矩阵的秩及应用

合集下载

2.7 矩阵的秩

2.7   矩阵的秩

注:若n阶方阵A可逆的充要条件为A为满秩.
1 2 3 0 0 1 0 1 r ( A) 3; A 0 0 1 0
1 2 0 1 r ( B ) 2; B 0 0
1 1 2 C 0 1 1 r (C ) 3 0 0 2
§2.7 矩阵的秩
一、矩阵的秩的概念 定义 在 m n 矩阵 A中,任取 k 行 k 列 k min{ m , n} , 位于这些行与列交叉处的 k 2 个元素,依照它们在 A 中的位置次序不变而得的 k 阶行列式,称为矩阵 A 的一个 k 阶子式.
k k m n 矩阵共有 CmCn 个 k 阶子式.
设A为一个mn矩阵, 当A=O时, 它的任何子式都 为零; 当AO时, 它至少有一个元素不为零, 即它 至少有一个一阶子式不为零. 这时再考察二阶子式 如果A中有二阶子式不为零, 则往下考察三阶子式, 依此类推, 最后必达到A中有r阶子式不为零, 而再 没有比r更高阶的不为零的子式. 这个不为零的子式 的最高阶数r, 反映了矩阵A内在的重要特性, 在矩阵 的理论与应用中都有重要意义.
A,B,C都是满秩矩阵
定理 矩阵经初等变换后, 其秩不变.
证: 仅考察经一次初等变换的情形. 设矩阵 Amn 经初等变换变为 Bmn , 且 r ( A) r , r ( A) r2 1
当对A施以互换两行或以某行非零数乘某一行的变换时, 矩阵B中任何r 1 阶子式等于某一非零数c与A的某个r 1 1 1 阶子式的乘积, 其中c=1或其它非零数. 因为A的任何 r1 1 阶子式皆为零, 因此B的任何 r1 1阶子式也都为零.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵 可逆的充分必要条件,理解伴随矩阵的概念,会用 伴随矩阵求逆矩阵.

有关矩阵的秩及其应用

有关矩阵的秩及其应用

r (AB)≤min {r (A), r (B)}
定理 3 设 A 是 m×n 矩阵,P 是 m 阶可逆矩阵,Q 是 n 阶可逆矩阵,则
r (A) = r (PA) = r (AQ) = r (PAQ) 推论 设 A 是是 m×n 矩阵,则 r (A) = r,当且仅当存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q,
r

A− O
C
AB B
− −
CD D

=
r(
A

C
)
+
r(B

D)

定理 6 (Frobenius 不等式)
设 A 是 m×n 矩阵,B 是 n×s 矩阵,C 是 s×t 矩阵。则
r (ABC)≥r (AB) + r (BC) – r (B)
证明:由分块矩阵的乘法得

AB B
ABC O
证明:由定理 1 得
r( A1 + A2 + " + Ak ) ≤ k
r( A1 + A2 + " + Ak ) ≤ r( A1 ) + r( A2 + A3 + " + Ak ) ≤ r( A1 ) + r( A2 ) + r( A3 + A4 + " + Ak ) "" ≤ r( A1 ) + r( A2 ) + " + r( Ak ) =k 定理 2 矩阵的乘积的秩不超过各因子的秩。即:设 A 是 m×n 矩阵,B 是 n×s 矩阵,则
a1
A2
=
a2

【方案】矩阵的秩及其应用.doc

【方案】矩阵的秩及其应用.doc

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用姓名杨敏娜院系数学与计算机科学学院专业数学与应用数学班级11510102学号1151010240指导教师王栋答辩日期成绩矩阵的秩及其应用内容摘要矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。

通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。

论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。

第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。

第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。

在与特征值间的关系主要是计算一些复杂矩阵的值。

最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。

本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。

【关键词】矩阵的秩向量组线性方程组特征值解析几何The Rank of Matrix and the Application of the Rank ofMatrixAbstractThe matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations.First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space.This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples.【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry目录一、引言 (01)二、矩阵的秩 (01)(一)矩阵的秩的定义 (01)(二)矩阵的秩的一般性质及求法 (01)(三)求抽象矩阵的秩 (02)三、矩阵的秩的应用 (03)(一)矩阵的秩在判定向量组的线性相关性方面的应用 (03)(二)矩阵的秩在线性方程组方面的应用 (04)(三)矩阵的秩在解析几何方面的应用 (07)(四)矩阵的秩在特征值方面的应用 (07)(五)矩阵的秩在其他方面的应用 (08)四、小结 (09)参考文献 (10)致谢 (11)矩阵的秩及其应用学生姓名:杨敏娜 指导老师:王栋一、引言矩阵概念在代数的学习中是一个关键的分支,是研究线性代数的基石,矩阵的秩作为矩阵的核心内容,更是研究它的一个纽带。

线性代数课件第三章矩阵的秩课件

线性代数课件第三章矩阵的秩课件

VS
矩阵的秩可以用于判断两个矩阵是否相似。如果两个矩阵相似,则它们的秩相同。
特征值和特征向量
矩阵的秩还可以用于确定矩阵的特征值和特征向量的个数。对于给定的矩阵,其秩等于其非零特征值的个数。
矩阵相似
矩阵的秩可以用于矩阵分解,如奇异值分解(SVD)和QR分解等。这些分解方法将一个复杂的矩阵分解为几个简单的、易于处理的矩阵,有助于简化计算和解决问题。
1 2 3 | 0 0 -3
7 8 9 | 0 0 0`
```
由于非零行的行数为2,所以矩阵B的秩为2。
题目3
求矩阵C=[1 -2 3; -4 5 -6; 7 -8 9]的秩。
解答
首先,将矩阵C进行初等行变换,得到行阶梯矩阵
```
继续进行初等行变换,得到
1 -2 3 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0
矩阵秩的应用
03
线性方程组的解
矩阵的秩可以用来判断线性方程组是否有解,以及解的个数。如果系数矩阵的秩等于增广矩阵的秩,则方程组有唯一解;否则,方程组无解或有无数多个解。
最小二乘法
矩阵的秩还可以用于最小二乘法,通过最小化误差平方和来求解线性方程组。最小二乘法的解就是使残差矩阵的秩等于其行数或列数的最小二乘解。

满秩矩阵及满秩矩阵的应用

满秩矩阵及满秩矩阵的应用

满秩矩阵及满秩矩阵的应用专业:通信与信息系统姓名:李娜学号:6120140151目录一、满秩矩阵及满秩矩阵在矩阵分解方面的应用 (2)1.1矩阵的秩 (2)1.2满秩矩阵 (2)1.3满秩矩阵的性质 (3)1.3.1行(列)矩阵的一些性质 (4)1.4 行(列) 满秩矩阵在矩阵分解方面的应用 (6)二、满秩矩阵在保密通信中的应用 (8)2.1 基于满秩矩阵的保密通信模型 (8)2.1.1加密保密通信模型 (8)2.2.2满秩矩阵的应用 (8)2.2密钥的生成 (10)2.2.1加密密钥的生成 (10)2.2.2解密密钥的生成 (10)2.3其它问题 (10)2.3.1明文矩阵的选择 (10)2.3.2加密矩阵的选择 (11)2.3.3算法优化 (11)一、满秩矩阵及满秩矩阵在矩阵分解方面的应用引言矩阵是数学中的一个重要的基本概念,是现代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。

“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数学的矩形阵列区别于行列式而发明了这个述语,而实际上,矩阵这个课题在诞生之前就已经发展的很好了。

1.1矩阵的秩设A是一组向量,定义A的最大无关组中向量的个数为A的秩。

定义1 在m n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。

定义2 A=(a ij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作r(A),或rank(A)或R(A)。

特别规定零矩阵的秩为零。

显R(A)≤min(m,n)易得:若A中至少有一个r阶子式不等于零,且在R(A)<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵,不满秩矩阵就是奇异矩阵,det(A)=0。

矩阵的秩的应用

矩阵的秩的应用

矩阵的秩的应用
矩阵的秩是矩阵理论中一个非常重要的概念。

秩是指一个矩阵中的列向量或行向量线性无关的最大数量。

秩越高,矩阵越“大”,在许多领域中都有着广泛的应用。

在线性代数中,秩是一个关键的概念。

它用于判断矩阵的可逆性以及线性方程组的解的存在性和唯一性。

许多线性代数中的问题可以通过求解矩阵的秩来解决,比如线性变换的维数判断、向量空间的维数判断、矩阵的特征值与特征向量的求解等等。

在工程学中,矩阵的秩也有着重要的应用。

比如在控制系统中使用的观测器,其设计基于矩阵理论中的秩原理。

此外,秩还可以用于电路分析、机械结构分析等领域。

在图像处理中,矩阵的秩可以用于图像压缩和图像去噪。

在计算机科学中,矩阵的秩也被广泛应用。

在图像处理、数据压缩和计算机图形学等领域,矩阵的秩可以用于对图像的模式识别和降维分析,同时也可以用于对大数据处理中的矩阵压缩。

在统计学中,矩阵的秩也有着重要的意义。

矩阵中的秩可以用于解决高维数据的困难问题,比如在数据挖掘、分类、回归和聚类等领域。

此外,矩阵的秩还可以用于矩阵分解和线性规划等领域。

在量子力学研究中,矩阵的秩也有着应用。

量子力学的矩阵表示方式是一个非常重要的数学工具。

矩阵的秩可以用于求解量子费米子的对称性,进而对物质的内部结构和化学反应等方面进行研究。

总之,矩阵的秩是一个非常重要的数学概念,在许多领域中都有着广泛的应用。

无论是在线性代数、工程学、计算机科学、统计学还是量子力学研究中,矩阵的秩都发挥着至关重要的作用。

矩阵秩的不等式及其应用

矩阵秩的不等式及其应用

矩阵秩的不等式及其应用矩阵秩的不等式及其应用矩阵是数学中的重要概念,广泛应用于物理、经济等领域。

矩阵秩是矩阵理论中很重要的一个概念。

矩阵秩不仅仅是一个数值,还具有深刻的物理意义。

下面我们将探讨矩阵秩的不等式及其应用。

一、矩阵秩的定义矩阵是一个M行N列的矩形数组,其中包含M×N个实数元素。

矩阵秩是由它的行和列所组成的线性空间的维数。

一个矩阵的秩指矩阵的行、列向量组的维数中的最小值。

二、矩阵秩的不等式对于任何一个矩阵A,其行秩等于其列秩。

即rank(A)=rank(AT)。

我们可以利用这个性质得到以下的矩阵秩不等式:对于任何两个矩阵A和B,有rank(A+B) ≤ rank(A) + rank(B)rank(A-B) ≤ rank(A) + rank(B)rank(AB) ≤ min(rank(A), rank(B))rank(AB) ≤ rank(A)这些不等式给我们提供了方便快捷的工具来计算矩阵秩。

