碳负离子反应举例
13 碳负离子的反应
(
)
O
O
(1) C2H5ONa (2) H
1. OH
H5C2OC(CH2)4COC2H5
(
)
2. H
+
(
)
CH3COCH2COOC2H5
1)NaH 2)C6H5COCl
1)OH
(
)
2)H /
+
(
)
O
O
(1) NaH (2) H
CH3CCH3 + CH3(CH2)3CH2COC2H5
(
)
CH2CH2COOC2H5 H3C CH CH2CH2COOC2H5
取代甲基酮( 取代甲基酮 应用广泛)
取代乙酸
O H CH3 C C CH3 CH2CH2CH3
CH3 O H O (1) C2 H5ONa 2 C C C OC2H5 (2) CH3CH2CH2 Br (1) C2H5 ONa (2) CH3I (1) OH-/H2O (2) H3O+ TM
取代环烷基甲基酮
O
O
CH3CCH2COC2H5
OH
-
OOH
O
O CH3COOH + -CH2COC2H5
CH3C-CH2COC2H5
O CH3COO- + CH3COC2H5
OH-
H+
2 CH3COOH + C2H5OH
• 在合成上的应用
O CH3CCH2COOC2H5 C2H5ONa O CH3CH2CH2Br CH3CCHCOOC2H5
CH2(CO2C2H5)2
(1) C2H5ONa (2) CH3CH2 CH2Br
(1) C2H5ONa (2) CH3I
7第四章碳负离子型延伸碳链反应2
酯的分子内醇解
γ-羟基酯
γ-内酯
24
25
26
4.3 酰基化反应
27
4.4 缩合反应
28
29
4.4.1 Knoevenagel反应
2.反应通式:
30
3.反应机理:(p103-104)
4.影响因素:反应的产率与羰基化合物的反应活性、位 阻、催化剂的种类及其它反应条件有关。
41
4.4.4 Dickmann缩合
分子内的Claisen酯缩合-Dickmann缩合
Dickmann(迪克曼)缩合反应主要用于制备 五元和六元环状β-酮酸酯。
42
4.4.5 Thorp反应
Thorpe反应与Dickmann缩合相似:
β-羰基腈
Dickmann(迪克曼)缩合反应主要用于制备五元和 六元环状β-酮酸酯。 但Thorpe缩合反应,只要改变反应条件,从二腈化 合物就能合成较满意的大环。在苯溶液中加入碱以及大 量的乙醚,反应在很稀的溶液中进行,产率可以提高到 95%(七元环)、 88%(八元环)、 60~80%(十四 元或更多元环). 43
1.自身缩合:碳链增加一倍
2.混合缩反应
醛、酮与没有α-氢的酯(甲酸酯、苯甲酸酯或 草酸酯)发生的缩合反应,制备β-酮或β-二酮的 重要方法。
脱羰基
(有机化合物致活策略)
导向基
在有机合成路线的设计中,经常需要用到导向基来引 导原子或原子团进入到某些特定的位置,然后再将导 向基除去,得到合成产物。
膦酸酯α-碳的去质子化, 生成碳负离子
氧负离子进攻磷原子, 生成氧杂的四元环中间体
62
63
56学时的课件,未完待续
64
《碳负离子的反应》课件
防护措施
禁止事项
应急处理
废弃物处理
实验时需佩戴实验服、 护目镜等防护装备。
禁止在实验过程中饮食 、吸烟等行为。
熟悉实验中可能发生的 意外情况及处理方法。
按规定正确处理实验废 弃物。
实验废弃物的处理
分类处理
根据废弃物的性质进行分类, 如有机废弃物、无机废弃物等
。
回收利用
部分废弃物可进行回收利用, 以节约资源。
副产物的生成。
06
碳负离子反应的实验操作 与安全注意事项
实验操作规程
01
02
03
04
实验前的准备
确保实验室环境整洁,检查实 验器材是否齐全、完好。
试剂取用
按照需求适量取用,避免浪费 或不足。
操作步骤
按照规定的顺序进行实验操作 ,不可省略或颠倒。
数据记录
实时记录实验数据,确保准确 无误。
安全注意事项
安全处置
对于无法回收利用的废弃物, 需按照规定进行安全处置。
记录存档
对废弃物的处理过程进行记录 ,并存档备查。
THANKS
感谢观看
自由基反应
总结词
自由基反应是碳负离子与自由基的反 应,通常发生在碳负离子的未共用电 子对被自由基的空轨道接收的过程中 。
详细描述
在自由基反应中,碳负离子与自由基 相互作用,形成新的碳-碳键或碳-自 由基键。这种反应通常在高温或光照 条件下进行,有利于自由基的形成和 反应。
光化学反应
总结词
光化学反应是碳负离子在光的作用下发 生的化学反应,通常需要特定波长的光 照射。
β-羟基酸酯的合成
总结词
β-羟基酸酯是有机合成中的一种特殊结构, 碳负离子可以用于合成β-羟基酸酯。
有机合成 第五章 稳定化碳负离子1
