优化算法——粒子群算法(PSO)
粒子群优化算法PSO

将车辆任务点编号为0, 1,…L , 其中: 0 为 中心仓库; 1, 2,…L 为收货点。 • 定义变量如下:
f ki
• cij 为从任务点i到任务点j的运输成本(运输 距离)
• Z为所有车辆行驶距离总和
非满载车辆优化调度的数学模型为
该模型要求每个收 货点都得到车辆配 送服务, 并且限制 每个收货点的需求 只能由某一台车辆 完成, 同时保证每 条路径上各收货点 的总需求量不超过 此路径上配送车辆 的容量。在满足上 述条件的情况下, 使所有车辆行驶距 离之和Z 最小。
12/03/12
Particle Swarms Optimization
粒子群最佳化
整合群体行为、人类决策与鸟群行为发展成为 粒子群演算法。
【Eberhart, Kennedy, 1995】
Russ Eberhart
Bionic Computing
Bionic Computing Lab, 2005
(1) 对粒子第二维向量xi 的元素xij 进行取整操作 int (xij) , 即可得到分配给收货点j 的车辆k 。 (2) 对于车辆k 的行驶路径, 按照粒子第三维向量y i 的元素yij 的大小顺序来确定, 即首先找出由车辆 k 完成配送的收货点j , 然后按照j 所对应yij 的大小, 从小到大进行排序, 从而确定车辆k的行驶路径。
PSO粒子群优化算法

PSO粒子群优化算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于迭代的优化工具。
系统初始化为一组随机解,通过迭代搜寻最优值。
但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。
详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域2. 背景: 人工生命"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容1. 研究如何利用计算技术研究生物现象2. 研究如何利用生物技术研究计算问题我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.3. 算法介绍如前所述,PSO模拟鸟群的捕食行为。
粒子群优化算法(PSO)

粒⼦群优化算法(PSO)1、粒⼦群优化算法(Partical Swarm Optimization PSO),粒⼦群中的每⼀个粒⼦都代表⼀个问题的可能解,通过粒⼦个体的简单⾏为,群体内的信息交互实现问题求解的智能性。
2、粒⼦群算法最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅⾷⾏为的研究。
设想这样⼀个场景:⼀群鸟在随机搜寻⾷物,在这个区域⾥只有⼀块⾷物,所有的鸟都不知道⾷物在哪⾥,但是它们知道当前的位置离⾷物还有多远。
最简单有效的策略?寻找鸟群中离⾷物最近的个体来进⾏搜素。
PSO算法就从这种⽣物种群⾏为特性中得到启发并⽤于求解优化问题。
⽤⼀种粒⼦来模拟上述的鸟类个体,每个粒⼦可视为N维搜索空间中的⼀个搜索个体,粒⼦的当前位置即为对应优化问题的⼀个候选解,粒⼦的飞⾏过程即为该个体的搜索过程.粒⼦的飞⾏速度可根据粒⼦历史最优位置和种群历史最优位置进⾏动态调整.粒⼦仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的⽅向。
每个粒⼦单独搜寻的最优解叫做个体极值,粒⼦群中最优的个体极值作为当前全局最优解。
不断迭代,更新速度和位置。
最终得到满⾜终⽌条件的最优解。
3、算法流程如下:1、初始化⾸先,我们设置最⼤迭代次数,⽬标函数的⾃变量个数,粒⼦的最⼤速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒⼦群规模为M,每个粒⼦随机初始化⼀个飞翔速度。
2、个体极值与全局最优解定义适应度函数,个体极值为每个粒⼦找到的最优解,从这些最优解找到⼀个全局值,叫做本次全局最优解。
与历史全局最优⽐较,进⾏更新。
3、更新速度和位置的公式4、终⽌条件(1)达到设定迭代次数;(2)代数之间的差值满⾜最⼩界限以上就是最基本的⼀个标准PSO算法流程。
和其它群智能算法⼀样,PSO算法在优化过程中,种群的多样性和算法的收敛速度之间始终存在着⽭盾.对标准PSO算法的改进,⽆论是参数的选取、⼩⽣境技术的采⽤或是其他技术与PSO的融合,其⽬的都是希望在加强算法局部搜索能⼒的同时,保持种群的多样性,防⽌算法在快速收敛的同时出现早熟收敛。
粒子群优化算法(PSO)