三、矩阵秩的应用矩阵秩在各个领域都有广泛的应用。

在工程中,它可以用于建立模型和解法,广泛应用于控制工程、数字信号处理、材料科学等。

例如,在控制工程中,我们可以利用矩阵秩的不等式来确定控制系统的稳定性。

一个控制系统是稳定的,当且仅当系统矩阵的秩等于系统状态的维数。

如果系统的任何一个状态可以被表示为系统矩阵中的一个线性组合,那么系统就是不稳定的。

此外,在统计学中,我们也可以利用矩阵秩来确定数据的维度。

数据的维数等于其协方差矩阵的秩。

一个协方差矩阵有多少个非零特征值就代表数据有多少维。

总之,矩阵秩是一个非常重要的概念,可以帮助我们解决很多实际问题。

矩阵秩的不等式为我们提供了更便捷的计算方式。

我们应该在学习中深入理解矩阵秩,并灵活运用其相关知识。

矩阵秩的求解方法及应用探索

矩阵秩的求解方法及应用探索

矩阵秩的求解方法及应用探索
矩阵秩是描述矩阵中线性无关行(列)的数量,它是矩阵变换空间的
维数。

矩阵秩的求解方法:
1. 初等变换法:将矩阵按照行(列)块排列,用初等变换(换行,
换列,倍乘列,加减乘列)把矩阵变为 diagonal matrix ,然后统计主
对角线中非零元素的个数。

2. 分解法:将一个矩阵A分解为前向和后向的乘积,分别用Q和R
表示,即A=QR,其中Q为m×n的正交矩阵,R为上三角矩阵,则 r=min (m,n),因此A的秩也就是R的秩,即r.。

矩阵秩的应用:
1.线性方程组的解法:矩阵秩可以用来判断一个线性方程组是否有解,如果群中方程数大于未知数,而该矩阵的秩小于未知数数目,则该线性方
程组无解。

2.图像重建:矩阵秩可以用来重建图像,可以通过将图像表示成一个
矩阵的形式,然后求出矩阵的秩,并运用一定的程序将矩阵重建为原图像。

3.数据挖掘:矩阵秩可以用来分析一组数据中最具代表性的变量,可
以将一组变量分解成一个矩阵,然后求出矩阵的秩,进而挖掘出最具代表
性的几个变量。

矩阵及秩的应用论文

矩阵及秩的应用论文

矩阵及秩的应用论文矩阵及秩是线性代数中的重要概念,广泛应用于各个学科领域。

在本文中,我将介绍几篇应用矩阵及秩的论文,并讨论它们在不同领域中的应用。

第一篇论文是《基于矩阵分解的推荐系统》。

推荐系统是现代互联网应用中的重要组成部分,用于给用户推荐个性化的内容。

该论文通过应用矩阵分解的方法,将用户-物品评分矩阵分解为两个低秩矩阵,从而实现对用户兴趣和物品特征的建模。

矩阵的秩较低意味着模型具有较好的泛化能力,能够在数据稀疏的情况下有效地进行预测,提高推荐准确度。

第二篇论文是《利用秩约束的图像修复方法》。

图像修复在计算机视觉领域中具有重要意义,用于修复受损的图像。

该论文利用矩阵的秩约束,将问题转化为一个低秩矩阵恢复问题。

通过求解最小秩恢复问题,可以在保持图像结构信息的前提下,还原受损的图像内容。

实验结果表明,该方法在图像修复任务中具有较好的效果。

第三篇论文是《基于矩阵分析的脑电信号分类方法》。

脑电信号是在脑部神经元活动产生的电流作用下测得的电生理信号,用于研究脑部功能和神经相关性。

该论文应用矩阵分析方法,将脑电信号分解为若干个矩阵成分,并利用矩阵的秩特性提取脑电信号的特征。

基于这些特征,可以实现对脑电信号的分类和识别,辅助脑部疾病的诊断和治疗。

第四篇论文是《基于大规模矩阵分解的社交网络分析方法》。

社交网络是人们之间相互联系和交互的网络结构,具有复杂的拓扑结构和丰富的节点属性。

该论文利用矩阵分解方法,将社交网络转化为低秩矩阵的表示,从而揭示其隐藏的结构和关系。

通过矩阵的秩特性,可以实现社交网络的社区发现、节点分类和链接预测等任务,为社交网络分析提供了有力的工具。

以上这些论文只是矩阵及秩应用的冰山一角,实际上,矩阵及秩在数据挖掘、图像处理、模式识别等许多领域都有重要应用。

矩阵的秩在这些应用中起到了关键的作用,它能够帮助我们理解和描述数据的结构、关系和特征,从而实现对数据的分析和处理。

随着技术的不断发展和研究的深入,矩阵及秩的应用还将不断扩展和拓展,为各个学科领域的研究和应用带来新的突破和进展。

矩阵秩的研究与应用毕业论文

矩阵秩的研究与应用毕业论文

百度文库-让每个人平等地提升自我3 矩阵秩的研究与应用[摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。

矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。

而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。

它反映矩阵固有特性的一个重要概念。

矩阵一旦确定秩也就确定了。

它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关内容在高等代数中出现的极为频繁,作用较大。

本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分析。

后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。

这里就不细说了,具体内容还得从文章中来了解。

[1][2][3][关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。

百度文库-让每个人平等地提升自我4 矩阵秩的研究与应用1 前言矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。

更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢?本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。

矩阵方面的理论是非常重要的内容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。

如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。

理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用

矩阵秩的等式与不等式的证明及应用矩阵是高等代数的一个重要概念,也是线性代数中的主要研究对象,同时也是一种应用广泛的数学工具.不管是在数学学习还是实际问题中,我们常常会遇到许多比较复杂的计算问题,而使用矩阵来解决这些难题,往往会使问题简单化.早在古代,我国的《九章算术》就已经对矩阵有了初步的描述.而矩阵的理论起源,可追溯到18世纪.高斯在1801年、艾森斯坦在1844-1852年,先后把一个线性变换的全部系数用一个字母来表示,艾森斯坦还强调乘法次序的重要性.这些工作都孕育了矩阵的思想,但矩阵的正式定义直到1858年才由凯莱给出来.凯莱在《矩阵论的研究报告》中全面阐述了矩阵的一些理念,同时他还在文中给出了许多矩阵的运算法则以及矩阵转置的定义,证明了矩阵加法中的可交换性与可结合性,更为重要的是他还给出了伴随矩阵、矩阵可逆的概念.由于凯莱的奠基性工作,一般认为他是矩阵理论的创始人.而矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.对于矩阵的秩的等式与不等式,近年来有一些学者对其进行了研究.张英,乔世东利用同解方程组、标准形、线性空间和同态基本定理来证明矩阵秩的一些性质;王廷明利用构造分块矩阵并通过广义初等变换的方法,证明矩阵秩的(不)等式;殷倩把分散的知识点及重要的常用结论整合在一起,归纳整理出若干常用有效的证明方法;徐小萍给出五个矩阵秩的不等式,并利用代数理论对其进行证明,然后用一些典型例题对其应用进行分析.在前人研究的基础上,本文进一步系统的探究了矩阵秩的等式与不等式及其应用.首先介绍矩阵秩的等式与不等式的研究背景和国内外的研究现状,其次介绍矩阵秩的定义与简单性质,然后给出一些矩阵秩的等式与不等式的证明,最后通过例子研究其在多方面的应用。