反应介质可分为质子性或非质子性溶剂,还可以分 为极性或非极性溶剂 只有pKa大于碳氢化合物的溶剂才能在碳负离子的 反应中使用,质子性溶剂一般难以满足要求,故反 应时一般选择非质子性溶剂,如苯、THF、DMF等 极性大的溶剂促进离子的溶剂化,利于离子型反应
综上,反应一般选合适的碱在非质子性的
-OH
CH2O + H-CH2CHO
HOCH2-CH2CHO
-OH
2CH2O
浓-OH
(HOCH2)3CCHO
CH2O
(HOCH2)4C + HCOOH
Cannizzaro 反应 甲醛的羰基碳极为活泼,在所有醛酮中优先反应
2、苯甲醛可以作为单纯的羰基参与羟醛缩合反应, 比如Claisen-Schimdt缩合、Perkin反应等
(i-C3H7)2NLi + C4H10
5.1 稳定化碳负离子形成的原理
六、影响负离子形成及反应的因素:
1.碱(B-)的影响:
有机原料酸性越弱,则应使用越强的碱,如:
强碱带来正向反应的增加,但也带来副反应,如:
交叉羟醛缩合反应时需防止强碱带来的自身缩合
王鹏
5.1 稳定化碳负离子形成的原理
王鹏
5.2 碳负离子的缩合反应
交叉羟醛缩合反应:
两种不同的醛、酮之间发生的羟醛缩 合反应称为交叉的羟醛缩合反应。
有两种情况 (1)只有一种醛或酮有-H,常见于甲醛和苯甲醛的反应 (2)原料醛酮有不同的-H。需控制碱性进行定向反应
王鹏
5.2 碳负离子的缩合反应
第一种情况:
1、甲醛的缩合反应大多属于此类情况,如
-OH
碳负离子的反应
含有α氢原子的酮与酯之间也可以进行缩合 反应主要产物为β-二酮。
例如:
第二节 β-二羰基化合物的烷基化、酰基 化及其在合成中的应用
两个羰基被一个碳原子隔开的化合物称 为β-二羰基化合物。
β-二羰基化合物一般泛指β-二酮、β-酮 酸酯、丙二酸酯等含活泼亚甲基化合物 。
这类化合物主要的反应类型是亚甲基碳 上的烷基化、酰基化反应。
一、乙酰乙酸乙酯
无色,具有水果香味,沸点118℃, 微溶于水,易溶于多种有机溶剂。
反应可在不同的酯之间进行,称为交叉 酯缩合。
Claisen 缩合举例
混合酯缩合
反应机理
狄克曼(Dieckmann)缩合(也叫酯分子内 缩合)
含6个或7个碳的二元酸酯,在碱性催化 剂作用下环化生成五元或六元环为主的 -酮酯称为狄克曼反应。
分子内羟醛缩合
羟醛缩合反应不仅可以在分子间进行,含有α-氢原子的 二元醛或酮也可以进行分子内缩合,生成环状化合物, 是制备5~7元环化合物的常用方法之一。
ห้องสมุดไป่ตู้
β-羟基醛在加热时即失去一分子水,生成 α,β-不饱和醛
常用的碱性催化剂除了氢氧化钠、氢氧化钾外,还有叔 丁醇铝、醇钠等。 由此可见,通过羟醛缩合反应可以制备α,β-不饱和醛,进 一步还可以转变为其它化合物。所以羟醛缩合反应是有 机合成中用于增长碳链的重要方法之一。
含有α-氢原子的酮在稀碱作用下也 可以发生类似反应,即羟酮缩合反应, 但是反应的平衡偏向反应物一侧,例如 ,丙酮在氢氧化钡催化下,发生反应。
碳负离子的结构与碳正离子或碳自由基 不同,因为带负电荷的碳原子最外层有3对 成键电子和1对未成键电子,这样的4对电子 需要采取相互远离的方式排列,因此碳负离 子采用sp3杂化轨道成键,未成键电子对与3 个共价键形成一个四面体结构。碳正离子、 碳自由基和碳负离子的结构对比如下图所示 。
碳负离子的反应
第14章 碳负离子的反应——β-二羰基化合物§ α-H 的酸性和互变异构α-H 的酸性 1、-H 的酸性在有机化学中,与官能团直接相连的碳原子均称为-C ;-C 上的氢原子均称为-H; -H 以质子形式解离下来的能力,即为-H 的活性或-H 的酸性;因此烃也可叫做氢碳酸;表14-1-1 常见化合物-H 的p K a 值羧酸衍生物中的-H 的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其-H 的酸性增强;酸性大小: 酰氯>醛、酮>酯>酰胺 Cl :吸电子诱导>给电子共轭 O :给电子共轭>吸电子诱导 2、影响-H 的酸性的因素1-C 所连接的官能团及其官能团的吸电子能力;总的吸电子能力越强,-H 的酸性就越大;2取决于氢解离后生成的碳负离子carbanion 结构的稳定性;负离子上电子的离域范围越大越稳定;3分子的几何形状、介质的介电常数、溶剂等都有关系; 3、β-二羰基化合物α-H 的活性分析乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子;负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围;烯醇负离子其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基氢 