量信号稳定性和准确性的重要因素。
因此,采用适当的温度补偿技术来抵消温度变化对传感器的影响,可以提高其抗干扰能力。
9.数据处理和校准:传感器的测量信号需要进行数据处理和校准,以消除系统误差和干扰。
例如,可以采用滤波算法、校正算法等方法,提高传感器的测量精度和抗干扰能力。
总之,抗干扰措施对于保证传感器的测量信号稳定性和准确性至关重要。
通过合理的设计和选择合适的技术手段,可以有效减少外界干扰对传感器的影响,提高其抗干扰性能。
影响模拟量传感器的外界干扰因素和抗干扰措施
影响模拟量传感器的外界干扰因素和抗干扰措施外界干扰是指在模拟量传感器工作过程中,来自外部环境的电磁干扰或其它因素对传感器测量信号的附加影响。
外界干扰会引起传感器输出信号的波动、偏移甚至失真,降低传感器的测量精度和稳定性。
为了减少或消除外界干扰对传感器的影响,可以采取一系列的抗干扰措施。
一、影响模拟量传感器的外界干扰因素:1.电磁干扰:电磁辐射、电磁感应、电源电磁干扰等会导致传感器信号干扰;2.温度变化:温度变化会导致传感器材料的热胀冷缩,从而影响传感器的准确度;3.行程限制:在使用位置或环境中,由于传感器的安装或固定存在行程限制,会使得传感器的测量范围受限;4.液体介质:液体介质对传感器的影响由介质的种类、温度、压力、浓度、酸碱程度等因素决定;5.机械振动:传感器受到机械振动时,易产生误差,使传感器输出信号出现偏差;6.光照强度:光照强度的变化会对一些光电传感器产生影响,如光敏电阻、光电二极管等。
二、抗干扰措施:1.选择合适的传感器:根据实际应用场景和环境的特点,选择适合的传感器类型,例如抗干扰能力较强的电磁屏蔽传感器、温度补偿能力较强的温度传感器等;2.屏蔽设计:在传感器电缆、电源线等连接线路上进行屏蔽,减少电磁辐射和感应的干扰;3.地线连接:传感器与测量设备之间应有良好的地线连接,以减少干扰电压和电流的影响;4.使用滤波器:在传感器信号线路上加装滤波器,用于滤除高频干扰信号;5.增加隔离:在传感器与测量设备之间加装隔离设备以消除接地环路的干扰;6.电源稳定化:使用稳定、纹波小的电源,保持传感器工作的电源稳定;7.加装抗干扰电路:在接触式传感器的输入端加装适当的抗干扰电路,提高传感器的抗干扰能力;8.密封防护:对于受液体介质影响的传感器,采用密封防护措施,避免介质对传感器的侵蚀和干扰;9.防止机械振动:采用固定牢固、减振措施等方式,防止传感器受到机械振动的干扰;10.具体环境调整:针对不同的外界干扰因素,可针对具体环境进行调整,例如对温度进行补偿、增加隔离物等。
模拟量干扰的问题
1.模拟量干扰的问题(处理,明确一下)问:我用的SM331 8*12bit 模块信号有时正常有时不正常,后来我把COMP-跟信号的M-接起来就好了,但我同时发现他们之间接电容也可以,是怎么回事??模块的COMP-端、各信号的M-端和模块24伏供电的M端之间电气上有什么关系??答:对隔离输入模板,.摸板参考地Mana与CPU的电源地M没有电连接。
因此Mana 与M有电位差时,必须采用隔离输入模板。
但是,如果电位差超过Eiso,则必须建立Mana 与M之间的连接。
对SIEMENS的模板,Eiso=75VDC或60VAC。
对非隔离输入模板,则必须建立Mana与M之间的连接。