11 预备知识1.1 矩阵的定义定义1.1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==所排列成的m 行n 列的数表111212122212n n m m mna a a a a a a a a称为m 行n 列的矩阵,简称m n ⨯矩阵.记作111212122212,n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(1.1) 简记为()ij m n A a ⨯=或m n A ⨯,这m n ⨯个数称为A 的元素.当m n =时,矩阵A 称为n 阶方阵.例如,431259370⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦就是一个3阶方阵.1.2 矩阵秩的定义定义1.2 通过在m n ⨯矩阵A 中任取k 行k 列(,k m k n ≤≤)的行列交叉处的2k 个元素,而不改变它们在A 中所处的位置顺序而得到的k 阶行列式,称为矩阵A 的k 阶子式. m n ⨯矩阵A 的k 阶子式共有kkm n C C ⋅个.定义 1.3 如果矩阵A 有一个不为零的r 阶子式D ,且所有1r +阶子式都为零,那么D 称为矩阵A 的最高阶非零子式,这个数r 称为矩阵A 的秩,记作()R A ,并且规定零矩阵的秩等于零.2 矩阵秩的性质在矩阵秩的问题当中,有些问题仅依靠定义来解决比较复杂和困难,而利用性质则会简单些,下面我们总结和归纳出了矩阵秩的一些性质.性质2.1 矩阵的行秩与列秩相等.证明 考虑线性方程组0AX =,首先如果未知数的个数超过A 的行秩,则它有非零解.设m n ⨯阶矩阵A 的行秩为r ,考虑方程组0AX =,它由m 个方程n 个未知数组成.从A 的行向量中任意选取r 个线性无关的行向量,重新组合成矩阵B ,所以方程组0AX =和0BX =同解.在这种情况下,如果B 的列数大于行数,那么方程组0BX =必有非零解,因此0AX =也有非零解.接着证明行秩等于列秩.设m n ⨯阶矩阵A 的行秩为r ,列秩为s .考虑A 的任意1r +个列向量组成的矩阵C ,因为C 的行秩小于或等于r (因为C 的行向量是由A 的行向量的一部分分量组成的),所以CX=0存在非零解,这表明这1r +个列向量是线性相关的.所以A 的列秩最大为r ,即s r ≤.同理可证r s ≤,因此s r =.性质2.2 初等行(列)变换不改变矩阵的秩.数域P 上的矩阵的初等行(列)变换是指以下三种变换: (1)用数域P 中的一个非零数k 乘以矩阵的某一行(列); (2)将矩阵的某一行(列)的c 倍加到另一行(列); (3)交换矩阵中两行(列)的位置.证明 设m n ⨯矩阵A 通过一次初等行变换转变为m n ⨯矩阵B ,且()1R A r =,()2R B r =.1.初等交换变换:i jr rA B ↔→(交换矩阵的第i 行与第j 行)由于矩阵A 中的任意11r +阶子式均全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任11r +阶子式等于任意非零常数k 与矩阵A 的某个11r +阶子式的乘积.2.初等乘法变换:ikr A B →(将矩阵的第i 行与用非零常数k 相乘)由于矩阵A 中的任意11r +阶子式全为零,因此矩阵B 的任意11r +阶子式也为零.所以有矩阵B 中任何11r +阶子式等于任意非零常数k 与A 的某个11r +阶子式的乘积.3.初等加法变换:i j r krA B +→(将矩阵的第j 行的k 倍加到矩阵的第i 行上) 对于矩阵B 的任意11r +阶子式1B .(1)若1B 不包含矩阵B 的第i 行或同时包含第j 行与第i 行,那么由行列式的性质得11+1r B D =这里的1+1r D 为矩阵A 的任意11r +阶子式;(2)若1B 包含第i 行但不包含第j 行,那么由行列式的性质得11111r r B D k C ++=+这里的11r D +,11r C +均为矩阵A 的11r +阶子式。

矩阵秩的研究与应用

矩阵秩的研究与应用

矩阵秩的研究与应用.doc矩阵秩是线性代数中的重要概念,它描述了矩阵所代表的线性方程组中线性无关的方程个数,也可以理解为矩阵列向量的线性无关个数。

在实际应用中,矩阵秩有着广泛的应用,例如解线性方程组、求解线性变换的性质、压缩数据、识别图像等方面。

1. 解线性方程组线性方程组的求解是矩阵秩应用最为广泛的领域之一。

一个m×n的矩阵A表示一个有m个方程、n个未知数的线性方程组,如果这个矩阵的秩rank(A)等于n,则方程组有唯一解;如果rank(A)<n,方程组有无穷多解;如果rank(A)<m,方程组无解。

例如线性方程组2x + 3y + z = -1x - y + 2z = 73x - y + kz = 0其增广矩阵为$$\begin{bmatrix}2 &3 & 1 & -1 \\1 & -1 &2 & 7 \\3 & -1 & k & 0 \\\end{bmatrix}$$对其进行行变换,得到$$\begin{bmatrix}1 & 0 & 0 & 7-k \\0 & 1 & 0 & -4 \\0 & 0 & 1 & 3k-3 \\\end{bmatrix}$$可以看出,当k≠1时,方程组有唯一解;当k=1时,方程组有无穷多解。

2. 求解线性变换的性质线性变换是线性代数中的重要概念,它描述了一个向量空间中任意两个向量之间的关系。

对于一个n维向量空间V,由线性变换T所产生的变换矩阵A是一个n×n的矩阵,可以用矩阵乘法的形式计算。

矩阵A的秩可以用来判断T的性质。

例如,如果矩阵A的秩为n,则T是一个满秩线性变换,它将V映射为一个n维的向量空间,保留了V的所有维度;如果矩阵A的秩小于n,则T 是一个非满秩线性变换,它将V映射到低维向量空间中。

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。

2.矩阵的初等行变换不改变矩阵的行秩。

证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。

由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。

于是它们等价。

而等价的向量组由相同的秩,因此A的行秩等于B的行秩。

同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。

3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。

证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。

而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。

显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。

B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。

例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

矩阵秩的性质及应用

矩阵秩的性质及应用

矩阵秩的性质及应用矩阵秩是矩阵理论中的一个重要概念,它代表的是矩阵中线性无关的向量或行列的最大数量,也可以理解为矩阵的非零行列的最大线性无关的数量。

矩阵秩有很多重要的性质和应用,下面将详细介绍。

一、性质:1. 对于任意的m x n矩阵A,其秩满足以下性质:(1)矩阵的秩不会超过矩阵的行数和列数中的较小者,即rank(A) ≤min(m, n)。

(2)如果矩阵A的秩等于行数或者等于列数,即rank(A) = min(m, n),那么矩阵A被称为满秩矩阵。

(3)如果矩阵A的秩等于0,即rank(A) = 0,那么矩阵A被称为零矩阵。

(4)两个矩阵相似,它们的秩是相等的,即如果A和B相似,则rank(A) = rank(B)。

(5)对于矩阵A的任意非零子矩阵B,有rank(B) ≤rank(A)。

2. 矩阵的秩与其对应的行列式的性质有关:(1)如果一个n阶方阵A的行列式不等于0,即det(A) ≠0,则rank(A) = n,也就是说该矩阵是满秩矩阵。

(2)如果一个n阶方阵A的行列式等于0,即det(A) = 0,则rank(A) < n,也就是说该矩阵不是满秩矩阵。

二、应用:1. 线性方程组的解:考虑一个包含m个方程和n个未知数的线性方程组,可以将其表示为矩阵形式Ax = b,其中A是一个m x n的矩阵,x和b是n维列向量。