的化合物;β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应;酮式和烯醇式的互变异构可以看作是活泼H 可以在α-C 和羰基O 之间来回移动;1、酸碱对互变平衡的影响痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立; 1酸催化过程在酸催异构化过程中,酸首先与羰基氧原子作用形成盐,其共轭碱——水再夺取-H 形成烯醇; 2碱催化过程碳可以直接和α-H 结合,同时形成一个碳负离子;通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子;2、化合物的结构对互变平衡的影响通常,单羰基化合物中的烯醇式异构体含量很少;两个羰基被一个碳原子隔开的化合物;当同一碳原子上连有两个吸电子基团时,这样的化合物其酸性则明显增强;酮式中碳氧π键比烯醇式中碳碳π键更稳定-二羰基结构的化合物,在平衡状态下其烯醇式的含量较高;通常以平衡混合物的形式存在;例:乙酰乙酸乙酯三乙酮式% 烯醇式%这类化合物的烯醇式异构体具有较大稳定性的原因有二:①通过分子内氢键,形成稳定的六元环状化合物;②羟基氧上的未共用电子对,可以通过p-π共轭发生离域,使分子内能降低;4、异构化对化学性质的影响1与FeCl3的显色反应烯醇式含量多的物质;2与溴的四氯化碳溶液加成;3-H氘代快速确定-H 的个数;4构型变化;如-C是手性中心并且手性碳上有氢原子,会发生外消旋化;如-C不是手性中心则不会发生外消旋化;碳负离子形成及其基本原理1、碳负离子的形成及其稳定性碳负离子是以一个带有负电荷的碳为中心原子的中间体,是有机化学反应中常见的活性中间体;如甲基负离子、烯丙基负离子、苄基负离子、三苯甲基负离子等;碳负离子可以通过金属有机化合物异裂而产生;碳氢键的碳原子上存在吸电子基时易形成碳负离子;如:1内部条件能形成碳负离子的化合物从结构上讲,至少含有一个氢的碳原子的邻位要有一个活化基团,一⇨活化基团的作用:①由于其吸电子作用,使氢碳酸的酸性增加,而容易脱质子化;②使形成的C的负电荷离域而趋于稳定;22652除了要有一个活化基团外,分子中的其它基团的空间效应和电子效应对C—的形成和稳定性也有影响,其中空间阻碍影响最大;2外部条件有了一个带有活化基团的化合物后,还必须加入碱,才能把α-H交换下来,形成碳负离子;选择强度适合的碱,酸性弱的α-H要用强碱,反之用较弱的碱;在选择碱的时候,还要分清哪些碱是强亲质子性的与质子结合的能力,哪些碱是强亲核性的与碳正离子的结合能力,哪些是两种都有的;这是因为在形成C的过程中,碱可能进攻碳原子,也可能进攻质子氢;一般来说,亲核试剂的亲核性能大致与其碱性的强弱次序相对应;对具有相同进攻原子的亲核试剂,碱性愈强者,亲核性愈强;⇨下面列出常用碱的性能:1具有强亲质子和强亲核能力的碱:HO,CH3O,C2H5O,RS,CN等;2具有强亲质子弱亲核能力的碱:H,NH2;3具有强亲质子相当弱亲核性的碱:Et2N,C6H 5N,Me3Si-N;在形成碳负离子的外部因素中,还应指出的是溶剂的影响;假如溶剂的酸性比氢碳酸强的多的话,就不能产生很多的C,因为刚形成的碱性很强的C夺取溶剂的质子,又成为原来的化合物内返作用;一般应采用极性大但酸性弱的溶剂,即非质子溶剂;有以下几种配合:1t-BuOH,溶剂用t-BuOH或DMSO、THF;2NaNH2,溶剂用液氨或醚、苯、甲苯、1,2-二甲氧基烷苯等;3NaH、LiH,溶剂为苯、醚、THF等;4C6H53CNa,溶剂为苯基醚、液氨等;为了满足合成的需要,常常需要形成单一部位的烯醇盐;因此需要从形成碳负离子时的条件上加以控制:①动力学控制,形成碳负离子部位碳氢被碱提取质子的相对速度;一般在较低温度下和体积较大的碱时,易使碳负离子在位阻较小部位的碳氢键处形成;②热力学控制,两种碳负离子能相互转化并达到平衡,一般在较高温度、体积较小的碱条件下,取代基较多部位的碳氢键易于形成碳负离子如:2、碳负离子的反应C形成后虽然是共振稳定的具有很高的能量,可以发生多种亲核加成反应,重要的四类反应用通式表示如下:1与含羰基的化合物2酰基化反应:与羧酸及其衍生物的羰基发生亲核加成接着失去RO或Z形成β-酮酯或β-二酮,这是酯缩合型反应,总的结果是在C上带上一个酰基;3与烷基卤化物的反应4与活泼烯烃的加成反应§缩合反应Ⅰ——羟醛缩合见第11章醛与酮α-H的反应§缩合反应Ⅱ——Mannich反应Mannich反应甲醛与仲胺在弱酸性介质中亲核加成,再脱水形成正碳离子与醛酮、羧酸、酯、硝基化合物、腈的α-C,以及端炔、酚的邻、对位等具有负碳离子性质的位置偶联,称为Mannich反应,又称胺甲基化反应;1、反应通式2、Mannich反应机理3、Mannich反应举例Mannich反应在合成上的应用1、合成β-氨基酮衍生物例1写出合成路线2、制备,-不饱和酮例2甲基乙烯基酮的制备➢通过Mannich碱产生※弱酸性介质的作用:①使醛与胺亲核加成的产物脱水,形成C+;②质子化羰基使α-C 