我们采用遗传算法的思想解决。 (1)w*v项可看作是一种变异操作。 (2)c1*(pbest-x) + c2*(gbest-x) 项可看作是一种 交叉操作。
交叉与变异
交叉: P1=(1 2 | 3 4 5 6 | 7 8 9) P2=(9 8 | 7 6 5 4 | 3 2 1) Q1=(1 2 | 7 6 5 4 | 3 8 9) Q2=(9 8 | 3 4 5 6 | 7 2 1) R=(1 2 | 3 4 5 6 | 7 8 9) S=(1 2 | 6 5 4 3 | 7 8 9)
756 4953
遗传算法 1.6s 28.1s 154.6s 200.6s 215.0s
567 3842
粒子群优化 0.016s 0.578s 31.9s 56.1s 73.9s
538 2579
时间分析
性能比较
模拟退火
遗传算法
粒子群优化
研究方向
• (1) 算法分析。PSO在实际应用中被证明是有效的, 但目前 还没有给出完整收敛性、收敛速度估计等方面的数学证明, 已有的工作还远远不够。 • (2) 参数选择与优化。参数w、c1、c2的选择分别关系粒子 速度的3个部分:惯性部分、社 会部分和感知部分在搜索中 的作用.如何选择、优化和调整参数,使得算法既能避免早 熟又 能比较快速地收敛,对工程实践有着重要意义。 • (3) 与其他演化计算的融合。如何将其它演化的优点和PSO 的优点相结合,构造出新的混合算 法是当前算法改进的一 个重要方向。 • (4) 算法应用。算法的有效性必须在应用中才能体现,广泛 地开拓PSO的应用领域,也对深化 研究PSO算法非常有意义。
粒子群优化算法(PSO)综述介绍

带收缩因子的PSO算法:
vi
t 1
X [ v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )]
t t t t t t t
收缩因子保证了收敛性并提高了收敛速度。 显然,该迭代公式和标准迭代公式相比并无本质区别, 只要适当选取参数,二者完全相同。
局部PSO算法:
在计算机上模拟该模型的结果显示:当g_increment较大 时,所有的个体很快地聚集到“谷地”上;反之,粒子缓 慢地摇摆着聚集到“谷地”的四周。 受此模型启发Kennedy和Eberhart设计出了一种演化优化 算法,并通过不断的试验和试错,最后将此算法的基本型 固定为:
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( lb x i )
t t t t t为自身最优位置 pbest和种群最优位置gbest。 对应的,在局部版本中,微粒除了追随自身最优位置 pbest之外,不跟踪种群最优位置gbest,而是跟踪拓 扑邻域中的所有微粒的最优位置lbest。
算法思想:
1.初始化种群数量,使他们随机的分布在平面上; 2.根据模型评估每个粒子的位置; 3.如果一个粒子当前的位置比它之前的的位置好,则记录下 新位置,记为pbest;
4.确定种群中最好的粒子的位置,记为gbest;
5.根据公式:
vi
t 1
v i 1U 1 ( p bi x i ) 2U 2 ( g b x i )
背景知识:
粒子群优化算法(Particle Swarm Optimization——PSO), 是由J. Kennedy和R. C. Eberhart于1995年提出的一种基 于种群的随机的优化算法。
粒子群优化算法(PSO)Python实现

