相似三角形难题集锦(含答案)

合集下载

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。

〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

(完整版)相似三角形难题集锦(含答案),推荐文档

(完整版)相似三角形难题集锦(含答案),推荐文档

2.如图,在△ABCABC,动点P以2m/s的速度从移动.同时,动点Q以1m/s的中,ACB90°,平分CDB点到达B点时,Q点随之的速度移动.如果P、Q同时出发,用<t<6)。

中,点A的坐标为(2,1),的图象与线段OA的夹角是45°,在△ABCAB=,为边在C建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙,∠ACB=90°,点M是AC上的一轴上,.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+——A、X字型上一点,AD=AC,BC边上的AE交CD于F求证:求证:中,AB∥CD,AB=b,CD=a,E为边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;当时,;(3)当时,EF=.当时,参照上述研究结论,请你猜已知:如图,在△ABC中,M是AC的中点,E、建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙离等于该顶点对边上中线长的.)角平分线定理:三角形一个AB于点E、F.求证:.O,过O作EF//AB求证:.的四个顶点分别在△ABC 求证:.长为a.求证:.,点在平行延长线于点Q,S,交于点.求证:)如图2,图,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙建议收藏下载本文,以便随时学习!、G、H.求证:为直角.求证:求证:的延长线交于点E.))求证:.是BC的中点,连接、CG,AE与CG相交于点证:.分别是△ABC的两边上的高,过D作BA的延长线于F、H。

;(2)BG·CG=GF·GH交于点M,EF与AC交于点旋转,使得DE与BA三角形并证明你的结论.)请写出图中各对相似三角形(相似比为1除外)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙中,AD⊥BC 于D 。

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC ∥AMN ABC ∴△∽△ 68h x ∴= 34x h ∴= (2)1AMN A MN △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤)②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴∥△∽△11A MN ABC A EF ABC ∴△∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=△ 22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪ ⎪⎝⎭1△A1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△ 所以 291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>∴当163x =时,y 最大,8y =最大2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;MNCB EFAA 1【答案】解:(1)该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m , 则P 点的纵坐标为215222m m -+-, 当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=°,∴①当21AM AO PM OC ==时,APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,.类似地可求出当4m >时,(52)P -,. 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,.3.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,. ∴()8412AB =--=.由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ∴111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,.又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-, ∴38038]32838)4(32[421+-=-++-⨯=t t t s 当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t t t t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,BC →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.(1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.【答案】解: (1)34PM =,(2)2t =,使PNB PAD △∽△,相似比为3:2(图3)(图1)(图2)N(3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==,, (1)3t a QM a-∴=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a=+,3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66at a=+代入,解之得a =±,所以a =. 所以,存在a ,当a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形.(2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ;(3)因为QR ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600,所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t,所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形, 所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ,所以∠QPR=∠A=600,所以tan600=PR QR ,即3326=-tt ,所以t=56, 所以当t=56时, △APR ~△PRQ6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式; (3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.图7-2AD O BC 21MN图7-1AD BM N1 2D 2MO.7.在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE .又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。

答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。

答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。

因此,BC:EF=AB:DE=6:9=2:3。

设BC=2x,则EF=3x。

由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。

因此,BC=6cm,
EF=9cm。

2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。

答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。

因此,k^2=24/36=2/3,解得k=√(2/3)。

所以相似比为√(2/3)。

史上最全!!!!相似三角形难题精选

史上最全!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

史上全面!!!!相似三角形难题精选

史上全面!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A 点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(s)表示移动的时间(0<t<6)。

史上最全!!!!相似三角形难题精选

史上最全!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A 点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(s)表示移动的时间(0<t<6)。

(完整版)相似三角形经典解答题难题含答案个人精心整理,推荐文档

(完整版)相似三角形经典解答题难题含答案个人精心整理,推荐文档

一、相似三角形中的动点问题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt △ABC 中,ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为N .(1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ ∥BC ?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。

(完整版)相似三角形难题集锦含答案,推荐文档

(完整版)相似三角形难题集锦含答案,推荐文档

求证:

求证:
24.已知,如图,锐角△ABC 中,AD⊥BC 于 D,H 为 垂心(三角形三条高线的交点);在 AD 上有一点 P, 且∠BPC 为直角.求证:PD2=AD·DH 。
求 C、D 两点的坐标。
三、构造相似辅助 线——A、X 字型 11.如图:△ABC 中,D 是 AB 上一点,AD=AC,BC 边上的 中线 AE 交 CD 于 F。 求证:
12.四边形 ABCD 中,AC 为 AB、AD 的比例中项,且 AC 平分∠DAB。
求证:
14.已知:如图,在△ABC 中,M 是 AC 的中点,E、F 是 BC 上的两点,且 BE=EF=FC。 求 BN:NQ:QM.
7.在△ABC 中,
AB= ,AC=4,BC=2,以 AB 为边在 C 点的异侧作△ABD, 使△ABD 为等腰直角三角形, 求线段 CD 的长.
8.在△ABC 中,AC=BC,∠ACB=90°,点 M 是 AC 上的一 点,点 N 是 BC 上的一点,沿着直线 MN 折叠,使得点 C 恰好落在边 AB 上的 P 点.求证:MC:NC=AP:PB.
2.如图,在△ABC 中, ABC=90°,AB=6m,BC=8m,
动点 P 以 2m/s 的速度从 A 点出发,沿 AC 向点 C 移 动.同时,动点 Q 以 1m/s 的速度从 C 点出发,沿 CB 向 点 B 移动.当其中有一点到达终点时,它们都停止移 动.设移动的时间为 t 秒. (1)①当 t=2.5s 时,求△CPQ 的面积; ②求△CPQ 的面积 S(平方米)关于时间 t(秒)的函数 解析式; (2)在 P,Q 移动的过程中,当△CPQ 为等腰三角形时, 求出 t 的值.
二、构造相似辅助 线——双垂直模型 6.在平面直角坐标系 xOy 中,点 A 的坐标为(2,1), 正比例函数 y=kx 的图象与线段 OA 的夹角是 45°, 求这个正比例函数的表达式.

相似三角形测试题及答案

相似三角形测试题及答案

相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。

以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。

答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。

答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。

答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。

答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。

已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。

因此,AC = 6.25cm。

8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。

已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。

答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。

答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。

答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。

这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。

四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。

答案:首先,利用余弦定理计算BC的长度。

根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。

代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。

然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。

7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。

答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。

相似三角形综合题锦(含答案)

相似三角形综合题锦(含答案)

一、相似三角形中的动点问题1.如图,在Rt△ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB1∥AC.动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH⊥AB 于H ,过点E 作EF⊥AC 交射线BB1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒. (1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt△ABC 中,ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分CDB 交边BC 于点E ,EM⊥BD,垂足为M ,E N⊥CD,垂足为N .(1)当AD =CD 时,求证:DE∥AC;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ∥BC?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。

初三相似三角形难题

初三相似三角形难题

初三相似三角形难题一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG 与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s 的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q 点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

相似三角形有难度有答案

相似三角形有难度有答案

1、已知△ABC是等边三角形,点P是AC上一点,PE⊥BC于点E,交AB于点F,在CB的延长线上截取BD=PA,PD交AB于点I,.(1)如图1,若,则= ,= ;(2)如图2,若∠EPD=60º,试求和的值;(3)如图3,若点P在AC边的延长线上,且,其他条件不变,则= .(只写答案不写过程)2、△ABC是锐角三角形,BC=6,面积为12.点P在AB上,点Q在AC上.如图9-33,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC的公共部分的面积为y.图9-33(1)当RS落在BC上时,求x;(2)当RS不落在BC上时,求y与x的函数关系式;(3)求公共部分面积的最大值.3、如图,在正方形中,分别是边上的点,连结并延长交的延长线于点(1)求证:;(2)若正方形的边长为4,求的长.4、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)图(1),当t为何值时,AP=2AQ;(2)图(2),当t为何值时,△APQ为直角三角形;(3)图(3),作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?图(1)图(2)图(3)5、阅读理解如图,在中,AD平分,求证:.小明在证明此题时,想通过证明三角形相似来解决,但发现图中无相似三角形,于是过点B作BE//AC交AD的延长线于点E,构造∽,则.于是小明得出结论:在中,AD平分,则.(1)请完成小明的证明过程。