成为负离子;§缩合反应Ⅲ卤代反应——见第11章醛与酮α-H的反应3、卤仿反应酯的缩合反应1、Claisen缩合两个相同酯之间的缩合Claisen缩合举例:➢Claisen缩合机理1交叉酯缩合两个不同酯之间的缩合➢混合酯缩合举例:2、Dieckmann缩合分子内酯缩合二元酸酯若分子中的酯基被四个以上的碳原子隔开时,就发生分子内的酯缩合反应,形成五元环或六元环的酯,这种分子内的环化酯缩合反应称为狄克曼酯缩合;⇨对称二羧酸酯的Dieckmann 缩合⇨例:Dieckmann 缩合的可逆性在合成上的应用如两个酯基间只隔有三个或三个以下的碳原子时,就不能发生分子内的缩合;但这种二酸酯可以发生分子间缩合,或与不含-H的酯缩合,也均能得到环状羰基酯;如丁二酸二乙酯间的缩合:3、酮的酰基化酮酯缩合反应机理⇨不对称酮的酰基化4、β-二羰基化合物的互变异构现象5、酮或酯的酰基化反应在合成上的应用——制备β-二羰基型化合物1, 3-二羰基化合物➢1, 3-二羰基型化合物的反合成分析例 1反合成分析例 2反合成分析例 3反合成分析➢合成路线例2例3⇨1, 3 -二羰基化合物的烷基化反应例4§缩合反应Ⅳ复习1、羰基α位的反应——酰基化Claisen缩合, 交叉酯缩合,Dieckmann缩合和烷基化➢本节重点:羰基α位的酰基化和烷基化在合成上的应用2、酮式水解和酸式水解乙酰乙酸乙酯的制备及在合成中的应用合成等价物丙酮1、乙酰乙酸乙酯的合成乙酰乙酸乙酯−−−−→2、在合成中的应用1制备取代丙酮甲基酮类化合物➢扩展:制备环烷基甲基酮2制备甲基二酮类化合物➢扩展:制备2, 5-己二酮3通过酰基化制备β-二酮类化合物丙二酸二酯的制备及在合成中的应用合成等价物丙酮1、丙二酸二酯的合成丙二酸二酯−−−−→2、在合成中的应用1制备取代乙酸➢扩展:制备环烷基乙酸2制备二元羧酸羰基α位酯基的作用——活化、定位、引导断键例:比较以下两条合成路线,你认为哪种较好,为什么例 1分析并写出合成路线➢合成线路a➢合成线路b例 2分析并写出合成路线§缩合反应ⅤMichael加成碳负离子与,-不饱和羰基化合物发生的1,4-加成反应,叫做Michael反应;这是形成碳碳键的重要方法之一;1、反应通式2、反应机理Micheal加成后,再发生分子内的羟醛缩合或酯酮缩合,形成六元环状α,β不饱和酮或1,3-环己二酮;1、反应通式2、Robinson成环举例Knoevenagel反应在弱碱性催化下,醛酮与具有活泼亚甲基的化合物的缩合反应;常用的碱性催化剂有吡啶、哌啶、胺等;1、反应通式2、反应特点➢类似Aldol缩合;➢双活化基团的羰基化合物为烯醇负离子供体;➢弱碱催化一般为胺类化合物或吡啶;3、反应机理➢由于使用的是弱碱避免了醛酮自身的缩合,扩大了醛酮的使用范围;4、Knoevenagel反应举例Perkin反应类似Aldol缩合碱催化下,芳醛和酸酐反应生成-芳基-,-不饱和羧酸的反应;催化剂常用与酸酐相应的羧酸盐;1、反应通式➢最简单的Perkin 反应2、反应机理⇨当芳环上有吸电子基时加速反应进行,有推电子基时使反应难以进行;脂肪醛不能进行反应;⇨参加反应的酸酐必须具有至少两个-H;3、Perkin反应的应用香豆素一种重要香料Darzen反应强碱醇钠、氨基钠作用下,醛、酮与-卤代酸酯反应生成,-环氧酸酯的反应;1、反应通式2、反应机理3、Darzen反应的应用——合成环氧酸酯,合成比原料醛、酮多一个碳的醛、酮例1由环己酮转化成其他化合物例2由苯甲醛转化成其他化合物Reformatsky反应在惰性溶剂中,α-溴卤代酸酯、锌与醛或酮互相作用,得到β-羟基酸酯的反应称为瑞佛马斯基反应;如能进一步脱水,则生成,-不饱和酸酯;1、反应通式2、Reformatsky反应的特点及用途1该反应的历程与格氏合成类似;2有机锌试剂活性比格氏试剂小它不与酯进行加成;3有机锌试剂在空气中会自燃,因而不单独制备;4该反应可用以合成β—羟基酸酯、α,β—不饱和酸酯以及α,β—不饱和羧酸;⇨α-卤代酸酯的反应活性⇨有机锌试剂:镁、锂、铝试剂∙无水操作;∙反应在有机溶剂中进行,溶剂为惰性溶剂;∙锌粉需活化;3、Reformatsky反应的应用安息香缩合芳香醛在CN—催化下二聚为α-羟基酮的反应;安息香二苯乙醇酮1、反应通式2、反应机理⏹ 安息香的进一步反应——氧化和还原 ⏹ 二苯乙二酮重排 反应机理3、安息香缩合反应的应用§ 