粒子群优化算法(PSO)Python实现粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等群体协同的行为。
PSO算法通过模拟每个个体(粒子)在解空间中的移动,以找到最优解。
在PSO算法中,粒子的位置和速度表示解空间中的一个点,而每个粒子的局部最优解和全局最优解则用来指导粒子的方向。
下面是一个简单的PSO算法的Python实现:```pythonimport random#定义粒子类class Particle:def __init__(self, dimensions, min_values, max_values):self.dimensions = dimensionsself.min_values = min_valuesself.max_values = max_valuesself.position = [random.uniform(min_values[i], max_values[i]) for i in range(dimensions)]self.velocity = [random.uniform(-(max_values[i] -min_values[i]), max_values[i] - min_values[i]) for i inrange(dimensions)]self.best_position = self.position.copydef update_velocity(self, global_best_position,inertia_weight, cognitive_weight, social_weight):for i in range(self.dimensions):r1 = random.randomr2 = random.randomdef update_position(self):for i in range(self.dimensions):self.position[i] += self.velocity[i]if self.position[i] < self.min_values[i]:self.position[i] = self.min_values[i]elif self.position[i] > self.max_values[i]:self.position[i] = self.max_values[i]def update_best_position(self):if objective_function(self.position) <objective_function(self.best_position):self.best_position = self.position.copy#定义目标函数(此处仅为示例,实际应用中需根据问题进行定义)def objective_function(position):return sum(position)def pso(num_particles, dimensions, min_values, max_values, num_iterations, inertia_weight, cognitive_weight, social_weight): particles = [Particle(dimensions, min_values, max_values)for _ in range(num_particles)]global_best_position = particles[0].position.copyfor _ in range(num_iterations):for particle in particles:particle.update_velocity(global_best_position,inertia_weight, cognitive_weight, social_weight)particle.update_positionparticle.update_best_positionif objective_function(particle.best_position) <objective_function(global_best_position):global_best_position = particle.best_position.copyreturn global_best_position#示例使用num_particles = 30dimensions = 2min_values = [-5, -5]max_values = [5, 5]num_iterations = 100inertia_weight = 0.5cognitive_weight = 0.8social_weight = 0.8best_position = pso(num_particles, dimensions, min_values, max_values, num_iterations, inertia_weight, cognitive_weight, social_weight)print("最优解:", best_position)print("最优值:", objective_function(best_position))```在上面的代码中,首先定义了一个`Particle`类来表示粒子。
优化算法-粒子群优化算法

步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法
粒子群算法的多目标优化

粒子群算法的多目标优化粒子群算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,最初由Eberhart和Kennedy在1995年提出,灵感来自鸟群觅食行为。
它通过模拟鸟群中鸟的飞行行为,实现对多个目标的优化求解。
在传统的PSO算法中,只针对单个目标进行优化。
但在实际问题中,经常存在多个目标需要同时优化。
多目标优化问题具有复杂性、多样性和冲突性等特点,往往不能简单地通过将多个目标融合为一个综合目标进行求解,因此需要专门的多目标优化算法。
多目标粒子群算法(Multi-objective Particle Swarm Optimization,MOPSO)是一种扩展的PSO算法,可以解决多目标优化问题。
它通过改进传统PSO的算法机制,使得粒子在过程中能够维持一组非劣解集合(Pareto解集合),从而得到一系列最优解,满足不同领域的需求。
MOPSO算法的具体步骤如下:1.初始化粒子的位置和速度,并随机分布在空间内。
2.根据多个目标函数值计算每个粒子的适应度,用以评估其优劣程度。
3.更新粒子的速度和位置。
速度的更新包括惯性权重、自我认知因子和社会认知因子等参数。
位置的更新采用基本PSO的方式进行。
4.根据更新后的位置,重新计算粒子的适应度。
5.更新全局最优解集合,将非劣解加入其中。
采用非劣解排序方法来实现。
6.判断终止条件是否满足,若满足则输出所有非劣解;否则返回第3步。
MOPSO算法相对于传统的PSO算法,主要的改进在于更新全局最优解集合的方法上。
非劣解排序方法可以帮助保持解的多样性,避免陷入局部最优解。
多目标粒子群算法在多目标优化问题中具有一定的优势和应用价值。
它能够同时考虑多个目标的优化需求,并提供一系列的最优解供决策者选择。
在实际应用中,MOPSO算法已经成功应用于控制系统设计、图像处理、机器学习等多个领域。
总结起来,多目标粒子群算法是一种有效的多目标优化算法。
《粒子群优化算法》课件

CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数
pso原理

pso原理PSO(粒子群优化)原理与应用PSO(Particle Swarm Optimization)是一种优化算法,其灵感来源于鸟群觅食行为。
在鸟群中,鸟儿们通过相互沟通和合作,找到一片丰富的食物区域。
PSO算法通过模拟鸟群的行为,来解决优化问题。
PSO算法的核心思想是通过维护一群“粒子”的位置和速度来搜索最优解。
每个粒子表示一个解,其位置代表解的具体数值,速度代表解在搜索空间中的变动方向和距离。
粒子的位置和速度会根据历史最优解和群体最优解进行更新,以逐渐靠近最优解。
PSO算法的步骤如下:1. 初始化粒子群:随机生成一定数量的粒子,并为每个粒子设置随机的位置和速度。
2. 计算适应度:根据问题的特定要求,计算每个粒子的适应度值。
适应度值可以是目标函数的取值,也可以是问题的某种评价指标。
3. 更新粒子的速度和位置:根据粒子当前的速度和位置,以及历史最优解和群体最优解,更新粒子的速度和位置。
4. 更新历史最优解和群体最优解:根据当前粒子群的情况,更新每个粒子的历史最优解和群体最优解。
5. 判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。
6. 输出结果:输出最优解或满意的解。
PSO算法的优点在于其简单性和全局搜索能力。
由于算法的并行性和自适应性,PSO算法能够在较短的时间内找到较好的解。
此外,PSO算法不需要求解函数的梯度信息,因此适用于求解非线性、非凸的优化问题。
PSO算法在许多领域都有广泛的应用。
例如,在工程优化中,PSO 算法可以用于优化参数的选择、系统的调整和设计的改进。
在机器学习中,PSO算法可以用于优化神经网络的权重和偏置值。
在物流和路径规划中,PSO算法可以用于寻找最短路径或最优路径。
此外,PSO算法还可以用于经济学、医学、图像处理等领域的优化问题。
尽管PSO算法在许多问题上表现出色,但也存在一些局限性。
例如,PSO算法对问题的参数设置较为敏感,不同的参数选择可能导致不同的结果。
粒子群优化算法综述

粒子群优化算法综述粒子群优化(Particle swarm optimization, PSO)是一种以群体行为模型为基础的进化算法,它是模拟群体中每个体的行动及各种影响机制来找到最优解。
1995年,Eberhart和Kennedy提出了粒子群优化(PSO)算法。
这个算法被用于多维、非线性优化问题,并认为其结果要好于其他搜索算法。
一、粒子群优化算法介绍:1、算法框架:粒子群优化算法是一种迭代搜索算法,它模拟生物世界中群体行为的进化机制来寻找最优解,它的基本框架如下:(1)初始化参数:决定搜索空间的边界条件,确定粒子群的初始状态;(2)计算适应度函数:按照不同的情况确定适应度函数,计算粒子群种群体的适应度;(3)更新种群体:根据当前种群体的适应度情况,更新个体的位置和速度;(4)迭代搜索:重复以上步骤,等待算法收敛到最优解;(5)结果输出:输出算法收敛的最优解。
2、算法特点:粒子群优化算法具有以下优势:(1)算法易于实现;(2)参数少;(3)计算局部搜索和全局搜索并重;(4)利用简单的几何形式,可以用于多目标优化问题。
二、应用情况:粒子群优化算法在多种复杂场景中应用十分灵活,它可以用于以下几个应用场景:(1)最优控制问题:用于解决轨道优化、多种自控问题。
(2)另一个应用领域是多元函数的优化求解,例如多元函数拟合、计算仿真等。
(3)另一个重要应用领域是信息处理,包括图像处理、模式识别等。
三、发展趋势:粒子群优化算法具有很好的搜索能力、实现简单以及参数少等优点,由于其交叉搜索能力和准确度,越来越受到关注,并被采用到各个领域。
然而,近些年,粒子群优化算法也因其原始算法难以改进收敛精度方面存在一定限制,受到两方面限制:一是获得最优解的能力较弱;二是收敛速度较慢。
四、结论:粒子群优化算法是一种利用生物行为模型进行优化的新算法,它在最优控制技术、多元函数优化求解以及信息处理等多个方面具有很好的应用价值。
虽然存在一定的缺点,但是随着计算机能力和计算机科学的发展,粒子群优化算法仍然具有良好的发展前景。
粒子群优化法-概述说明以及解释