为抑止信号地M-与Mana 之间的共模干扰,不同传感器的接地方式不同,限于篇幅以及图解困难,难以细说。
一般原则是,建立信号地与模板的地、模板地与(CPU)系统地的连接。
如果有干扰环流,则将取消模板地与系统地的连接,让模拟地悬浮。
另外,屏蔽推荐双端接地,如果有干扰环流,则改为单端。
2.采用周期3.S7-300PID的FB41CONT_C功能及参数设定问:请教各位高手,本人现用到西门子S7-300(CPU315)做整流系统的PID控制,具体是由AI模块输入4-20MA信号(既A柜/B柜饱和电抗器控制电流信号反馈和机组A柜/B柜直流电流信号反馈),通过CPU调用PID功能块,实现自动闭环控制,最后由AO模块输出一个4-20MA的信号给稳流系统(既A柜/B柜电流给定反馈)。
现请教:1、具体应调用S7的PID中的哪些功能块。
我是直接在OB1里边调用FB41,不知可否。
2、PID标准块FB41的输入输出参数如何整定,PV_PER、SP_INT、PV_IN有何区别。
3、GAIN、TI、TD如何整定。
4、MAN_ON、PVPER_ON怎么用,是直接在FB41的输入端写吗?答:原理上,PID的调节节奏应该与其采样周期一致,这是数学模型应与物理过程一致的要求。
西门子PLC及EM235模拟量采集干扰问题
西门子PLC及EM235模拟量采集干扰问题时间:2010-12-01 来源:未知编辑:电气自动化技术网点击:次字体设置: 大中小问:最近有个项目使用西门子224CN后接一个EM235模块采集0-10V电压信号,接线无问题,A-与M连接,屏蔽接地,系统采用三相五线制接法,而现场供电为四线制,发现采集数据大范围波动,因此将EM235模块的PE断开,采集数据十分稳定,后将EM235的PE 接了回去,并将设备PE与N短接,显示数据有所好转,但存在小范围波动。
因此可以断定是接地干扰造成的采集数据波动,如何接线才更合理呢?答:一、电网系统的干扰及采取措施PLC系统对电源质量的要求是非常严格的,当电网内部变化、开关操作浪涌和大型电力设备(如矿热炉)启停时,都会通过电网对PLC系统造成干扰。
措施:针对电网系统的干扰,PLC系统的供电采用了如图l所示的结构。
低通滤波器可以让50Hz的基波通过,滤掉高频干扰信号;在线式不间断供电电源(UPS)在交流供电中断情况下,可以瞬时输出交流电代替外界交流供电,是一种无触点的不间断供电,而且UPS还具有较强的干扰隔离性能。
同时为确保供电安全,采取了两路供电线路。
二、电磁干扰及采取的措施1、雷电电磁波的干扰及采取的措施雷电电磁波是由强大的雷闪电流产生的脉冲电磁场,它对PLC系统的干扰有以下2种形式:①当控制室建筑物的防直击雷装置接闪时,在引下线内会通过强大的瞬间雷电流,如果在引下线周围的一定距离内设有连接PLC系统的电缆,则会对电缆产生电磁辐射,将雷电电磁波引入PLC系统,干扰或损坏PLC系统。
②当控制室周围发生雷击放电时,会在各种金属管道、电缆线路上产生感应电压,从而传到PLC系统上,并对其产生干扰或损坏。
措施:系统应有良好的防雷击措施,同时要将PLC系统和防雷系统的接地系统进行等电位连接,即使受到雷电电磁波的干扰,由于它们之间不存在电位差,从而大大减少了PLC 系统受雷电电磁波的影响。
PLC项目调试模拟量被干扰怎么办?