缩合反应ⅦWittig 反应及其合成上的应用 1、磷Ylide —Wittig 试剂➢ 不同类型的磷Ylide2、Wittig 反应A 、通式B 、反应机理C 、Wittig 反应举例D 、Wittig 反应的立体化学➢ 生成 E 型和Z 型混合烯烃;➢ 反应的立体选择性尚无规律可预测; Wittig 反应在合成中的应用 1、制备烯烃 ➢ 合成路线2、通过烯基醚引入醛基例: 3、Wittig 反应的改良——Wittig-Horner 反应Wittig 反应遇到的问题:副产物Ph 3P=O 较难除尽;⏹ Wittig-Horner 反应对底物的要求 ——碳负离子上必须连有一个稳定基团; ⏹ 几种类型的Wittig-Horner 试剂⏹ Wittig-Horner 反应与传统 Wittig 反应比较 4、硫内鎓盐硫ylides硫叶立德ylides 可与羰基化合物作用,而生成环氧类,反应性与磷酸或磷类叶立德 ylides 不同产生烯类;之所以会有这样不同的反应活性,在于磷一氧的键能比硫一氧的键能强; 硫及亚砜的叶立德Ylides,其反应活性介于亚砜和砜之间:硫的叶立德 ylides 反应时受动力学控制,从轴向位置进攻,即生成的环氧化合物以氧原子在横键为主:而亚砜的叶立德 ylides 反应时受热力学控制,即生成的环氧化合理以竖立键为主:§ 缩合反应Ⅷ缩合反应中区域选择性问题 1、不对称酮的烯醇负离子化2、通过烯醇锂盐或烯醇硅醚的“定向”羟醛缩合 烯胺的性质和在合成中的应用 1、烯胺和烯胺的制备Ylide Ylene Wittig 试剂邻位两性离子,有亲核性烯醇负离子的氮类似物2、烯胺的性质3、烯胺的反应举例4、烯胺的反应机理⇨解释:烯胺反应的区域选择性5、合成上应用举例➢合成路线1可能存在的问题:•一般条件下有醛的自身醇醛缩合;•需要强碱、低温,产率可能不好;➢合成路线2:通过两次烯胺的Michael 加成⇨烯胺反应特点小结1烯胺可方便制备、分离和纯化;2通过烯胺的反应避免了羰基化合物的自身缩合等副反应;3烯胺的反应与烯醇负离子的类似反应在选择性上有所不同;。
碳负离子反应
穿戴防护装备:实验过程中必须穿戴防护 服、手套、护目镜等防护装备。
实验环境:实验应在通风良好的实验室中 进行避免在密闭空间内进行。
实验材料:实验材料应妥善保管避免接触 皮肤和眼睛。
实验操作:实验过程中应严格按照实验 步骤进行操作避免操作不当导致危险。
实验废弃物:实验结束后应妥善处理实验 废弃物避免环境污染。
碳负离子反应是合 成有机化合物的重 要方法之一广泛应 用于药物合成、材 料科学等领域。
碳负离子反应的机 理包括亲核加成、 亲核取代、亲核消 除等。
碳负离子反应的分类
碳负离子反应可以分为两类:亲核碳负离子反应和亲电碳负离子反应 亲核碳负离子反应是指碳负离子作为亲核试剂与亲电试剂发生反应 亲电碳负离子反应是指碳负离子作为亲电试剂与亲核试剂发生反应 碳负离子反应在合成化学中具有广泛的应用如合成有机化合物、药物合成等
碳负离子反应的特点
碳负离子是一种重要的有机合成中间体 碳负离子反应具有高度选择性和立体选择性 碳负离子反应可以生成多种类型的有机化合物 碳负离子反应在合成化学中具有广泛的应用
碳负离子反应的原理
碳负离子反应的化学键特征
碳负离子反应是一种化学反应其中 碳原子失去电子形成负离子。
碳负离子反应的化学键特征还与反 应条件、反应物浓度等因素有关。
碳负离子反应的研究趋势和展望
研究热点:碳负离子反应在材料科学、化学合成等领域的应用 研究方法:理论计算、实验验证相结合的研究方法 研究挑战:如何提高碳负离子反应的效率和选择性 研究展望:未来可能会在能源、环保等领域取得突破性进展
碳负离子反应的研究方法和手段
实验方法:通过实验观察碳负离子反应的过程和结果 理论研究:通过理论推导和计算来研究碳负离子反应的机理和规律 模拟计算:通过计算机模拟来研究碳负离子反应的条件和影响因素 合作研究:与其他研究机构或企业合作共同推进碳负离子反应的研究
碳正离子、碳负离子、自由基参与的化学反应 王竹青 29号 应化09-2
碳正离子、碳负离子、自由基参与的化学反应应用化学09-2班 王竹青 29号一 碳正离子参加的反应含有一个外层只有 6 个电子的碳原子作为中心碳原子的正离子。
常见的碳正离子如下:(一)碳正离子的形成一般有三种方法产生碳正离子。
1 .由反应物直接生成 :RXRX与碳原子直接相连的原子或原子团带着一对成键电子裂解,产生碳正离子。
极性溶剂、Lewis 酸常有促进效果。
1.1 X=H 。
烃很少自动失去氢负离子,只有在强亲电试剂如Lewis 酸或其它稳定正离子的因素存在下才能发生这一反应。
CHCH 3CH 3H 3C3C CH 3CH 3H 3C+HAlCl 31.2 X=F 、Cl 、Br 或I 。