应用结论(2)如图,在中,AD平分线段BD的长度为:‚求线段CD的长度和的值6、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.7、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.8、如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。

相似三角形难题及答案-精练版

相似三角形难题及答案-精练版

相似三角形提高训练一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

相似三角形经典练习题及答案

相似三角形经典练习题及答案

相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。

因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。

2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。

因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。

因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。

3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。

设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。

4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。

因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。

所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。

5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。

相似三角形经典题(含答案)(Si...

相似三角形经典题(含答案)(Si...

相似三角形经典题(含答案)(Similar triangle classic questions(including answers))Similar triangle classical exercisesExample 1. Choose a similar triangle from the following trianglesExample 2 is known: as in figure ABCD, the ratio of the perimeter to the sum if...Figure 3 cases, known to, to prove that.Example 4 which of the following statements are true and which ones are wrong?(1) all right triangles are similar. (2) all isosceles triangles are alike(3) all isosceles right triangles are similar. (4) all equilateral triangles are alikeFigure 5 example, D is a point on the AC, D DE E the dotted line, in the side, the small triangle and point D, point E and a vertex with similar composition. Draw as much as possible to meet the conditions of the graphics, and that of line DE painting.Figure 6 cases, a person holding a small scale paintings engraved with cm, standing about 30 meters away from the poles, the arm straight forward, small scale vertical ruler, see about 12 paintings just over the poles, the known arm length of about60 cm high, for the wire rod.Figure 7 cases, in order to measure a high-rise MN Xiaoming, put a mirror in the A from N 20m, NA back to C along the Xiao Ming, just from the mirror to see the roof of M, if m, his eyes from the ground height of 1.6m, please help you calculate Xiaoming the height of the building (accurate to 0.1M).The two triangles in the 8 lattice diagram are similar triangles, and the reasons are givenExample 9 determines whether the case is similar and explains the reasons for the following groups of conditions:(1)(2)(3)Example 10. In the following graph, there is no similar triangle. If it exists, show them in letters, and briefly explain the basis for identificationExample 11 is known: as in Fig., in the case of angular bisector, try using a triangle similar relation descriptionExample 12, the known three side length is 5, 12 and 13, and its similar maximum length is 26, the area of S.13 cases in a mathematics activity class, the teacher let thestudents to the playground to measure the height of the flagpole, and then come back to AC measurement method for their measurement is. Xiaofang: take a 3.5 meter high pole upright in the 27 meters away from the flagpole at C (pictured), then walk along the BC direction D, the top of the flagpole and pole top A visual E is in the same line, C D, and measured the distance between two points is 3 meters, Xiaofang mesh is 1.5 meters high, so that you can know the high flagpole. Do you think this measurement method is feasible? Please explain the reasonFigure 14. cases, in order to estimate the width of the river on the other side of the river, we can select a target as A, on this side of the river and then points B and C, so, then choosing E, BC and AE to determine the intersection point is D, measured in meters, meters, meters, you can find the distance between the two sides of AB roughly?Figure 15. cases, in order to find the island peak height of AB, DC and FE to establish a benchmark in D and F, the benchmark is 3 feet high, separated by 1000 step (step 1 is equal to 5 feet), and AB, CD and EF in the same plane, from the G DC benchmark back the 123 step, can see peaks A and C benchmark top end in a straight line, from the H FE benchmark 127 steps back, can see peaks A and E benchmark top on a straight line. How much is the horizontal distance BD AB and its peak height and benchmark CD? (ancient problems)Figure 16 example, known Delta ABC boundary AB = AD, AC = 2, BC = high on the side.