PLC项目调试过程中什么七里八怪的问题都有可能遇到,信号干扰就是其中一种,遇到了问题原因还不好查找。
今天这篇文章分享两个案例,变频器对PLC模拟量干扰的例子以及用信号隔离模块克服此类干扰的解决办法。
希望对解决类似问题有所启发。
一、举例1现象说明西门子PLC中AO点发出一路4-20mA电流控制信号,输出至西门子变频器,无法控制变频器启动。
故障查找1、疑似模拟量输出板卡问题,用万用表测量4-20mA输出信号,信号是正常的!2、开始怀疑是变频器控制信号输入端有了问题,换了一台同型号变频器,问题仍然如此。
3、用一台手持式信号发射器做4-20mA输出信号源,输出标准电流信号至变频器,这下变频器启动了,因而我们排除了模拟量输出板卡和变频器的故障。
4、由此推测是变频器的干扰信号传导至模拟量通道所致。
5、为了验证,在PLC模拟量4-20mA输出通道中加装了一台信号隔离模块TA3012,TA3012的输入端子5、6接模拟量输出模块,输出端子1、2端子接变频器,3、4端子接外部24VDC 供电电源,变频器正常启动了。
6、据此断定,问题的根源在于变频器干扰模拟量通道所致。
注意事项在PLC和变频器同时使用的自控系统中,应该着重注意一下事项:PLC供电电源与动力系统电源(变频器电源)分别配置,且PLC的供电应该选择隔离变压器; 动力线尽量与信号线分开,信号线要做屏蔽;无论是模拟信号输入还是模拟信号输出,模拟量通道一律使用信号隔离模块;PLC程序里做软件滤波设计;信号地与动力地分开设计。
二、举例2前段时间看到一个关于模拟量干扰问题的分析和解决,在我们实际运用中会碰到很多类似的问题。
和大家一起分享:“车间有10台250KW电机,负载为高压泵。
变频器用施耐德ATV71跟PLC通过DP联接,PLC使用的西门子300,压力变送器为西门子,变送器到PLC为4-20mA 模拟量,中间使用屏蔽线输入。
调试好后运行一周一切正常。
厂家走后,开机忽然出现8号泵,设定40公斤压力,实际值为70公斤。
模拟量传感器的抗干扰措施
一、前言模拟传感器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。
但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到最高的问题。
而众多的干扰一直影响着传感器的测量精度,如:现场大耗能设备多,特别是大功率感性负载的启停往往会使电网产生几百伏甚至几千伏的尖脉冲干扰;工业电网欠压或过压(涉县钢铁厂供电电压在160V~310V波动),常常达到额定电压的35%左右,这种恶劣的供电有时长达几分钟、几小时,甚至几天;各种信号线绑扎在一起或走同一根多芯电缆,信号会受到干扰,特别是信号线与交流动力线同走一个长的管道中干扰尤甚;多路开关或保持器性能不好,也会引起通道信号的窜扰;空间各种电磁、气象条件、雷电甚至地磁场的变化也会干扰传感器的正常工作;此外,现场温度、湿度的变化可能引起电路参数发生变化,腐蚀性气体、酸碱盐的作用,野外的风沙、雨淋,甚至鼠咬虫蛀等都会影响传感器的可靠性。
模拟传感器输出的一般都是小信号,都存在小信号放大、处理、整形以及抗干扰问题,也就是将传感器的微弱信号精确地放大到所需要的统一标准信号(如1VDC~5VDC或4 mADC~20mADC),并达到所需要的技术指标。
这就要求设计制作者必须注意到模拟传感器电路图上未表示出来的某些问题,即抗干扰问题。
只有搞清楚模拟传感器的干扰源以及干扰作用方式,设计出消除干扰的电路或预防干扰的措施,才能达到应用模拟传感器的最佳状态。
二、干扰源、干扰种类及干扰现象传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。
这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。
在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。
PLC调试中常见的模拟量输入输出问题及解决方法