这是SN1异裂反应。
Lewis酸可加速这种电离作用。
CClCH 3CH 3H 3CAlCl 3C CH 3CH 3H 3C+HAlCl 4CH 3CH 3CH 2(CH 3)3C1.3 X=OTs 酯类衍生物。
OTs 是一个很好的离去基团,这类酯很易 解离。
1.4 X=OCOZ ,其中Z= Cl 、Br 或I ,其推动力是由于形成二氧化碳。
氯亚磺酸酯,X=OSOCl 也属于这一类。
其推动力是由于排除SO2。
COSOClRR R3C RRR+Cl+SO 21.5 X=H2O 或ROH 。
断裂是由醚ROR 中氧原子的质子化引起的。
1.6 X= N 2。
亚硝酸和伯胺的反应生成的重氮离子很容易分解成碳正离子,推动力是由于生成了氮气。
1.7 X=CO 。
当相应的正离子稳定的时候,某些羧酸先质子化,然后脱去羰基。
C CH 3CH 3H 3CAlCl 3C CH 3CH 3H 3C+OTs -+C OCOClR RRC R RR+Cl -CO2+OR'RH OR'RR +R'OH+N 2H +N 2+COH 2OCOH 2O++CO 1.8 X=CO2。
羧酸氧化脱羧,生成碳正离子和CO2。
RCOOAgBr 2R+Br+AgBr+CO 22 质子或其它阳离子与不饱和体系加成质子或其它阳离子与不饱和体系加成,留下的临碳原子带正电。
碳负离子的反应
O
Nu:
H2C
CH
C
R
例如:
CH2(CO2C2H5)2 + CH2 C CO2C2H5 C6H5
NaOC2H5 55~66%
(H5C2O2C)2CH CH2 CH CO2C2H5 Ph
酮式分解 ① 稀OH-② H+ ③
CH 3COCH 2R 甲基酮 CH 3COOH + RCH 2COOH 取代乙酸
CH3COCHCOOC2H 5 R
① 浓OH- ② H ③
酸式分解
+
(a). 酮式分解
CH3COCH2COOC2H5 5%NaOH CH3COCH2COO
-
H+
CH3COCH3
CO2
(b). 酸式分解
(1).乙酰乙酸乙酯与伯卤代烷的亲核取代反应:
CH3COCH2COOC2H5
RX
C2H5ONa
[CH3COCHCOOC2H5] - Na+
[CH3COCCOOC2H5] - Na+ R
CH3COCHCOOC2H5 R
(CH3)3COK
R' R'X CH3COCCOOC2H5 R
(2). 乙酰乙酸乙酯在有机合成中的应用
CH2(CO2C2H5)2 + CH2
CH CHO
NaOC2H5 HOC2H5
(H5C2O2C)2CHCH2CH2CHO
O
O
+ CH2 CHCO2Et
O
EtONa, EtOH
碳负离子缩合反应
共轭不饱和醛酮
反应特征:
(1) 烯醇负离子是一种两位负离子,在羟醛缩合反 应中,主要是烯醇负离子旳C-端去攻打。
(2) 在酸性及强碱性条件下易失水,一般旳碱性 条件,加热时失水。所以,如要制备-羟基醛、 -羟基酮,一般采用弱碱性催化剂,温度较低旳反 应条件。
三、羟醛缩合反应旳分类
*1 本身缩合 分子间缩合,分子内缩合
碱
共轭酸
pKa
O
O
[C2H5CCH2]-
C2H5CCH3
~20
[(CH3)2CH]2NLi [(CH3)2CH]2NH
40
② 制烯醇盐: 总是中和取代至少旳碳上旳H
O
CH3CCH2CH3 + LDA OLi
THF, -78oC CH2=C-CH2CH3 + (i-Pr)2NH
醛不能直接制成烯醇锂盐,因为醛羰基太活泼, 制成旳锂盐会与它反应。所以,在制锂盐时,必 须先加以保护。
第十五章 碳负离子 缩合反应
exit
第一节 氢碳酸旳概念和α氢旳酸性
烃(CH4, R-H)能够看作是一种氢碳酸,类似于 NH3, H2O, HX。
CH4
CH3- + H+ Ka 或 pKa
按电离出H+旳能力旳大小,他们 酸性强弱顺 序应该是:
CH4 < NH3 < H2O < HX
强无机酸 > 羧酸 > 碳酸 > 酚 > 水 > 醇 > 炔
O CH3-C-CH2-H + CH2O + HN
R R'
H+
O
CH3-C-CH2-CH2N
R R'
碳负离子及羰基化合物的反应
CH2
-
CH
COOC2H5 OC2H5
H CH2
COOC2H5 H5C2OOCCH2CH2 HCl,H2O, C2H5OH O
CH2CH2COOC2H5
60%
中国药科大学
China Pharmaceutical University
O
O
例3:
CH3CH2CCH2CH3
CH3CH2CCHCH2CH
CH3
China Pharmaceutical University
2、结构
两种合理构型推测:
.. ..