粒子群优化法-概述说明以及解释1.引言1.1 概述粒子群优化法(Particle Swarm Optimization,简称PSO)是一种用于求解优化问题的启发式算法。
它模拟了鸟群或鱼群中的群体协作行为,通过不断更新粒子的位置和速度,逐步逼近最优解。
PSO算法最早由Russell Eberhart和James Kennedy于1995年提出,并在之后的二十多年里得到了广泛应用和研究。
PSO算法是一种简单但高效的优化算法,其灵感源于群体智能中的群体行为。
它通过模拟从鸟群和鱼群等自然界中观察到的协同行为,将搜索空间中的解表示为“粒子”,每个粒子根据自己当前的位置和速度信息动态调整,并通过与其他粒子的互动来引导搜索过程。
在PSO算法中,每个粒子都有自己的位置和速度,并且能够记忆并更新自己及其他粒子的最优解。
通过不断地根据历史最优值和邻域最优值进行位置和速度的更新,粒子能够在搜索空间中逐渐找到最优解。
PSO算法具有计算简单、易于实现、收敛速度较快等优点,能够应用于解决连续优化问题、离散优化问题以及多目标优化问题等多个领域。
总的来说,粒子群优化法是一种基于群体智能的优化算法,通过模拟自然界中群体的协同行为,实现了对复杂优化问题的求解。
在实际应用中,PSO算法已经在函数优化、图像处理、机器学习、工程设计等众多领域展现出了良好的性能和广阔的应用前景。
本文将详细介绍粒子群优化法的原理和应用领域,并探讨其优势和发展前景。
1.2文章结构1.2 文章结构本文将按以下顺序展开对粒子群优化法的深入研究和讨论:1.2.1 粒子群优化法的概述首先,我们将介绍粒子群优化法的概念以及其基本原理。
我们将讨论其运作方式,了解粒子群如何模拟鸟群在搜索问题中寻找全局最优解的行为。
1.2.2 粒子群优化法的应用领域接下来,我们将探讨粒子群优化法在不同领域中的广泛应用。
粒子群优化法已被应用于许多问题领域,包括函数优化、图像处理、数据挖掘等。
粒子群算法

粒子群算法粒子群算法(ParticleSwarmOptimization,PSO)是一种仿生算法,可以用来求解优化问题,是基于社会诱导原理以及群集智能的分布式搜索过程,其灵感来自于一群鸟类(如谷雀)在共同搜寻有害物质或食物的行为模式。
PSO是一种无视搜索空间,迭代更新搜索最优解或最近最优解的方法。
每个粒子都有一组独立的位置和速度,它们会在迭代更新中改变位置,使其位置越接近最优解,而速度则会随着历史最优解的不断更新而改变。
二、典型应用自动寻找系统最优参数是各种控制应用中最重要的问题之一,粒子群算法是解决此问题的非常有效的算法。
例如,在过滤能廉价有效的情况下,它可以有效地提取出最佳的控制系统参数,以最大限度地改善系统性能。
粒子群算法也被广泛应用于各种研究领域,如计算机视觉,社会网络分析,增强学习等。
例如,在视觉识别应用中,PSO可以用来自动调节和改变图像处理算法的参数,使其最大化全局性能;在社会网络分析中,PSO可以用来提取社区结构,它可以发现社会社区,并估计社区数量和节点划分。
三、原理粒子群算法是一种迭代搜索最优解或者最近最优解的基于模拟的搜索算法,它以群众社会诱导原理与群集智能为基础,模拟有害物质或食物搜索行为的谷雀群体。
粒子群算法的操作原理如下:首先,初始化一组搜索的粒子,采用随机位置和速度;然后,用粒子的位置和速度来求解目标函数,每一次迭代可以确定一个最优解;最后,计算粒子的最佳位置和最佳速度,并根据该最佳位置和最佳速度来更新每个粒子的位置和速度,直到满足停止条件后结束算法。
四、优缺点粒子群算法在许多优化问题上表现出色,因其具有许多优点。
例如,它计算快速、结果可靠、不容易进入局部最优解,不需要对初始参数赋值;另外,它对操作简单、可以用于多维空间等。
然而,粒子群算法也存在着一些缺点,例如在求解高维优化问题时,收敛较慢,而且容易受到设定参数的影响;另外,在搜索空间较大时,它很容易陷入局部最优解,失去全局搜索能力。
粒子群算法