(1) seeking the length of BC;(2) if there is a square edge on AB, the other two vertices are on AC, BC, respectively, and the area of this square is calledSimilar triangle classic Exercises answer1. cases of the solution, five and six, and the similar, similar, three or four, and similar2. solution is a parallelogram, so, l ~,Again, so, and the perimeter of the perylene ratio is 1:3.Again, dry.3 cases analysis, so as to, if further proof, the problem must pass.To prove dreams, *.Again, l,Star.To dreams, *.In dreams, and in R ~Case 4. analysis (1) is incorrect, because in the right triangle, the size of the two angles is uncertain, so the shape of the right triangle is different(2) not correct either,The vertices of an isosceles triangle are not of definite size, so the shape of an isosceles triangle is also different(3) right. There are isosceles right triangle ABC and, among them,Then,The three sides are a, B, and C, and the edges are,Then,So, l ~.(4) is correct, and is an equilateral triangle, the corresponding angles are equal, the corresponding edge is proportional to it.Answer: (1) and (2) incorrect. (3) and (4) correctExample 5. solutions:Painting slightly.The analysis of 6. cases of the narrative can draw the geometry as shown below, the CM cm m, m, m, and BC. ~ ~ because, again, so, so you can find the BC long.So, l ~ solution. Hence.Again, l,So, l ~ *,.And cm cm meters, meters, meters, meters. The pole star is 6 meters high.Example 7. analysis according to the law of Physics: the incident angle of light is equal to the angle of reflection, so that the similarity relation is clearBecause the solution, so so.So, that is. So (m)This shows that this is a practical application, the method seems simple, but in fact it is very clever, saving the use of instrumentation to measure the troubleExample 8.. It is impossible to judge these two graphs if they are not painted in the grid. In fact, the lattice virtually adds to the condition the length and the angleThe solution is in the grid, so..,Again. So. So ~.Explain the problems encountered in the grid point, we must fully find the various conditions, do not make omissionsIn 9. cases (1) because the solution to it;(2) because the two triangles only, the other two are not equal, and not so similar;(3) because, so it is similarIn 10. cases (1) and two equal solution; (2) to two equal;(3) to two equal; (4) to both sides proportionally equal angles;(5) to both sides proportionally equal angles; (6) to both sides proportionally equal angles.Analysis of 11. cases with a 65 degree angle of the isosceles triangle, the angle is 72 degrees, and BD is the bisector of the corner, so, you can launch to, and then by the similar triangle corresponding edge is proportional to the ratio between the line launched.That star.But equally, dry.And so, so, so, so, L.That (1) has two angles equal, then the two triangles are similar, this is the judgment of two triangles. The most commonly used method, and according to the equal angle position, can determine which side is the corresponding edge.(2) to explain the product of a line, or the square formula, usually to prove the scaling formula, or, again, to derive the product formula or the square formula according to the basic nature of the proportionBy the analysis of 12 cases of the three sides can be judged as a right triangle, and because it is also a right triangle, so, then by the maximum edge length is 26, can calculate the similarity ratio, two right angle side to calculate, and obtain the area.The solution of a three side in order,,, L.And to dreams, *,Again, *. *.13. cases analysis method to judge whether it is feasible, should consider the use of this method combined with our existing knowledge can be obtained according to the flagpole high. This measuring method, F to G, CE to H, so that, and GF, HF, EH and AG, this can be obtained, so the AB can be obtained. The flagpoleThe solution is feasible. The reasons are as follows:The flagpoles high. F