109°28′
C
3 杂化 sp 棱锥型
C
2杂化
90°
sp 平面三角型
中国药科大学
China Pharmaceutical University
举例:
碳负离子的空间构型取决于所连基团。 通常情形,棱锥型碳负离子的孤对电子处于sp3
R-C=CHR'
中国药科大学
China Pharmaceutical University
3)通过加成-消除的亲核芳香取代反应
NO2 O 2N OR NO2 NO2
+
OR'
O 2N
-
OR OR ' NO2 NO2
O 2N
OR '
NO2
4)通过金属有机化合物异裂
RLi、RMgX、RC = CNa
中国药科大学
CH2
O CH3CH2CCH2CH3+ N H + N CH3CH2 O H2O CH3CH2CCHCH2CH CH3 CH2 C H C CH3 Cl CH3CH2
+ N C
第14章---碳负离子的反应
第14章碳负离子的反应——β-二羰基化合物§14.1 α-H的酸性和互变异构14.1.1 α-H的酸性1、a-H的酸性在有机化学中,与官能团直接相连的碳原子均称为a-C;a-C上的氢原子均称为a-H。
a-H以质子形式解离下来的能力,即为a-H的活性或a-H的酸性。
因此烃也可叫做氢碳酸。
表14-1-1 常见化合物a-H的p K a值羧酸衍生物中的a-H的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其a-H的酸性增强。
酸性大小:酰氯>醛、酮>酯>酰胺Cl:吸电子诱导>给电子共轭O:给电子共轭>吸电子诱导2、影响a-H的酸性的因素1)a-C所连接的官能团及其官能团的吸电子能力。
总的吸电子能力越强,a-H的酸性就越大;2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。
负离子上电子的离域范围越大越稳定;3)分子的几何形状、介质的介电常数、溶剂等都有关系。
3、β-二羰基化合物α-H的活性分析乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。
负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。
烯醇负离子其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基(氢)的化合物。
β-二酮β-羰基酸酯丙二酸酯氰乙酸酯硝基乙酸酯活泼氢化合物的双重反应性能:碳负离子烯醇负离子氧负离子一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。
14.1.2 酮式和烯醇式的互变异构可以看作是活泼H可以在α-C和羰基O之间来回移动。
1、酸碱对互变平衡的影响痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。
(1)酸催化过程在酸催异构化过程中,酸首先与羰基氧原子作用形成 盐,其共轭碱——水再夺取a-H形成烯醇。
碳负离子的反应
-
ClCH2CH2CCH3
O CH3C-CH-COOEt CH2CH2CCH3 O
OH H2O
-
H
+
- CO2
O
O
CH3CCH2CH2CH2CCH3 + CH3COOH
用乙酰乙酸乙酯合成二羰基化合物
O O O CH3CCH2COC2H5 NaOC2H5 O O
O XCH2CCH3 1. OH2. H ,
CH2CH2COOH CH2CH2COOH
COOC2H5 COOC2H5
CH2(COOC2H5)2
2 C2H5ONa
Br(CH2)4Br
1) OH2) H+
COOH
合成螺环化合物
CH2(COOC2H5)2 2NaOC2H5 BrCH2CH2CH2Br
CH2OH CH2OH
CO2C2H5 CO2C2H5
CH3C=CHCOC2H5
O O
CH3CCH2COC2H5
O
NaH
-H2
O
CH3COCl
O O CH3COCCH3
CH3CCHCOC2H5
O
O COCH3
Na+
OO CH3C=CHCOC2H5
CH3C-CH-COC2H5
CH3COOC2H5
O
以乙酸乙酯为原料合成4-苯基-2-丁酮
CH3CCH2CH2C6H5
Y ArCHO + CH2 Z or
N H N
Ar
Y CH C Z
O
Y、Z 为吸电子集团如:
COOH CH2 COOH
O CCH3 CH2 CCH3 O
COOEt CH2 COOEt
碳正离子、碳负离子、自由基参与的化学反应 王竹青 29号 应化09-2
碳正离子、碳负离子、自由基参与的化学反应应用化学09-2班 王竹青 29号一 碳正离子参加的反应含有一个外层只有 6 个电子的碳原子作为中心碳原子的正离子。
常见的碳正离子如下:(一)碳正离子的形成一般有三种方法产生碳正离子。