如果方程组能够有解,则有rank(A) = rank([A, b]),即矩阵A和增广矩阵[A, b]的秩相等。

通过计算矩阵A的秩,可以判断线性方程组是否有解,以及有多少个自由变量。

2. 线性映射的维数问题:考虑一个线性映射T:V →W,其中V和W分别是n维和m维向量空间。

根据线性映射的定义,如果对于V中的任意向量v,总能找到一个唯一的映射结果T(v)在W空间中,那么我们可以把V称为映射T的定义域,把W称为映射T 的值域。

根据线性映射的定义和性质,可知rank(A) = rank(T),其中A是矩阵表示映射T的矩阵。

毕业论文 矩阵秩的性质与应用

毕业论文 矩阵秩的性质与应用

* * * * 学院学生毕业论文( 2012 届)****学院教务处制-诚信声明我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果.据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信.毕业论文作者签名:签名日期:年月日摘要:本文探讨了矩阵的秩的不变性,矩阵秩的Sylvester与F robenius不等式及其等式成立的条件及应用,矩阵秩与矩阵运算的关系,与矩阵可逆的关系,与向量组的线性相关、与零特征值代数重数的关系等一些性质.从而得到矩阵的秩在线性代数方面,解析几何,概率论等中的应用.关键词:矩阵秩;矩阵秩不变性;矩阵秩不等式;矩阵秩恒等式;线性方程组;零特征值代数重数;齐次线性方程组.Abstract: This article discuss the invariant of matrix rank, Sylvester and Frobenius inequality and the condition of its equality, and the relationship of matrix operations and matrix rank, the relationship of invertible matrix and matrix rank, and the vectors of linear correlation, and zero Eigen value algebra and heavy number relation and so on. Thus we can obtain the rank of matrix’s application in linear algebra, analytic geometry, probability theory and so on.Keyword: matrix rank; invariance of matrix rank; rank of matrix inequalities; rank of matrix equalities; linear equations; zero Eigen value algebra and heavy number; homogeneous linear equations.目录1 矩阵秩的性质 (2)1.1矩阵的秩的不变性 (2)1.2 矩阵的秩的一些基本性质 (7)1.3矩阵的秩与矩阵的运算 (7)1.4 关于矩阵的秩的一些不等式等式及其应用 (8)1.5 矩阵的秩与可逆 (12)2 求矩阵的秩 (13)3 矩阵的秩在线性代数中的应用 (13)3.1 矩阵的秩与解线性方程组 (13)3.2 矩阵的秩与向量组的相关性 (14)3.3 矩阵的秩与零特征值代数重数相关性讨论 (15)4 矩阵的秩在解析几何中的应用. (17)4.1 矩阵的秩在判断平面与平面的位置关系时的应用. (17)4.2 矩阵的秩在判断平面与直线的位置关系的应用. (19)4.3 矩阵的秩在判定直线与直线的位置关系的应用. (19)5 矩阵的秩在判定齐次M arkov链遍历性中的应用 (20)参考文献 (22)致谢 (23)矩阵的秩的性质及应用矩阵的现代概念在19世纪逐渐形成,1801年德国数学家高斯(.F Gauss,)把一个线性变换的全部系数作为一个整体.1844年,德国数学家17771855爱森斯坦()F E i s s e n s t e i n 讨论了“变换”(矩阵)及其乘积.1850.,18231852年,英国数学家西尔维斯特()J a m e s J o s e p h S y l v e s t e r 首先使用,18411897了矩阵一词.1858年,英国数学家凯莱()A Gayley 发表《关于矩.,18211895阵理论的研究报告》.他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列的文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、两矩阵之和,一个数与一个矩阵的数量积、两矩阵的积、矩阵的逆、转置矩阵等.并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m n*矩阵只能用n k*矩阵去右乘.1854年,法国数学家埃米尔特()C Hermitem.,18221901使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝乌斯()..18491817F G F r o h e n i o u s m 发表.1879年,费罗贝乌斯引入矩阵秩的概念.矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是应用数学研究的一个重要的工具.矩阵的秩是一个基本的概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量.矩阵的秩是反映矩阵固有特性的一个重要概念,无论是在线性代数中,还是在解析几何中,甚至在概率论中,都有不可忽略的作用.本文在 1.4提到的Sylvester与F robenius不等式分别由S y l v e s t e与F robenius在1884年及1911年给出的,百年来很多数学家研究了使其等式成立的条件,2004年,2008年,胡付高分别给出了矩阵多项式秩的S y lv e s te r与F robenius不等式成立条件:定理1.4.4,定理1.4.5.本文参考文献[1]、[3]、[9],给出了矩阵的三种等价的定义,并且探讨了矩阵的几种重要的性质,矩阵的秩与矩阵的运算、零特征值代数重数、可逆的关系.以及矩阵的秩在线性代数,解析几何,概率论中的应用.1 矩阵秩的性质定义 1.1 一个矩阵A 中不等于零的子式的最大阶数r 叫做矩阵的秩.若一个矩阵没有不等于零的子式,就认为这个矩阵的秩是零.记为()rank A r =. 1.1矩阵的秩的不变性性质1.1.1 转置矩阵的秩相等,即()()T rank A rank A =. 定理1.1.2 初等变换不改变矩阵的秩. 证明:()1 设把一个矩阵()ij m nA a ⨯=的第i 行与第j 行交换得到矩阵B :111111111111,n n i in j jn j jn i in m m n m m n a a a a a a a a A B a a a a a a a a ⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 并且矩阵A 的秩为r ,明显地,矩阵B 的秩也为r .设矩阵B 有s 阶子式D ,s r >.若D 不同时含有第i 行和第j 行的元素,则D 为矩阵A 的一个s 阶子式,则0D =;若D 同时含有第i 行和第j 行的元素,这是有:111111110s s s s s s sslt lt lt lt it it jt jt jt jt it jt kt kt kt kt a a a a a a a a D a a a a a a a a ===. 由此可知()()rank A rank B ≥.而我们同样可以将矩阵B 交换第i 行和第j 行可得到矩阵A ,则()()rank A rank B ≤.所以()()rank A rank B =.由此可证,第一种初等变换不改变矩阵的秩.()2设把矩阵A 的第i 行乘以不等于零的数k 得到矩阵B .设矩阵B 有s 阶子式D ,s r >,若D 不含有第i 行的元素,则D 为矩阵A 的一个s 阶子式,则0D =;若D 含有第i 行的元素,则有:1111110s s s s sslt lt lt lt it it it it kt kt kt kt a a a a ka ka a a D k a a a a ===. 所以,()()r a n k A r a n k B≥.而将矩阵B 第i 行乘以1k得到矩阵A ,则()()r a n k A r a n k B≤.所以()()rank A rank B =.由此可证第二种初等变换不改变矩阵的秩.()3设把一个矩阵A 的第j 行乘以数k 加到第i 行而得到矩阵B :111111n i in j jn m m n a a a a A aa aa ⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪⎪ ⎪⎝⎭,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++=mnm jn j jnin j i n a a a a kaa ka a a a B1111111, 并且A 的秩是r ,我们要证明,B 的秩也为r .我们先证明,B 的秩不能超过r .若是矩阵B 没有阶数大于r 的子式,那么它当然也没有阶数大于r 的不等于零的子式,因而它的秩显然不能超过r .设矩阵B 有s 阶子式D ,而s r >.那么有三种可能的情况.①若D 不含第i 行的元素.这时D 也是A 的一个子式,而矩阵A 的秩为r ,但是s r >,由此知,0D =.②若D i 含第行的元素,且含第j 行的元素.这时,有111111111s s s ss s s ssht ht ht ht it jt it jt it it jt jt jt jt lt lt lt lt a a a a a ka a ka a a D a a a a a a a a ++===.③若D 含第i 行的元素,但不含第j 行的元素.这时111111111112s s s s s s s sssht ht ht ht ht ht it jt it jt it it jt jt lt lt lt lt lt lt a a a a a a a ka a ka a a a a D k D kD a a a a a a ++==+=+, 由于1D 和2D 是矩阵A 的一个s 阶子式,所以120,0D D ==.从而,0D =.由以上三种情况可知,矩阵B 的所有大于r 的子式都为0.因此,矩阵B 的秩不大于r .既是:()()rank A rank B ≥.同样的,我们也可以对矩阵B 施行初等变换得到矩阵A ,这样就可以得到()()rank A rank B ≤.这样子我们就证明了()()rank A rank B =,既第三种初等变换不改变矩阵的秩.有以上三点可证,初等变换不改变矩阵的秩.证毕.事实上,施行一个行或列初等变换相当于把这个矩阵左乘或右乘以一个可逆矩阵.引理1.1.1 设A 为一个m n ⨯矩阵:111212122212n nm m m n a a a a a a A a a a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 则可通过行初等变换和第一种列初等变换将A 化成阶梯型:1010001000000000J *****⎛⎫ ⎪**** ⎪ ⎪ ⎪=** ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,进而化为:()1,112,12,11000010000010000000000000r n r nr r n r r r rn c c c c I C c c ++⨯-+⎛⎫ ⎪ ⎪ ⎪⎛⎫⎪=⎪ ⎪ ⎪⎝⎭⎪ ⎪ ⎪ ⎪⎝⎭.证明:若是矩阵A 的元素ij a 都等于零,那么A 已有J 的形式.设某一个ij a 不等于零.必要时交换矩阵的行和列,可以将该元素为与矩阵的左上角.用1ija 乘以第一行,然后由其余各行分别减去第一行的适当倍数.矩阵A 化为100B **⎛⎫ ⎪**⎪= ⎪ ⎪**⎝⎭. 若在B 中,除第一行外,其余各行的元素都是零,那么B 已有J 的形式.设在B 的后1m -行中有一个元素b 不等于零.把b 换到第二行第二列的焦点的位置,然后用与上面同样的方法,可将B 化为 1010000***⎛⎫ ⎪**⎪⎪** ⎪ ⎪ ⎪**⎝⎭如此继续下去,最后可以得到一个形如J 的矩阵.我们只要进一步由第一,第二,第三, ,第1r -行分别减去第r 行的适当倍数,再由第一,第二, ,第2r -行分别减去第1r -行的适当倍数,如此下去,就可以得到形如,00rr n r I C -⎛⎫⎪⎝⎭的矩阵. 事实上,用初等变换将矩阵化为阶梯形,其阶梯形矩阵中非零行的个数的秩就是该矩阵的秩.由此得到矩阵秩的另一种等价的定义:定义1.2 矩阵()ij m n A a ⨯=经过初等变换所形成的阶梯型中非零行的个数成为矩阵的秩.矩阵A 的秩为r ,记为()R A r =.特别,零矩阵0的秩()0R O =.用初等变换将矩阵A 化为等价标准型000r E I ⎛⎫=⎪⎝⎭,由于初等变换不改变矩阵的秩,所以()rank A r =.由此得到以下定理:定理1.1.3 任意一个矩阵A 都可化为000r E I ⎛⎫= ⎪⎝⎭的形式,称I 为A 的等价标准型,且()rank A r =.定理 1.1.4 相似的矩阵具有相同的秩,秩相同的矩阵相似.A B ⇔()()rank A rank B =.证明:若矩阵A B ,则由相似的定义,可知存在可逆矩阵T ,使得1B T AT -=,由于矩阵与可逆矩阵相乘,秩不变(下面有证明),所以,()()()()11rank A rank T A rank TAT rank B -===.若()()rank A rank B =,设A 的等价标准型为A I ,则A A I ,B 的等价标准型为B I ,则B B I ,而()()rank A rank B =,则A B I I =,由相似的传递性,知A B .证毕.定理1.1.5 若矩阵A 与B 的Jordan 标准型都为J ,则()()rank A rank B =.证明:设1S J J J ⎛⎫⎪=⎪ ⎪⎝⎭,11i iiii i n nJ λλλ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()1,2,i s = .则矩阵A与矩阵B 的初等因子都为()()()1212,,sn n n s λλλλλλ--- ,所以A B .由定理1.2知,()()rank A rank B =.证毕.由此可得到:推论1.1.1 若矩阵A 的秩为r ,则其Jordan 标准型的秩也为r . 也就是说,矩阵的三种标准型的秩都不变.定理1.1.6 合同的矩阵具有相同的秩.即若A B ≅,则()()rank A rank B =. 证明:若A B ≅,则存在可逆矩阵C ,使得T C AC B =,由性质1.1.1知,()()Trank Crank C =,即TC也是可逆的.由1.3.4知,()()()TTrank C AC rank C A rank A ==.定理1.1.7 如果分块矩阵A 经过有限次分块矩阵的初等变换化为矩阵B ,则其矩阵的秩不变.1.2 矩阵的秩的一些基本性质性质1.2.1 (){}0min ,m n rank A m n ⨯≤≤ 性质1.2.2 ()()T rank A rank A =性质1.2.3 将矩阵A 划去若干行(列)得到矩阵B ,则()()rank A rank B ≥性质1.2.4 设A 为n ()2n ≥阶方阵,则()()()()*1101n rank A n rank A rank A n rank A n =⎧⎪==-⎨⎪<-⎩. 1.3矩阵的秩与矩阵的运算性质1.3.1 ()(),00,0rank A k rank kA k ⎧≠=⎨=⎩性质1.3.2 ()()00A rank rank A rank B B ⎛⎫=+⎪⎝⎭性质1.3.3 ()()0A rank rank A rank B CB ⎛⎫≥+⎪⎝⎭性质 1.3.4 ()()(){}m i n ,r a n k A B r a n k A r a n k B ⨯≤.特别,若A 可逆,()()rank A B rank B ⨯=.证明:设A 是一个m n ⨯矩阵,B 是一个n p ⨯矩阵,并且()rank A r =,设A 的等价标准型为,,,000r r n r A m r rm r n r E I ----⎛⎫=⎪⎝⎭. 换句话说,存在m 阶初等矩阵12,,,p E E E 和n 阶初等矩阵12,,,p p q E E E ++ ,使得11p p q AE E AE E I += .