粒子群算法(PSO)
算法在迭代30次后跳出循环,输出最优解为[0.0202,0.0426],此时目标函数值为 因为我们选用的例子为二次型规划,显然最优解为[0,0],最优值为0。 最后,我们用一个三维动画来展示一下粒子群算法的寻优过程。
粒子群算法(PSO)
一、粒子群算法的概述 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块 食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通 过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解, 同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即我们所说的找到了最 优解,即问题收敛。
粒子群算法(PSO)
粒子群算法(PSO)
粒子群算法(PSO)
粒子群算法(PSO)
粒子群优化算法(Particle Swarm Optimization,简称PSO), 由1995年Eberhart博士和Kennedy 博士共同提出,它源于对鸟群捕食行为的研究。粒子群优化算法的基本核心是利用群体中的个体对信息的 共享,从而使得整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。 假设自己是一只身处鸟群中的鸟,现在要跟随头领去森林里找食物,我们每一只鸟都知道自己离食物的距 离,却又不知道食物在哪个方向。 所以,我们在森林里漫无目地的飞啊飞,每隔一段时间,大家会在微信群里共享一次各自与食物的距离。 然后鸟A发现自己与食物的距离是5公里,而群里鸟Z距离食物最近,只有50米的距离。 鸟A当机立断,在群里说:“我要去那看看!”然后一呼百应,鸟B、鸟C等都往鸟Z方向飞去,在鸟Z的周 围寻找食物。 就这样,本来大家都在沿着自己的方向飞,现在都要向鸟Z的位置靠拢,所以大家需要修改自己的飞行速 度和方向。 但是,当所有鸟儿准备调整自己的飞行轨迹时,鸟H突然想到:虽然现在鸟Z离食物只有50米,但是自己 曾经路过点P,那个位置离食物只有40米,所以它不知道自己是应该往点P方向还是往鸟Z的位置飞去。 鸟H就把自己的纠结发到了微信群里,然后大家一致决定,还是两者平衡一下,对两个位置进行矢量相加, 所以大家共同商量出了速度更新公式粒子群算法源自PSO)粒子群算法(PSO)
基本粒子群优化算法

基本粒子群优化算法基本粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自于鸟群捕食行为中的信息共享和合作。
该算法能够在空间内找到不错的解决方案,并且具有较强的全局收敛性和鲁棒性。
本文将详细介绍基本粒子群优化算法的原理、流程、变种以及应用领域。
一、基本粒子群优化算法的原理基本粒子群优化算法的原理是模拟社会性行为中物种群体的行为方式。
每个空间中的解被视为一个粒子,这些粒子之间通过其中一种形式的信息交流来寻找全局最优解。
在算法的每一代中,每个粒子记录着自身的位置、速度和当前最优解。
粒子迭代更新自己的速度和位置,通过与邻居粒子和全局最优解比较来引导方向。
通过不断迭代,粒子逐渐收敛于全局最优解。
二、基本粒子群优化算法的流程1.初始化粒子群:随机生成粒子群,设置每个粒子的初始位置和速度。
2.计算目标函数值:根据粒子的当前位置计算目标函数值,并更新该粒子的当前最优解。
3.更新全局最优解:比较粒子群中所有粒子的当前最优解,选取最优解作为全局最优解。
4.更新速度和位置:根据当前速度和位置,更新粒子的下一步速度和位置。
新位置在空间内随机选择,并根据速度进行调整。
5.收敛判断:判断是否满足停止条件,如果满足则结束;否则返回第2步。
三、基本粒子群优化算法的变种1.改进的基本粒子群优化算法:对基本粒子群优化算法进行改进,比如引入加速因子、惯性权重等参数来提升算法的收敛速度和精度。
2.多种群粒子群优化算法:将粒子群分为多个子群,在子群间进行信息共享和合作,以提高效率。
3.自适应权重的粒子群优化算法:根据过程中的适应度变化情况,自适应地调整粒子的权重,以提高算法的鲁棒性和全局收敛性。
四、基本粒子群优化算法的应用领域1.组合优化问题:如旅行商问题、背包问题等。
2.函数优化问题:如非线性优化、函数拟合等。
3.机器学习:如神经网络训练、特征选择等。
4.工程设计:如电力系统优化、通信网络设计等。
现代优化算法-粒子群算法

Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体 ,蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚 集成群可以有效地逃避捕食者,因为任何一只鱼发现 异常都可带动整个鱼群逃避。蚂蚁成群则有利于寻找 食物,因为任一只蚂蚁发现食物都可带领蚁群来共同 搬运和进食。一只蜜蜂或蚂蚁的行为能力非常有限, 它几乎不可能独立存在于自然世界中,而多个蜜蜂或 蚂蚁形成的Swarm则具有非常强的生存能力,且这 种能力不是通过多个个体之间能力简单叠加所获得的 。社会性动物群体所拥有的这种特性能帮助个体很好 地适应环境,个体所能获得的信息远比它通过自身感 觉器官所取得的多,其根本原因在于个体之间存在着 信息交互能力。
Swarm)对多维搜索空间进行搜索,每个个体在 搜索时,考虑到了自己搜索到的历史最好点和 群体内(或邻域内)其他个体的历史最好点, 在此基础上进行位置(状态,也就是解)的变 化
16
二. PSO的基本思想(12)
3. PSO算法概述 这里,多维搜索空间是对人类多维的心理空间
的模仿,个体在搜索时考虑自己的历史最好点 ,这是个体经验的积累,同时考虑到群体内其 他个体的历史最好点,这是社会信息的共享作 用和个体本身具有学习能力的表现。
Swarm Intelligence(续)
James Kennedy和Russell C.Eberhart在 2001年出版了《Swarm Intelligence》,是 群智能发展的一个重要历程碑,因为此时已有 一些群智能理论和方法得到了应用。他们不反 对Bonabeau关于SI定义,赞同其定义的基本 精神,但反对定义中使用“主体”一词。其理 由是“主体”所带有自治性和特殊性是许多 Swarm的个体所不具备和拥有的,这将大大限 制Swarm的定义范围。他们认为暂时无法给出 合适的定义,赞同由Mark Millonas(1994) 提出的构建一个SI系统所应满足的五条基本原 则:
粒子群优化算法-PSO

即保证,可以设置一个常数参量 vmax 以限制 vij(t)的范围。通常 vmax 可设为 4.0
[21][23]
。在这个二进制模型中,vmax 与遗传算法中的变异算子的作用相类似。
DBPSO 算法更新流程与基本 PSO 算法基本一致,可以描述为: 步骤 1:初始化粒子的位置和速度; 步骤 2:根据适应度函数评价每一个粒子; 步骤 3:更新粒子局部最优和种群全局最优; 步骤 4: 根据公式(2.1)更新粒子的速度, 根据公式(2.3-2.4)更新粒子的位置; 步骤 5:检验是否符合结束条件。若满足则停止迭代,否则转到步骤 2。 2.2.2 DBPSO 算法参数 参数是影响算法性能和效率的关键, 如何确定最优参数使算法性能最佳本身 就是一个极其复杂的问题。前期 DBPSO 算法的研究工作对 DBPSO 算法相关参 数的选取及对算法的性能影响进行了分析和实验。 1.种群规模 种群规模过小时,算法陷入局优的可能性很大,且算法难以有效利用群体搜 索机制进行优化搜索,算法性能不佳。随着群体增加算法性能提升,但过大的种 群将导致计算时间大幅增加, 并且当群体规模增大至一定数值后对算法性能提高 不再有作用。因此对于简单低维优化问题,种群规模一般可取 30~50;而对于复 杂的高维优化问题,种群规模可以取 100~300。 2.加速系数 c1 和 c2 加速系数起到平衡局部搜索和全局搜索的作用。Kennedy 和 Eberhart 在提出 PSO 算法时将其设置为 2.0, 以保证粒子速度更新公式中的随机乘积均值等于 1。 Clerc 则根据算法收敛性分析[24]推导出 c1+c2 应大于 4.1,为此有些学者[25-26]建议 设置 c1= c2=2.05, 也有研究者认为 c1 应与 c2 不等, 并由实验得出 c1=2.8, c2=1.3[27]。 但这些研究工作都是针对连续 PSO 算法,由于在 DBPSO 算法中速度的物理意 义已经改变,因此加速系数对于 DBPSO 算法性能的影响与连续 PSO 中的不同, 文献[28]对加速系数对 DBPSO 算法性能的影响进行了实验分析,测试结果表明 DBPSO 算法中算法性能对加速系数的敏感程度弱于 PSO 算法,但过大、过小的 加速系数都不利于算法全局优化性能, 且对于不同类型的优化问题最优的加速系
粒子群算法概述