1 .由反应物直接生成 :RXRX与碳原子直接相连的原子或原子团带着一对成键电子裂解,产生碳正离子。
极性溶剂、Lewis 酸常有促进效果。
1.1 X=H 。
烃很少自动失去氢负离子,只有在强亲电试剂如Lewis 酸或其它稳定正离子的因素存在下才能发生这一反应。
CHCH 3CH 3H 3C3C CH 3CH 3H 3C+HAlCl 31.2 X=F 、Cl 、Br 或I 。
这是SN1异裂反应。
Lewis酸可加速这种电离作用。
CClCH 3CH 3H 3CAlCl 3C CH 3CH 3H 3C+HAlCl 4CH 3CH 3CH 2(CH 3)3C1.3 X=OTs 酯类衍生物。
OTs 是一个很好的离去基团,这类酯很易 解离。
1.4 X=OCOZ ,其中Z= Cl 、Br 或I ,其推动力是由于形成二氧化碳。
氯亚磺酸酯,X=OSOCl 也属于这一类。
其推动力是由于排除SO2。
COSOClRR R3C RRR+Cl+SO 21.5 X=H2O 或ROH 。
断裂是由醚ROR 中氧原子的质子化引起的。
1.6 X= N 2。
亚硝酸和伯胺的反应生成的重氮离子很容易分解成碳正离子,推动力是由于生成了氮气。
1.7 X=CO 。
当相应的正离子稳定的时候,某些羧酸先质子化,然后脱去羰基。
C CH 3CH 3H 3CAlCl 3C CH 3CH 3H 3C+OTs -+C OCOClR RRC R RR+Cl -CO2+OR'RH OR'RR +R'OH+N 2H +N 2+COH 2OCOH 2O++CO 1.8 X=CO2。
羧酸氧化脱羧,生成碳正离子和CO2。
RCOOAgBr 2R+Br+AgBr+CO 22 质子或其它阳离子与不饱和体系加成质子或其它阳离子与不饱和体系加成,留下的临碳原子带正电。
碳负离子反应
CH3COONH4
CH3C CHCOOH CH3
Dazen 反应
在强碱(醇钠、氨基钠等)作用下,醛、酮 与α-卤代酸酯反应,生成α,β-环氧酸酯
R O C CHCOOC2H5 (H)R'
R C O + ClCH2COOC2H5 (H)R'
C2H5ONa
O C2H5O + H CH COC2H5 Cl
缩合反应机理:
R CH2 CHO + HO-
O R CH2 C H
O
R
CH CHO + H2O
O
+ R
CH CHO
R CH2
C CH CHO H R
H2O
R CH2 C CH CHO H R
R CH 2
OH C CH H R CHO
+ OH-
2 羟醛缩合反应的衍生类型
(1) Peking 反应
(2)Knoevennagel 反应 (3)Dazen 反应
O
OC2H5
O O C OC2H5
交叉酯缩合反应
不同的具α -H 的酯进行酯缩合时,可能有四种 产物,在合成上无意义
CH3COOC2H5 和 CH3CH2COOC2H5
不具有α-氢的酯可以提供羰基,与具有α-氢的酯 进行酯缩合反应时,可得到较纯的产物。这种缩合 称为交叉酯缩合(crossed ester condensation)。
R-X R CH
COOC2H5 COOC2H5
H2 R C COOH
1. H2 2. H3+O,heat
O,OH-
1.EtONa EtOH 2.R’-X
O R CHC R' OH
碳负离子反应
NaH
pKa
20 ~ 24
最好仍用 PhCOOEt, HCOOEt 等无 -H 的酯
2013-8-9
碳负离子反应
31
• C-烃化程度: RI > RBr > RCl > ROTs • 原因:软硬酸碱理论 亲核中心中,O- 较 C- 硬
离去基中, I-很软,OTs-较硬
• 根据软-软、硬-硬作用原理,RI 优先与 C-反应,ROTs 优先进攻 O-。
2013-8-9
碳负离子反应
32
C C O N C N C C O
另: H Cl C Cl Cl
R S C O
2013-8-9
碳负离子反应
3
一. 碳氢键的酸度
• 酸度表示:pKa (以该物质在水中的解离度Ka求得-logKa)
2013-8-9
碳负离子反应
4
活性亚甲基化合物及其它一般试剂的酸性
化合物 CH3COOH NCCH2COOC2H5 CH2(COCH3)2 CH3NO2 CH3COCH2COOC2H5 CH2(COOC2H5)2 CH3OH C2H5OH (CH3)3COH pKa 5 9 9 10 11 13 16 18 19 化合物 C6H5COCH3 CH3COCH3 CH3SO2CH3 CH3SO2C2H5 CH3COOEt CH3CN C6H5NH2 (C6H5)3CH CH3SOCH3 pKa 19 20 ~23 ~24 ~24 ~25 ~30 ~40 ~40
O H3C S CH2 Ph3C NH2
CH3 H3C O CH3
其共轭酸 pKa ~ 40 (CH3CH2)2N
2013-8-9
碳负离子反应
9