PLC调试中常见的模拟量输入输出问题及解决方法在PLC(可编程逻辑控制器)调试过程中,模拟量输入输出问题是一种常见的挑战。
本文将探讨PLC调试中常见的模拟量输入输出问题,并提供一些解决方法。
1. 电源问题当PLC的电源供应不稳定或电源线路存在噪音时,模拟量输入输出的准确性可能会受到影响。
为了解决这个问题,可以考虑以下措施:- 确保PLC的电源电压稳定,使用稳定性高的电源设备。
- 使用滤波器或稳压器来减少电源噪音。
- 对电源线路进行绝缘和屏蔽,以减少外界干扰。
- 定期检查电源线路,确保连接良好。
2. 信号干扰模拟量信号容易受到电磁干扰或信号回路的交叉干扰。
以下方法可帮助解决信号干扰问题:- 使用防干扰的电缆或信号线,降低干扰的影响。
- 将模拟量输入线路与高压电源线路或高频电源线路保持一定的距离,以减少相互干扰。
- 如果信号线路较长,可以考虑使用信号放大器或信号隔离器来提高信号抗干扰能力。
3. 精度问题PLC模拟量输入输出模块的精度是保证系统运行准确的重要指标。
如果模块精度较低,可能导致输出信号不准确。
以下是几种解决方法:- 选择具有较高精度的模拟量输入输出模块。
- 校准模块,确保输入输出信号的准确度。
- 确保传感器的精度和测量范围与模块匹配,以避免精度损失。
- 定期检查模块的性能,确保其正常工作。
4. 信号转换问题在PLC系统中,有时需要将不同类型的信号进行转换,例如将电压信号转换为电流信号。
在进行信号转换过程中可能会出现问题。
以下是一些应对方法:- 理解信号转换的原理,确保正确连接转换装置。
- 检查转换装置的输入输出范围和转换精度,确保其满足系统要求。
- 验证信号转换后的准确性,可以通过比对与信号源的实际值来进行检查。
5. 信号采样频率信号采样频率是指PLC系统对模拟量输入信号的采样速率。
如果采样频率过低,可能无法准确捕捉到信号的快速变化。
以下方法可用于解决采样频率问题:- 确认PLC的采样频率是否满足系统需求。
多种解决模拟量信号干扰的方法——第一个就很实用
多种解决模拟量信号干扰的方法——第一个就很实用做PLC项目,基本都会涉及到模拟量的控制,使用频率多了,问题也就多了,觉得最棘手的问题莫过于干扰。
下面举一个网友所遇到过的变频器对模拟量干扰的例子。
上图为S7-200SMART系列的模拟量扩展模块(AM03和AM06)上图为西门子MM440的变频器端子接线介绍故障现象:西门子S7-200SMART PLC用AM03模拟量输出端与变频器模拟量输入端相连,通过AM03输出一路4-20mA电流控制信号,实现对电机的无级调速;可是在操作过程中,无法实现对变频器的控制,启动不了电机。
故障排查:1、考虑AM03模块的模拟量输出端问题,用万用表测量4-20mA 输出信号,信号正常。
2、用替换法,换了另一台MM440变频器,问题仍然如此。
3、用一台手持式信号发射器做4-20mA输出信号源,输出标准电流信号至变频器,这下变频器启动了,因而排除了模拟量输出板卡和变频器的故障。
由此推测是变频器的干扰信号传导至模拟量通道所致。
4、为了验证推测,在PLC模拟量4-20mA输出通道中加装了一台信号隔离模块TA3012,TA3012的输入端子5、6接模拟量输出模块,输出端子1、2端子接变频器,3、4端子接外部24VDC供电电源,变频器正常启动了。
故障点:据此断定,问题的根源在于变频器干扰模拟量通道所致,具体如何干扰到,后文有介绍。
上述第五点提到采用信号隔离模块,这确实是其中一种方法,既然提到了,就顺便科普下:1信号隔离器工作原理将接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。
保证变换后的信号、电源、地之间绝对独立。
(其实核心原理就是光电隔离)信号隔离器选择隔离器位于二个系统通道之间,所以选择隔离器首先要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。
3. 模拟量信号处理的常见方法有哪些?