所以,有:1111111111q p p q p q A p q A E E AB E E AE E E E B I E E B I B ----+++===这里1111p q B E E --+= .显然地,1A I B 除了前r 行外,其余各行都为零,所以, ()1A rank I B r ≤.而1q E E A B 是由A B 通过行初等变换得到的,所以它们有相同的秩,这样就证明了()()rank AB rank A ≤.同理可证()()rank AB rank B ≤.如果,A B 中有一个是可逆矩阵,不妨设A 是可逆的,那么,一方面,由上面的证明过程知,()()rank AB rank B ≤,而()1B A A B-=,所以()()rank B rank AB ≤.因此,()()rank AB rank B =.证毕.将该性质推广到任意m 个矩阵的乘积的情形.任意m 个矩阵的乘积的秩不大于每一个因式的秩.性质1.3.5 若矩阵A 和B 是同型矩阵,则()()()rank A B rank A rank B ±≤±. 证明:首先证明()()()rank A B rank A rank B +≤+.由于 00000nn E AB A B E B B +⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以:()()()00000.nnE A BA B A B rank A B rank rank rank E B B B rank A rank B ⎛⎫+⎛⎫⎛⎫⎛⎫⎛⎫+≤=≤ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭≤+所以,()()()()r a n k A r a n k A B B r a n k A B r a n k B =-+≤-+,移项得到:()()()rank A B rank A rank B -≤-所以()()()rank A B rank A rank B ±≤±.证毕. 1.4 关于矩阵的秩的一些不等式等式及其应用定理1.4.1 (Sylvester 不等式)设A 为s n ⨯矩阵,B 为n m ⨯矩阵,则()()()rank AB rank A rank B n ≥+-证明:(利用分块矩阵证明)由于1212000n n n ABAB A A br A r bc bc B E E B E ⎛⎫⎛⎫⎛⎫+⨯+⨯ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 所以:000n n ABA rank rank E BE ⎛⎫⎛⎫≥⎪ ⎪-⎝⎭⎝⎭,即()()()rank AB n rank A rank B +≥+,移项得到()()()rank AB rank A rank B n ≥+-.证毕.推论1. 4.1 若矩阵A 与B 为n n ⨯矩阵,且0A B =,则()()rank A rank B n +≤. 定理1.4.3 ()Frobenious 不等式 设A 、B 、C 依次为m n ⨯、n s ⨯、s t ⨯型矩阵,则 ()()()().rank ABC rank AB rank BC rank B ≥+-证明:因为000st I C AB ABC AB I BBBC ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,有性质1.1.3可得:()()()()0000ABAB ABC rank AB rank BC rank rank B BC BABC rank rank ABC rank B B⎛⎫⎛⎫+≤≤⎪ ⎪⎝⎭⎝⎭⎛⎫≤=+⎪⎝⎭移项得到()()()().rank ABC rank AB rank BC rank B ≥+-证毕.性质1.4.1 设矩阵A 、B 为n 阶矩阵,则()()n n rank AB I rank A I -=-()n rank B I =-.证明:因为00000nn n n nnA IB I BAB I B I I B I ---⎛⎫⎛⎫⎛⎫=⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭,由性质 1.3.2与性质1.3.4得到()000n nn n n n AB I A I B I rank AB I rank rank B I B I ---⎛⎫⎛⎫-≤≤⎪ ⎪--⎝⎭⎝⎭,所以()()()n n n r a n kA B I r a n kAI r a n k B I-≤-+-. 性质1.4.2 若A B 、是n 阶矩阵,则()()()rank AB A B rank A rank B ++≤+. 证明:因为00000nnB I A B AB A B I B B+++⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()rank AB A B ++≤ ()()()000AB A BAB rank AB A B rank rank rank A rank B B B ++⎛⎫⎛⎫++≤≤=+⎪ ⎪⎝⎭⎝⎭. 定理1.4.3 设()()[],,n nA Pf xg x P x ⨯∈∈,则:()()()()rank f A rank g A +()()()()rank d A rank m A =+,其中:()()()(),d x f x g x =,()m x 为()f x 与()g x 的最大公因式.证明:如果()(),f x g x 之一为零多形式,则明显的,定理成立.不妨设()(),fx g x 都是非零多项式,由多形式的性质,此时有:()()()1f x d x f x =,()()()1g x d x g x =,()()()()()d x x f x x g x μν=+,()()()()[]11,,,f x g x x x P x μν∈()()()()()d A A f A A g A μν=+.对分块矩阵()()0f Ag A ⎛⎫⎪⎝⎭做分块矩阵的初等变换()()()()()()110000000E Ef A E E A E Ag A E f A E g A E EEνμ⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()()()()()1100000E Ef A A f A Ag A E g A E f A E g A E μν+⎛⎫-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭()()()()()1100000E E f A d A E g A E f A E g A E ⎛⎫-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭()()()()()110000E f A d A E f A E g A f A E⎛⎫-⎛⎫⎛⎫=⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭()()()()()()()()()11100000d A d A d A g A f A g A f A d A m A ⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪⎝⎭⎝⎭⎝⎭.由定理1.1.4及性质1.3.2可得()()()()00f A d A rank rank g A m A ⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭()()()()rank d A rank m A =+.证毕.由此得到 S ylvester 不等式及Frobenius 不等式等号成立条件:定理1.4.4 设()()()()()(),,,1,n n f x g x F x f x g x A F ⨯∈=∈,则:()()()()()()()rank f A rank g A rank f A g A n +=+.证明:若()()(),1f xg x =,则()1d x =,()()()m x f x g x =,则()()()r a n k d Ar a n k E n ==,()()()()()rank m A rank f A g A =,有定理1.4.4得()()()()()()()rank f A rank g A rank f A g A n +=+.证毕.推论1.4.2 设()()[]()()(),,,,1,n n A F f x g x P x f x g x ⨯∈∈=则()()()()rank fA rank g A n+=⇔()()0fA g A =.证明:若()()()()rank f A rank g A n +=,由定理1.4.4知()()()0.rank f A g A =所以()()0f A g A =.若()()0f A g A =,则()()()0rank f A g A =,则()()()().rank f A rank g A n +=证毕.定理1.4.5 设()()()[]()()(),,,,,1n n A F f x g x h x F x f x h x ⨯∈∈=,则:()()()()()()()()()()()()rank f A g A rank g A h A rank f A g A h A rank g A +=+.证明:由于()()(),1f x h x =,所以()()()()()(),f x g x gx h x g x=,()()()()m x f x g x h x =,由定理1.4.3,可得:()()()()()()()()()()()()rank f A g A rank g A h A rank f A g A h A rank g A +=+.证毕.推论1.4.3 设()()[],,n n i j A F f x g x P x ⨯∈∈,且()()(),1i j f x g x =,1,i m ≤≤1j t ≤≤,则()()()()1111m t m ti j i j i j i j rank f A rank g A n rank f A g A ====⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∏∏∏∏.证明:由于()()(),1i j f x g x =,则()d A E =, ()()()11mti j i j m A f A g A ===∏∏.由定理1.4.3,可得:()()()()1111m t m ti j i j i j i j rank f A rank g A n rank f A g A ====⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∏∏∏∏.典型例题分析:例1:设A 为n 阶矩阵,且2A A =,证明:()()rank A rank A E n +-=,E 为n 阶矩阵.证明:令()f x x =,()1g x x =-,则()()(),1f x g x =,而2A A =,则20A A -=,所以应用定理1.4.4,可得到()()()()()()()()()rank A rank A E rank f A rank g A n rank f A g A +-=+=+()()()20n rank A A E n rank A A n n=+-=+-=+=.例2:设A 为n 阶矩阵,且2A E =,证明()()rank A E rank A E n ++-=. 证明:令()1f x x =+,()1g x x =-,则()()(),1f x g x =,应用定理1.4.4,可得到()()()()()()2rank A E rank A E n rank A E A E n rank A E ++-=++-=+-()00n rank n n =+=+=.例3:设n n A F ⨯∈,n 为正整数,则对任意的正整数l ,k ,有:()()()1klmrank Arank A E n +-=,如果1m AA +=;()()12(2)klm m rank A E rank AAA E n ---+++++= ,如果mA E=.证明:()1令()lfx x =,()()1kmg x x =-,则()()(),1f x g x =,应用定理1.4.4,()()()()()()klmrank Arank A E rankf A rankg A +-=+()()()()()klmn rankf Ag A n rank A AE =+=+-()()()()()()111100k kl m ml m n rank AAA A E n rank AA E n rank n --+-=+--=+-=+=()2令()()()12(1),1klm m f x x g x xxx -+=-=++++ ,则()()(,)1f x g x =应用定理1.4.4,可到:()()()()()()12klm m rank A E rank AAA E rank f x rank g x ---+++++=+()()()()()()12klm m n rank f A g A n rankA E AAA E --=+=+-++++()()()()()111212k l m m m m n rankA E A E A AA E AAA E ---+-+=+--++++++++ ()()()()()()11121212k l mm m m m m n rank A E A A A A AAA E AAA E -------=+-++++-+++++++ ()()()()1112k l mm m n rank A E A E A AA E ---+=+--++++()0n rank n =+=以上三道例题如果用零化多项式的知识去解非常繁琐,但用 S ylvester 不等式来就非常简单且易懂.矩阵秩的不等式在解题中有很好的应用,本文就不一一说明了.1.5 矩阵的秩与可逆性质1.5.1 对于任意一个n 阶矩阵A ,以下三种说法等价()1矩阵A 可逆;()2()rank A n =;()3det 0A ≠.性质1.5.2 矩阵的行秩、列秩、秩相等.性质 1.5.3 设A 为m n ⨯阶矩阵,P 为m 阶可逆矩阵,Q 为n 阶矩阵,则()()()()rank PAQ rank AQ rank PA rank A ===.2 求矩阵的秩.1、利用定义:(子式判别法)即寻找出矩阵中非零子式的最大阶数.2、用初等变换将矩阵化为阶梯型,数出非零行的个数,既为矩阵的秩. 3 矩阵的秩在线性代数中的应用 3.1 矩阵的秩与解线性方程组定理3.1.1(线性方程组可解的判定方法) 设n 元线性方程组A X B =,其中,11121121222212,n n m m m n m a a a b a a a bA B a a a b ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.设其增广矩阵为11121121222212n n m m m nm a a a b a a a b A a a a b ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭; 则有()1方程组A X B =无解当且仅当()()rank A rank A<;()2方程组A X B =有唯一解当且仅当()()rank A rank A n ==; ()3方程组A XB =有无穷多解当且仅当()()rank A rank A n =<.证明:利用上面的引理1.1.1所指出的初等变换把A 和A 化为:1,1111,112,1222,12,1,11100100010010,001001000000000000000r n r n r n r nr r rn r r r rn r m c c d c c c c d c c B B c c d c c d d +++++++⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于初等变换不改变矩阵的秩,因此,有()()()()()(),,rank A rank B r rank A rank B rank A rank A===≤.现在设线性方程组A X B =有解,既此时有120r r m d d d ++==== ,而,r m <或者r m =,这两种情况都有()()rank A rank B r ==,所以()()rank A rank A r ==.若方程组只有一个解,则其自由未知量的个数为零,则r n =. 若方程组有无穷多解,则r n <. 反过来,设()()rank A rank A =,则()rank B r =,则有120r r m d d d ++=== ,因而,方程组有解.若r n =,则该方程组自由未知量的个数为零,则该方程组的解只有一个. 若r n <,则该方程组有无穷多个解.由此得证.定理3.1.2(齐次线性方程组有非零解的判定方法) 一个奇次线性方程组有非零解的充要条件是:它的系数矩阵的秩r 小于它的未知量的个数n .证明:当r n =时,方程组一个解,既是零解.