“只有自我,没有社会” 完全没有信息的社会共享 导致算法收敛速度缓慢
粒子群算法的构成要素-权重因子 权重因子:惯性因子 、学习因子
k k-1 k 1 k 1 vid =wvid c1r1 ( pbestid xid ) c2r2 ( gbestd xid )
线性递减权值
run w wmax ( wmax wmin )* runmax
wmax最大惯性权重,wmin最小惯性权重,run当前迭代次 数,runmax为算法迭代总次数 较大的w有较好的全局收敛能力,较小的w则有较强的 局部收敛能力。因此,随着迭代次数的增加,惯性权重w 应不断减少,从而使得粒子群算法在初期具有较强的全局 收敛能力,而晚期具有较强的局部收敛能力。
k vid —第k次迭代粒子i飞行速度矢量的第d维分量 k xid —第k次迭代粒子i位置矢量的第d维分量
v =wv c1r1 ( pbestid x ) c2r2 ( gbestd x )
k id k-1 id
k 1 id
k 1 id
粒子速度更新公式包含三部分: 第一部分为粒子先前的速度 第二部分为“认知”部分,表示粒子本身的思考,可理解为 粒子i当前位置与自己最好位置之间的距离。 第三部分为“社会”部分,表示粒子间的信息共享与合作, 可理解为粒子i当前位置与群体最好位置之间的距离。
粒子群优化算法求最优解
D维空间中,有N个粒子;
粒子i位臵:xi=(xi1,xi2,…xiD),将xi代入适应函数f(xi)求适应值;
粒子i速度:vi=(vi1,vi2,…viD) 粒子i个体经历过的最好位臵:pbesti=(pi1,pi2,…piD)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优化算法——粒子群算法(PSO)
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于鸟群智能行为的全局优化算法,最初由Kennedy和Eberhart于1995年提出。
PSO是一种启发式算法,通过模拟鸟群中鸟的群体行为来寻找问题的最优解。
PSO算法的基本思想是通过每个粒子的个体最优位置和整个群体的全局最优位置来实现过程。
在算法开始时,所有粒子根据问题的空间范围随机初始化,每个粒子具有一个速度和位置。
粒子根据自身的速度依次更新位置,并根据当前位置和历史最优位置来更新速度和个体最优位置。
整个群体通过比较个体最优位置来更新全局最优位置。
更新速度和位置的过程通过调整权重因子来实现。
PSO算法的关键是如何设置速度更新公式和适应度函数。
速度更新公式包括两个部分:粒子的个体最优位置和整个群体的全局最优位置。
粒子根据自身的速度和个体最优位置来调整速度,以向个体最优位置靠近。
同时,粒子还需要考虑整个群体的全局最优位置,以保持协作和合作。
适应度函数用于评估每个粒子的位置的好坏,它是问题特定的,需要根据具体问题来设计。
PSO算法的特点是简单、易于实现和收敛速度快。
与其他算法相比,PSO算法具有以下优势:
1.不需要问题的导数信息。
PSO算法只需要计算目标函数即可,不依赖于问题的导数信息,适用于非线性和高度复杂的问题。
2.全局能力强。
通过群体的协作和合作,PSO算法具有很好的全局能力,能够找到问题的全局最优解。
3.算法参数少且易于调整。
PSO算法只有几个参数需要调整,调整参
数相对简单,不需要复杂的参数优化过程。
然而,PSO算法也存在一些问题:
1.容易陷入局部最优解。
由于算法的随机性和全局能力,PSO算法容
易陷入局部最优解,无法找到问题的全局最优解。
为了克服这个问题,研
究者提出了很多改进的PSO算法,如自适应权重PSO、混合PSO等。
2.对问题的形状和维度敏感。
PSO算法对问题形状和维度敏感,对于
特定形状的问题(如凸函数),PSO算法能够找到最优解,但对于非凸函
数等形状复杂的问题,可能会出现收敛速度较慢或找不到最优解的情况。
为了提高PSO算法的性能,研究者提出了很多改进方法,如引入自适
应权重、改进速度更新公式、加入局部等。
此外,与其他优化算法结合使
用也是提高PSO算法性能的一种方法。
例如,将PSO算法与遗传算法相结合,形成混合优化算法,能够充分发挥两种算法的优势。
总之,粒子群优化算法是一种有效的求解全局优化问题的启发式算法,具有简单、易于实现和收敛速度快的特点。
通过增加算法的能力和对问题
的形状和维度的处理,可以进一步提高算法的性能。
在实际应用中,PSO
算法被广泛应用于函数优化、组合优化、机器学习等领域。