3. 模拟量信号处理的常见方法有哪些?11 模拟量信号处理概述模拟量信号是连续变化的物理量,如电压、电流、温度、压力等。
对模拟量信号进行处理的目的是将其转换为有用的信息,以便进行测量、控制和数据处理。
111 常见的模拟量信号处理方法1111 滤波滤波是去除模拟量信号中的噪声和干扰的常用方法。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器用于去除高频噪声,保留低频信号;高通滤波器则相反,用于去除低频噪声,保留高频信号;带通滤波器允许特定频段的信号通过,而带阻滤波器则阻止特定频段的信号。
1112 放大当模拟量信号的幅度较小,无法满足后续处理或测量的要求时,需要进行放大。
放大器可以将信号的幅度按一定比例增大,同时应注意保持信号的准确性和线性度。
1113 模数转换(ADC)将模拟量信号转换为数字量信号是数字处理系统中的关键步骤。
ADC 器件根据特定的采样频率和分辨率将连续的模拟量转换为离散的数字值。
1114 信号调理信号调理包括对信号进行隔离、电平转换、线性化等操作,以适应后续处理设备的要求。
1115 校准为了提高测量的准确性,需要对模拟量信号处理系统进行校准。
校准可以通过与已知标准值进行比较来调整系统的参数。
112 模拟量信号处理方法的选择在实际应用中,应根据具体的需求和信号特点选择合适的处理方法。
例如,如果信号中存在高频噪声,应选择低通滤波;如果信号幅度过小,需要放大处理;对于需要数字处理的系统,必须进行 ADC 转换。
12 模拟量信号处理中的注意事项121 噪声和干扰的抑制在模拟量信号处理过程中,要采取有效的措施抑制噪声和干扰,如良好的接地、屏蔽、滤波等。
122 精度和分辨率的考虑根据应用的精度要求选择合适的 ADC 分辨率和其他处理设备的精度。
123 稳定性和可靠性确保模拟量信号处理系统在不同环境条件下的稳定性和可靠性,以保证长期准确的工作。
13 总结模拟量信号处理是一个复杂但重要的领域,通过合理选择和应用上述常见方法,并注意相关的注意事项,可以有效地获取准确、有用的信息,为各种测量、控制和数据处理系统提供可靠的输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了减少电子干扰,对于plc的模拟信号的线缆有什么要求?使用的屏蔽线缆的屏蔽层应不应接地?如果接地应如何接地?(两端,一端,那端)说说为什么?模拟信号的线缆主要有以下几点要求:(1)开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线。
信号类型有条件也最好采用4-20mA,而且线径最好选大点,如果负载是电磁阀类的,最好能选1.5的线,屏蔽线也要大线径的。
当然留一点的富裕量是必须的。
(2)模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆。
(3)集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
(4)信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
(5)交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设应该接地,根据情况选择是两端还是一端接地。
(1)为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地。
(2)但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。
外部有强电流干扰,单点接地无法满足静电的最快放电。
如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。
当然了,真是那样,也没有必要选择两层屏蔽。
否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。
比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。
内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。
PLC 控制应用系统中的干扰是一个涉及到方方面面的十分复杂的问题,因此在系统的抗干扰设计中应综合考虑各方面的因素,根据实际应用中干扰现象分析出干扰产生的原因,从而合理有效地采取抑制干扰措施,使PLC 应用系统可靠的工作。
文章从硬件电路入手,分析了常见干扰的引入途径和相应的抑制措施,为PLC 应用系统有效抑制干扰提供了参考依据。