当r n <时,方程组有无穷多解,因而它除了零解外,还有其它非零解.证毕.定理 3.1.3(齐次线性方程组的解空间的维数) 数域F 上一个n 个未知量的齐次线性方程组的一切解作成n F 的一个子空间,称为这个齐次线性方程组的解空间.如果所给的方程组的系数矩阵的秩为r ,那么解空间的维数等于n r -. 3.2 矩阵的秩与向量组的相关性向量组的线性相关型理论是贯穿线性代数始终的理论主线.由于线性关系是变量比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下,可以转化或近似转化为线性问题来解决.如果称一组向量组12,,,k u u u 是线性无关的,那么等式10kj j j c u ==∑只有12,,0k c c c = 是能成立.否则称这组向量组是线性相关的.假设这组向量组为1m +阶的列向量.这时用矩阵的形式可以将上述的等式写成10kj j j AC c u ===∑,其中()12,,k A u u u = ,()12,,,Tk C c c c = .这时判断向量12,,,k u u u 组线性无关或相关的问题,可以转换成求方程组A C =是否有非零解的问题来讨论.结合定理5.1.2,可以得到:定理 3.2.1 一组列向量组线性无关当且仅当矩阵()12,,,k A u u u = 的秩等于k .由此可得到矩阵秩的另一种等价的定义: 定义3.2 矩阵()ij m nA a ⨯=的行(列)向量组的极大无关组的个数成为该矩阵的秩.定理3.2.2 如果方阵n n A C ⨯∈的秩为r ,则以A 为系数矩阵的齐次线性方程组0A X =的解向量组中,必有n r -个是线性无关的. 3.3 矩阵的秩与零特征值代数重数相关性讨论引理3.3.1 设n 阶方阵()ij n nA a ⨯=的特征值为12,,,n λλλ ,则()1122331nna a a a trA ++++=()1232det n A λλλλ=⨯⨯⨯⨯()30A 是的特征值的充分必要条件是detA=0.引理 3.3.2 设i λ是方阵A 的i r 重特征值(称i r 为特征值i λ的代数重数),对应有i s 个线性无关的特征向量(称i s 为特征值i λ的几何重数),则1i i s r ≤≤.定理 3.3.1 如果方阵A 的秩为R ,设A 有零特征值,且其重数为r ,则必定有:n r R n -≤<证明:因为A 有零特征值,由引理3.3.1,则有det 0A =,即R n <,不等式右边成立.先求r 重零特征值对应的特征向量组12,,i x x x ,并设该向量组中有s 个线性无关,则:()()00.I A X I A X AX λ-=-=-=由此可见,零特征值对应的特征向量既为以A 为系数矩阵的n 元齐次线性方程组的解向量.因()rank A R =,由定理5.2.2,知s n R =-,而r 既为对应于零特征值的代数重数,s 既为对应于零特征值的几何重数.由引理 3.3.2可得到r s n r ≥=-,即r n R ≥-,移项得R n r ≥-.所以不等式左边成立.推论3.3.1 如果方阵A 仅有一个零特征值,即1r =,则必有A 的秩1R n =-. 证明:因为n r R n -≤<且1r =,所以1n R n -≤<,又因为R 为矩阵A 的秩,且,,1R n n -均为正整数,所以必有1R n =-.证毕.由n r R n -≤≤移项可得到n R r -≤且零特征值代数重数r n <,则n R r n -≤<,即如果A的秩为R ,则A 的零特征值的代数重数r n R ≥-,由此可得到以下推论.推论3.3.2 如果方阵A 的秩1R =,A 的n 个特征值为12,,,n λλλ ,则必有123,0n trA λλλλ=====证明:因为,1n R r n R -≤<=,所以1n r n -≤<,而R ,n ,1n -均为正整数,类似于推论3.3.1的证明可得1r n =-.由引理3.3.1的结论()1可知112233123nn n a a a a trA λλλλ++++=++++= ,而1,2,,n λλλ 中有1n -个零,则12,,n λλλ 中只有一个非零且等于trA .定理3.3.3 设方阵n n A ⨯的秩为R ,零特征向量代数重数为r ,几何重数为s ,则R n s =-.证明:求出矩阵A 的若尔当标准型J ,则A 的秩与J 相等,均为R .11220,'ii J J J J J J J J J ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭. 其中12,,,i J J J 为其它非零特征值所对应的若尔当块,0J 为零特征值对应的若尔当快,设'J 的秩为'R ,则由若尔当标准型性质知,R n r =-.设0J 的秩为0R ,则必有0'R R R =+,如果方阵A 的r 重零特征值对应r 个线性无关的特征向量,即s r =,则0J 可对角化.000r rJ ⨯⎛⎫⎪⎪= ⎪ ⎪⎝⎭,00R r s =-=,则0'R R R n r r s n s =+=-+-=-.如果1s r =-,00100r rJ ⨯⎛⎫⎪⎪= ⎪ ⎪⎝⎭,01R r s =-=,则J的秩0'R R R =+1n r r s n s n r =-+-=-=-+.由此类推,如果零特征值对应的特征向量全相关,即1s =,此时0010110r rJ ⨯⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,01R r s r =-=-,则J 的秩0'1R R R n s n =+=-=-.证毕.因此,零特征值代数重数进能限定秩的范围,而在此范围内秩是由特征值的几何重数决定的.4 矩阵的秩在解析几何中的应用.将矩阵的秩推广到解析几何中,会收到很好的效果. 4.1 矩阵的秩在判断平面与平面的位置关系时的应用.定理4.1.1 已知平面11111:a x b y c z d π++=与平面22222:a x b y c z d π++=,设线性方程组11112222a xb yc zd a x b y c z d ++=⎧⎨++=⎩ ()1的系数矩阵为A 增广矩阵为A ,则:①若()()2rank A rank B ==,平面1π与2π相交于一条直线:②若()()1rank A rank A ==,平面1π与2π重合; ③若()1rank A =,但()2rank A =,平面1π与2π平行.证明: ①若()()2rank A rank A ==,有以上的定理3.1.1,可知,线性方程组()1有无穷多解,设它的一个特解为()0000,,x y z γ=,它的导出方程组为1112220a x b y c z a x b y c z ++=⎧⎨++=⎩ ()2的系数矩阵A 的秩为2,而未知量有3个,因此方程组()2有非零解,且基础解系里解的个数为321-=.设()123,,e e e η=是导出组的一个基础解系,则方程组()1的全部解为()0010203,,k x ke y ke z ke γη+=+++,其中,k 为全体实数.由解析几何的知识知,当k 取遍全体实数是,0k γη+的轨迹为通过点()000,0,x y z γ=,且方向向量为()123,,e e e η=的一条直线.所以当()()2rank A rank A ==时,平面1π与平面2π相交于一条直线.②若()()1r a n k A r a n k A ==,此时,方程组()1有解,并且()1111,,,a b c d 与()2222,,,a b c d 成比例,于是111111112222000a b c d a b c d a b c d ⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭. 所以方程组()1的一般解为1111a x b y c z d ++=,既为平面1π,因此,平面1π与平面2π重合.③若()()1,2rank A rank A ==但,此时方程组()1无解,既是平面1π与平面2π无交点,既平行.由于111,,a b c 不全为零,所以()0rank A ≠,因此只有以上三种情况.证毕. 定理4.1.2 设空间三个平面的方程分别为:111122223333;;;A xB yC zD A x B y C z D A x B y C z D ++=++=++= 系数构成的矩阵为111111122222223333333,A B C A B C D A A B C A A B C D A B C A B C D ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 则:①三平面重合的充要条件为()()1rank A rank A ==.②三平面平行的充要条件为()()1,2rank A rank A ==,且A 的任意两行不成比例.③三平面两两相异且有唯一公共点的充要条件为()()2rank A rank A ==,且A的任意两行不成比例.④三平面中有两平面平行,第三个平面与它们相交的充要条件是()2,rank A =并且,()3rank A =,且A 的任意两行不成比例.⑤两平面重合,且第三平面与它们平行的充要条件是:()1rank A =,()2rank A =,且A 的两行不成比例.⑥三平面有唯一的公共点的充要条件是()3rank A =. 4.2 矩阵的秩在判断平面与直线的位置关系的应用.定理4.2 设空间平面与直线的一般方程为:222211113333,A B C D A x B y C z D A B C D ++=⎧++=⎨++=⎩. 系数构成的矩阵为111111122222223333333,.A B C A B C D A A B C A A B C D A B C A B C D ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则:①直线与平面相交的充要条件为:()()3rank A rank A ==. ②直线与平面没有公共点的充要条件为()()2,3rank A rank A == ③直线属于已知平面的充要条件为()()2rank A rank A ==. 4.3 矩阵的秩在判定直线与直线的位置关系的应用. 定理4.3 设空间两直线的一般方程分别为:1111333322224444,A x B y C z D A x B y C z D A x B y C z D A x B y C z D ++=++=⎧⎧⎨⎨++=++=⎩⎩. 系数构成的矩阵为1111111222222233333334444444,A B C A B C D A B C A B C D A A A B C A B C D A B C A B C D ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则:两直线异面的充要条件为()()3,4rank A rank A ==;两直线相交的充要条件为()()3rank A rank A ==; 两直线平行的充要条件为()()2,3rank A rank A ==; 两直线重合的充要条件为()()2rank A rank A ==.证明:由定理 3.1.1可知,方程组A X D =有唯一解的充要条件为()()3rank A rank A ==,方程组有唯一解既是两直线相交,所以两直线相交的充要条件为()()3rank A rank A ==.方程组A X D =有无数多解的充要条件为()()3rank A rank A =<,即两直线重合的充要条件为()()3rank A rank A =<,而由定理6.1.1知,()2rank A ≥,所以,两直线重合的充要条件为()()2rank A rank A ==.由定理 4.1知,1113332224442A B C A B C r a n k r a n k A B C A B C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,齐次线性方程组0A X =由非零解的充要条件为()3rank A <,即()2rank A =,即两直线平行的充要条件为()()2,3rank A rank A ==.5 矩阵的秩在判定齐次M arkov 链遍历性中的应用设(),ij p m m n +为M arkov 链的n 步转移概率,如果(),ij p m m n +只与,i j 及时间间距n 有关时,即称此M arkov 链是齐次的.对于齐次M arkov 链,我们常常关心它的遍历性问题.判断齐次M arkov 链{},0n X n ≥的遍历性的一个充分条件如下:引理 5.1 设齐次M arkov 链{},0n X n ≥的状态空间为{}12,,n S a a a = ,P 是它的一步转移概率矩阵,如果存在整数m ,使得任意的,i j a a S ∈,都有()0,,1,2,,ij p m i j n >=则此链具有遍历性,且有极限分布()12,,,Tn ππππ= ,它是方程组P ππ=,即1,1,2,,Nj ij i i p j n ππ===∑的唯一解,其中满足jπ概率分布条件为10,1Nj i i ππ=>=∑.由引理可知,要判断齐次M arkov 链的遍历性,通常需要找到一个正整数k ,使k 步转移概率矩阵k P 无零元.当k 比较大时,通常的处理比较繁琐而且运算量大.由引理又可知:只有当极限存在(即唯一性)时,齐次M arkov 链才有遍历性,因此可通过判断11nii P πππ==⎧⎪⎨=⎪⎩∑ (1) 或等价于()101n i i P E ππ=⎧-=⎪⎨=⎪⎩∑ (2)是否具有唯一解来判断齐次M arkov 链{},0n X n ≥是否具有遍历性.定理5.2 设{},0k X k ≥为具有n 个状态的齐次M arkov 链,()rank Z m =,则有:当m n =时,齐次M arkov 链{},0k X k ≥具有遍历性; 当m n <时,齐次M arkov 链{},0k X k >不具有遍历性. 其中Z 表示线性方程组(2)的系数矩阵,E 为n n ⨯矩阵.证明:因为{},0k X k ≥为具有n 个状态的齐次M arkov 链,故可设其一步转移概率矩阵为111111j n i ij in n njnn n np p p p p p P p p p ⨯⎛⎫⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭设Q 为全是1的n 维行向量,即()111Q = ,有方程组(2)得到其增广矩阵为01P EB Q -⎛⎫ ⎪= ⎪ ⎪⎝⎭(3) 由定理3.1可知,当且仅当()()rank B rank Z n ==时,方程组(1)才有唯一解,结合引理的结论,可知本定理是成立的.由定理可知,在实际问题中,只要求出矩阵Z 的秩m ,判断m 和n 之间的大小,就可以判断齐次M arkov 的遍历性.参考文献[1] 张禾瑞.高等代数(第五版)[M].北京:高等教育出版社,2007.[2] 吕林根,许道子.解析几何[M].北京:高等教育出版社,2006.[3] 许以超.线性代数与矩阵[M].北京:高等教育出版社,1992.[4] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社,2004.[5] 徐仲,张凯院,陆全,冷国伟.矩阵论简明教程[M].北京:科学出版社,2005.[6] 贾美娥.矩阵的秩与运算的关系[J].赤峰学院学报,2010,26(9):3-4.[7] 屠伯埙.体上线性映射的子空间的维数及应用[J].数学研究与评论.1990,10(3):327-332.[8] 周华任,廖洪林,李配军.矩阵秩的等式证法[J].教学与研究.2003,24(1):76-79.[9] David C. Lay. Linear Algebra and Its Applications [M].America: PearsonEducation, 2006.[10] 钟成义,肖宏儒.方阵秩与零特征值代数重数相关性探讨[J].高等数学研究.2009,12(1):96-97.[11] 赵为华,束剑.矩阵秩在判定齐次马尔可夫链遍历性中的应用[J].南通大学学报.2009,8(1):80-82.[12] 王磊,赵静.矩阵秩的不等式的证明[J].滨州学院学报.2009,,25(6):73-75.[13] 林丽没,周书明,杨忠鹏,陈梅香.F robenious不等式的等式条件与可对角化矩阵的秩等式[J].山西师范大学学报.2011,25(3):39-42.致谢从上学期选题、收集资料到这学期写开题报告,完成初稿,到定稿,期间几个月历经喜悦、聒噪、痛苦、彷徨,在写论文时心情如此复杂,到今天随着论文的完成,都落下了帷幕.在此论文撰写过程中,要特别感谢我的导师杨晓鹏老师的指导与督促,同时感谢他的谅解与包容.没有老师的帮助也就没有今天的这篇论文.求学历程是艰苦的,但又是快乐的.感谢我大学所有教过的老师,谢谢他们在这四年中的教诲.在这四年的学期中结识的各位生活和学习上的挚友让我得到了人生最大的一笔财富.在此,也对他们表示衷心感谢.本文参考了大量的文献资料,在此,向各学术界的前辈们致敬!***2012年4月09日。