引用回复举报评分QHDTHL个人主页给TA发消息加TA为好友发表于:2012-01-12 08:47:19 3楼以西门子S7-300PLC为例,模拟信号电缆选用铜网屏蔽的电缆,电缆线径可根据现场设备与模拟量模块的距离选择,一般距离近的使用1平方,稍远一些的使用1.5平方的,在线缆布线时,要求与动力电缆和控制电缆分开,不在同一个电缆桥架上,在同一根线缆上只能使用于模拟信号,不能与电源和控制线缆共用,屏蔽电缆要求单端接地,可在控制柜上接地,接地电阻要求小于4Ω,引用回复举报评分李纯绪个人主页给TA发消息加TA为好友发表于:2012-01-12 09:16:37 4楼在远距离、强干扰条件下,不是屏蔽就能解决的。
PLC输入端采用的是光耦隔离,不论多强的干扰,能保证在输入端的干扰是幅度相等、方向相同的电压,这个干扰就不能输入PLC。
所以,长距离的电缆是双绞线形式,每对双绞线是一个信号回路,干扰在这对线上感应相同的电压,这样就抑制了共模干扰。
引用回复举报评分青岛黄工个人主页给TA发消息加TA为好友发表于:2012-01-13 14:06:18 5楼占个位置先,呵呵,抢答题引用回复举报评分chenminglei0509个人主页给TA发消息加TA为好友发表于:2012-01-16 20:53:37 6楼一般来说,我们工程中使用的模拟量信号电缆都是屏蔽电缆,特别是注意在辐射的时候与动力电缆要分开敷设。
首先屏蔽层肯定是要接地的,否则还谈什么电磁屏蔽,不接地根本起不到屏蔽的作用。
其次,是单端接地还是两段接地,这个问题困扰我很久了。
从防止暂态过电压的角度来看,屏蔽层采用两点接地较好,两点接地使得电磁感应在屏蔽层上产生一个感应纵向电流,该电流产生一个与主干扰相反的二次场,抵消主干扰场的作用,使得干扰电压降低。
但是,两点接地有两个很大的问题,第一,当接地网上出现短路电流或者雷击电流的时候,由于接地两点的电位不同,使得屏蔽层内可能出现电流,电流过大会烧毁屏蔽层,第二,电流不大也会对电信号造成干扰。
所以,在PLC系统中,如果电磁干扰不是特别厉害的情况下,尽量采用单端接地。
引用回复举报评分0000001、PLC的接地处理。
在PLC控制系统中.具有多种形式的。
地”。
主要有:(1)信信号地:是输入端信号元件——传感器的地。
为了抑制附加在电源及输人、输出端的干扰,应对PLC系统进行良好的接地。
一般情况下.接地方式与信号频率有关,当频率低于1 MHz时,可用一点接地;高于10 MHz时,采用多点接地;在1—10MHz间采用哪种接地视实际情况而定。
因此.PLC组成的控制系统常用一点接地.接地线截面积不能小于2 mm2。
接地电阻不能大于100Q.接地线最好是专用地线。
若达不到这种要求.也可采用公共接地方式.禁止采用与其他设备串联接地的方式。
(2)屏蔽地:一般为防止静电、磁场感应而设置的外壳或金属丝网.通过专门的铜导线将其与地壳连接。
(3)交流地和保护地:交流供电电源的N线,通常它是产生噪声的主要地方。
而保护地一般将机器设备外壳或设备内独立器件的外壳接地.用以保护人身安全和防护设备漏电。
交流电源在传输时,在相当一段间隔的电源导线上。
会有几mV、甚至几V的电压,而低电平信号传输要求电路电平为零。
为防止交流电对低电平信号的干扰.在直流信号的导线上要加隔离屏蔽:不允许信号源与交流电共用一根地线:各个接地点通过接地铜牌连接到一起。
屏蔽地、保护地不能与电源地、信号地和其他地扭在一起。
只能各自独立地接到接地铜牌上。
为减少信号的电容耦合噪声,可采用多种屏蔽措施。
对于电场屏蔽的分布电容问题,通过将屏蔽地接入大地可解决。
对于纯防磁的部位,例如强磁铁、变压器、大电机的磁场耦合.可采用高导磁材料作外罩.将外罩接入大地来屏蔽。
2、PLC输入输出的配线。
PLC电源线、I/O电源线、输入信号线、输出信号线、交流线、直流线都应尽量分开布线。
开关量信号线与模拟量信号线也应分开布线,无论是开关量信号线还是模拟量信号线均应采用屏蔽线.并且将屏蔽层可靠接地。
由于双绞线中电流方向相反。
大小相等.可将感应电流引起的噪声互相抵消.故信号线多采用双绞线或屏蔽线。
引用回复举报评分00000000屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。
(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。
因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。
这是一个很好的抑制磁场干扰的措施。
同时它也是一个很好的抵制磁场耦合干扰的措施。
(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。
因此,它抑制磁场耦合干扰的能力也比单端接地方式差。
单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。
(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。
引用回复举报评分0顶楼上~~~~~~~~~~~~~~~~引用回复举报评分0…………………………………………顶楼上引用回复举报评分bhdxzgp模拟信号的线缆主要有以下几点要求:(1)开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线。
信号类型有条件也最好采用4-20mA,而且线径最好选大点,如果负载是电磁阀类的,最好能选1.5的线,屏蔽线也要大线径的。
当然留一点的富裕量是必须的。
(2)模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆。
(3)集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
(4)信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
(5)交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设应该接地,根据情况选择是两端还是一端接地。
(1)为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地。
(2)但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。
水中鱼分析的很好!引用回复举报评分0先搞一个位置占着,明天来回答引用回复举报评分0别以为屏蔽就能解决干扰问题。
引用回复举报评分0001、强电干扰:仪表信号、PLC 控制信号都为弱电,易受强电干扰。
所以要求在柜外布线时(在电缆沟、电缆桥架、穿管等敷设方式),将通讯线、信号线、控制线等弱电信号远离强电,间距不得少于20CM。
电缆沟多层时,要求弱电电缆敷设在强电电缆下方。
2、柜内干扰:PLC 不能和高压电器安装在同一个开关柜内,PLC 的输出采用中间继电器实现对外部开关量信号的隔离。
如果现场条件限制,输入信号不能和强电电缆有效的隔离,可用小型继电器来隔离输入端的开关量信号。
当然PLC 来自控制柜内的输入信号和距控制柜不远的输入信号一般没有必要用继电器隔离。
控制柜内的有很多信号线。
如走线混乱,会引起设备误动作,检查起来却相当麻烦。
所以在控制柜设计时应考虑到这种情况,设备分层罢放,走线清晰。
成套时,将PLC 的IO线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,如条件允许,分槽走线最好,并使其有尽可能大的空间距离,力求将干扰降到最低限度。
不同的信号线最好不用同一个插接件转接,如必须用同一个插接件,要用备用端子或地线端子将它们分隔开,以减少相互干扰。
PLC 不能和高压电器安装在同一个开关柜内,在柜内PLC 应远离动力线(二者之间距离应大于200mm)。
与PLC 装在同一个柜子内的电感性负载,如继电器、接触器的线圈,应并联RC 消弧电路。
3、信号线的抗干扰信号线承担着检测信号和控制信号的传输任务,传输质量直接影响到整个控制系统的准确性、稳定性和可靠性。
对信号线的干扰主要是来自空间的电磁辐射,有差模干扰和共模干扰两种。
差模干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。
抑制常态干扰的方法有:在输入回路接RC 滤波器或双T 滤波器;尽量采用双积分式A/D 转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用;将电压信号转换成电流信号再传输。
共模干扰是指信号线上共有的干扰信号,一般是由被测信号的接地端与控制系统的接地端存在一定的电位差引起的,这种干扰在两条信号线上的周期、幅值基本相等情况下,采用上面的方法无法消除或抑制。
方法如下:采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比;输入线采用绞合线,绞合线能降低共模干扰,其感应互相抵消;采用光电隔离的方法,可以消除共模干扰;使用屏蔽线,并单边接地;为避免信号失真,对于较长距离传输的信号要注意阻抗匹配。