矩阵的秩及其应用

矩阵的秩及其应用

矩阵的秩及其应用摘要:本文主要介绍了矩阵的秩的概念及其应用。

首先是在解线性方程组中的应用,当矩阵的秩为1时求特征值;其次是在多项式中的应用,最后是关于矩阵的秩在解析几何中的应用。

对于每一点应用,本文都给出了相应的具体的实例,通过例题来加深对这部分知识的理解。

关键词:矩阵的秩; 线性方程组; 特征值; 多项式引言:阵矩的秩是线性代数中的一个概念,它描述了矩阵的一个数值特征。

它是矩阵 的一个重要性质。

在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值,在多项式、空间几何中等多个方面都有广泛的应用。

由于矩阵的秩的重要作用和地位,需要我们认真学习。

1.矩阵的秩及其求法1.1矩阵的秩的定义定义1.1.1[1] 矩阵A 的行(列)向量组的秩称为矩阵A 的行(列)秩。

定义1.1.2[2] 矩阵的列向量组(或行向量组)的任一极大线性无关组所含向量的个数称为矩阵的秩。

定义1.1.3[1] 设在矩阵A 中有一个不等于零的r 阶子式,且所有的1r +子式(如果存在的话)全等于零,则称矩阵A 的秩为r ,记为()r A r =或秩()A r =。

零矩阵的秩规定为零。

注:由定义可以看出(1)若A 为n m ⨯矩阵,则()r A m ≤,也()r A n ≤,即()min{,}r A m n =(2) ()()T r A r A = ,()()r kA r A = ,k 为非零数 1.2 矩阵的秩的求法定义法和初等变换法是我们常用的求矩阵的秩的两种方法,下面就来比较一 下这两种方法。

方法1 按定义例1.2.1 求矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--41311221222832的秩 解 按定义3解答,容易算出二阶子式12232-0≠,而矩阵的所有三阶子式1312122832--=0,43112122232-=0,41312212283--=0,4111222282-=0 所以()2r A =方法2 初等变换法引理1.2.1[1] 初等变换不改变矩阵的秩。

矩阵秩的不等式及其应用

矩阵秩的不等式及其应用

矩阵秩的不等式及其应用在线性代数中,矩阵秩是一个基本而重要的概念。

它不仅与线性方程组的解的存在性和唯一性有关,还在很多应用领域中起着关键作用。

本文将介绍矩阵秩的不等式及其在实际问题中的应用。

让我们回顾一下矩阵秩的定义。

给定一个m×n的矩阵A,它的秩记作rank(A)。

矩阵的秩是指矩阵所包含的线性无关的行或列的最大个数。

具体来说,矩阵A的秩等于它的行最简形式中非零行的个数,也等于它的列最简形式中非零列的个数。

接下来,我们来看一下矩阵秩的不等式。

对于任意的m×n矩阵A,有以下两个重要的不等式成立:1. rank(A) ≤ min(m, n)2. rank(A) + nullity(A) = n第一个不等式告诉我们,矩阵A的秩不能超过它的行数和列数中的较小值。

这是因为一个m×n的矩阵最多只能有m个线性无关的行和n个线性无关的列。

这个不等式在解决线性方程组的问题时非常有用,因为它告诉我们方程组的解的个数不会超过方程的个数。

第二个不等式则是矩阵秩与零空间维数之间的关系。

nullity(A)表示矩阵A的零空间的维数,也就是方程Ax=0的解的个数。

这个不等式告诉我们,矩阵A的秩和它的零空间维数的和等于它的列数。

这个不等式在求解线性方程组的特解时非常有用,因为它告诉我们特解的个数等于方程的变量个数减去矩阵的秩。

矩阵秩的不等式在很多实际问题中都有重要应用。

例如,在图像处理中,我们经常需要对图像进行降维压缩。

矩阵秩的不等式告诉我们,一个m×n的图像矩阵的秩不会超过m和n中的较小值。

这意味着我们可以通过保留图像矩阵的秩个奇异值来实现图像的压缩,从而减少存储空间和传输带宽。

另一个应用是在机器学习中的特征选择。

在特征选择问题中,我们希望从给定的特征集合中选择出最具有代表性的特征子集。

矩阵秩的不等式告诉我们,一个包含n个特征的数据矩阵的秩不会超过n。

这意味着我们可以通过计算数据矩阵的秩来评估每个特征的重要性,进而进行特征选择。

矩阵的秩及其在线性代数中的应用

矩阵的秩及其在线性代数中的应用

矩阵的秩及其在线性代数中的应用
矩阵的秩是指矩阵中线性无关的行或列向量的最大个数,用
r(A)表示。

具体来说,如果一个矩阵有m行、n列,那么矩阵的秩不大于m、n中的较小值,即r(A) ≤ min(m,n)。

在线性代数中,矩阵的秩是一个非常重要的概念。

以下列举了一些矩阵秩的应用:
1. 判断矩阵的行或列是否线性无关:如果矩阵A的秩r(A)等于行或列的个数,那么A的行或列就是线性无关的。

这个性质在求解方程组或者解析几何中非常有用。

2. 判断矩阵是否可逆:如果一个矩阵A可逆,那么其行或列向量线性无关,即r(A)等于矩阵A的行或列数。

因此,判断一个矩阵是否可逆就可以通过计算它的秩来实现。

3. 求解线性方程组:如果一个m×n的矩阵A的秩满足r(A) = m,那么它的行向量线性无关,从而可以求出增广矩阵[A|b]的解。

如果r(A) < m,那么方程组有无穷多解。

如果r(A) ≤ n,那么方程组要么没有解,要么有唯一解。

4. 求解最小二乘法问题:在拟合数据时,如果数据点不在同一平面上,就需要使用最小二乘法来拟合数据。

矩阵的秩可以用来判断数据点是否在同一平面上,从而决定是否可以使用最小二乘法。

总之,矩阵的秩在线性代数中有着非常重要的应用,是求解各种问题的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c,C为 s×m矩阵,则 r(A)+r(B)一n<r ain(r(A),r(B)),
6)矩阵 A的所有特征值均不为零 。
特另0的若 I A I≠0,贝0 r(c)=r(B);若 AB=0,贝0
有 了这些等价条件,在解决一些具体 问题的时
r(A)+r(B)≤n。
候是十分)一r(B)。 2.2 一般 矩 阵的 情形
定理 2(线性方程组有解 判别定理 ):线性方
7)若 AX=O与 BX=O同解 ,则 r(A)=r(B)。
程组 AX=B有解的充分必要条件是它的系数矩 阵 A
8)r(A)=r(AA )=r(ATA)-r(A ),其 中 A为 n×n 与增广矩阵 有相同的秩 。
矩阵,A 为 A的转置。 9)r(A“)=r(A ),m≥n,A是 n阶方阵。 10)r(AB)≤min(r(A),r(B)),r(AB)≥r(A)+
r(B)一n,这里 A、B分别是 m×n和 n×s矩阵
11)r(ABC)≥r(AB)+r(BC)一r(B)。
l2)若 G为列满秩矩阵 (r(G)等于 G的列数 ), H为行满秩矩阵,则 r(GH)=r(AH)=r(A)。 2 矩 阵 的秩 与行 列式
定义 1:齐次线性方程组 AX=O( ) 的一组解 T1 ,T1 ..T1 称为 ( )的一个基础解系,如果
3)设 A为 m×n矩阵,r(A)=r,则 A的任意 S
定理 2:矩阵 A的秩是 r的充分必要条件是矩
行组成 的矩 阵 B,有 r(B)≥r+s-n。
阵 A中有一个 r级子式不为零, 同时所有的 r+l
4)设 M=l L A O l,则 r(M)=r(A)+r(B); O B_J
第 26卷 第 2期 2011年 6月
邢 台学 院学 报
J0U RNA L 0F X IN GTAI U N IV ER SITY
Vo1.26.N O.2 Jun.2Ol1
矩 阵的秩 及 应 用
国 慧
(河北师 范大 学数 信学院,河北石家庄 500016) 摘 要 :利用矩阵的秩 的相 关定理及重要结论,阐述矩 阵的秩在数学知 识的学习研究 中所起 的作 用,总结 了一些矩阵的 秩 的重要 性质 ,将代数 内容的学 习融入具体 问题的证 明中,将知识 紧密的联 系在一起 ,为以后相 关知识的学习奠定基础 。 关键词 :矩 阵的秩 ;基础 解 系;增广矩 阵; 维数 中图分 类号 :015l 文献标识码 :A 文章编号 : 1672.4658f2O11)02.0161.03
由此可以看 出,秩 ( , , 3)=3,dimW =秩 ( ,
162
邢 台学院学报
2011年第 2期
示系数矩阵的秩,n-r就是 自由未知量的个数。
例题 2:已知 cc】= (1,2,1,一1),仅2=
3.2 矩阵的秩在解方程组中的应用
(2,3,1,O), O【 = (1,2,2,一3)
利用矩阵的秩判断方程个数等于未知量个数的 求 W =L( , , O【 )的基和维数。
级子 式全 为零 。 以上给 出了 n×n矩 阵的秩与行列式的关系,
N=l L A C l,贝4 r(N)≥r(A)+r(B)。 O B-J
一 般矩阵的秩与行列式的关系。 3 矩 阵 的秩在 解方 程组 中的应 用
5)设矩阵 A和 B分别是 S×n,s×m矩阵,则 3.1 相 关理论知 识
1 矩 阵的秩 的 基础理 论
2.1 n×n矩 阵的 情形
1.1 矩 阵秩 的相 关定 义
定理 1:12×n矩阵 A的行列式为零 的充分必要
定义 1:向量组 的极大无关组所含 向量 的个数 条件 A的秩小于 n。
称为这个 向量组的秩。
通过定理 1的陈述可 以得到否命题 ,即 n×n
线性方程组解的情况十分简单易行的,方法是首先
解 r 1 2 1] 厂1 2 1]
判断线性方程组的系数矩阵 A的行列式 I A I是否 为零,如果 l A l ≠ 0,则利用克拉默法则进行求
:l 2 。 3三 三2 J Jl 0—。 01 0 Jl
解;如果 I A I=0,利用定理 1的结论 ,即看 r(A)
定 义 2:矩 阵列 向量组 的秩称为矩阵的列秩 , 矩阵 A的秩等于 n的充分必要条件是 A的行列式
矩 阵行 向量组的秩称为矩阵的行秩。
不为零。从而有 以下一些等价条件:
矩 阵的秩的两个等价定义:
1)n×n矩 阵 A的行列式的秩等于 n。
1)矩阵行秩等于矩阵列秩,统称为矩阵的秩。
2)A的行 列 式不为 零 。
1)( )的任意一个解都能够表示成 T1 ,T1:,… T1 的线性 组合 的形 式 。
2)T1 1,T1 2,… T1 线性 无关 。 定理 3:在齐次线性方程组有非零解的情况下,
它有基础解系,并且基础解系所含解的个数等于 n— r,这里 n是齐次线性方程组中未知量的个数,r表
[收稿 日期]201卜0卜03 [作 者简 介]国 慧 (1987一),女 ,河 北 邢 台市人 ,研 究 生,主 要从 事基 础数 学 的研究 .E-mail:xtycgiq@163.corn
2)矩 阵中最大阶非零子式的阶数称为矩阵的秩。
3)矩阵 A是可逆矩阵。
矩 阵的秩记为秩 (A)或 rank(A)。
4)齐次线性方程组 AX=0只有零解。
1.2 矩 阵秩 的相 关性质
5)矩 阵 A能表示成 一些初等矩阵的乘积 的形
1)设矩阵A和 B分别是 S×n和 n×Il矩阵,AB= 式,即 A=OlQz…Q 。
max(r(A),r(B))≤r(A:B)≤r(A)+r(B)。
定理 1:齐次线性方程组 AX=O有非零解的充
6)r(A )=n,当 r(A)=n时 ;r(A。)=1,r(A)=n-1 分必要条件是它的系数矩阵 A的秩小于 n。
时;r(A )-0,r(A)<n-1时。其中A’是 A的伴随矩阵。
相关文档
最新文档