for G, CE H (pictured). So ~.Because, soSo, that is, by, so the solution (m)So the height of the flagpole is 21.5 metersIt shows that the method should be practical and feasible in concrete measurementExample 14. solutions:,L ~, (m), a: between the two sides of AB is roughly 100 meters away.Example 15. answer: rice, step, (Note:.)16. cases analysis: BC long, need to draw solution, because AB and AC are higher than AD, so there are two kinds of situations, namely D in BC or D in the BC extension line, so long for the BC to two to discuss the situation. For the area of a square key is the length of the side for a square.Solution: (1) as above, by the AD BC group, by the Pythagorean theorem BD = 3, DC = 1, BC = so BDDC = 3 + 1 = 4.As follows, BD = 3, DC = 1, so BC = BD = CD = 3-1 = 2.(2) as shown by the graph, BC = 4, and so is ABC. Hence, the right triangle.The AEGF is a square, set GF = x, FC = 2x,GF "AB dreams, so, that is. So, dry.As follows, when BC = 2,AC = 2, Delta ABC is an isosceles triangle, as an CP AB in P, AP = r,In Rt APC, by the Pythagorean theorem CP = 1,Dreams GH / / AB, R ~ Delta CGH Delta CBA, dreams, RTherefore, the square has an area of orThird (lower) similar triangleFirst pages, 6 pages(similarity triangle's nature and application) practice rollFill in the blanks1. When the similarity ratio between two similar triangles is 3, their perimeter ratio is..;2, if the delta delta A to ABC 'B' C ', and the perimeter of delta ABC is 12cm, then the perimeter of delta A' B 'C' for;3, as shown in Figure 1, in ABC, BE, CD line intersect at point G, then the delta GED:S Delta GBC= = S;4, as shown in Figure 2, the ABC / B= / AED, AB=5, AD=3, CE=6, AE=;5, as shown in Figure 3, ABC, M AB is the midpoint of the N on BC, BC=2AB / BMN= / C, is a ~ Delta, similarity ratio =;6, as shown in Figure 4, the trapezoidal ABCD, AD / / BC S, Delta ADE:S Delta BCE=4:9, Delta ABD:S Delta ABC= S;The perimeter of 7 and two similar triangles are 5cm and 16cm, respectively, and the ratio of the bisector of their corresponding angles is;8, as shown in Figure 5, the BC=12cm in ABC, D, and F are three points AB, E, G is three points AC, DE+FG+BC=;The ratio of the area of the two and the 9 triangles is 2:3, and the ratio of them to the angle is equal to the ratio of the height of the opposite side;10, it is known that there are two triangles similar, one side length is 2, 3 and 4 respectively, and the other side length is x, y and 12 respectively. Then the values of X and y are respectively;Two, multiple-choice questions11, the following polygon must be similar to (), A, two rectangles, B, two diamond, C, two squares, D, two parallelogramIn 12, ABC, BC=15cm, CA=45cm, AB=63cm, the shortest edge of another and it is similar to the triangle is 5cm, is the longestside (18cm) is A, B, 21cm C, 24cm D, 19.5cm13, as shown in ABC, BD, CE to the high point of O, the following conclusion is wrong ()A, CO, CE=CD, CA, B, OE, OC=OD, OBC, AD, AC=AE, AB, D, CO, DO=BO, EO14, known in ABC / ACB=900, CD, AB in group D, if BC=5, CD=3, AD (long)A, 2.25 B, 2.5 C, 2.75 D, 315, as shown in figure ABCD, the edge of square BC is on the bottom QR of the isosceles right triangle PQR,The other two vertices, A and D, are on PQ and PR, and PA:PQ equals ()A, 1:B, 1:2, C, 1:3, D, 2:316, as shown in figure D, and E are Delta ABC edge AB and AC point, ==3,And / AED= / B, Delta AED and delta ABC is the area ratio is ()A, 1:2, B, 1:3, C, 1:4, D, 4:9Three, answer questions17, figure, known in the delta ABC, CD=CE / A= / ECB, CD2=AD - BE test.18, known as shown in ABC, DE, BC, AD=5, BD=3, S and delta ADE:S Delta ABC value.19, known square ABCD, C straight line, respectively, AD, AB extension line at points E, F, and AE=15, AF=10, square ABCD for the length of the side.20, known as shown in the equilateral Delta CDE and B respectively, A ED, DE extension line, DE2=AD and EB, and the degree of angle ACB.21, known as shown in ABC / C=600, AD, BC in D group, BE group AC E, Delta CDE Delta CBA to explain.22, known, as shown in figure F, ABCD edge, DC extension of the line point, link AF, pay BC at G, hand in BD at E, try to explain AE2=EG EF24. ABC, D, E / C=900, respectively AB, AC on AD, AB=AE AC, ED AB (13) to verify the aboveIn 25, ABC, M and AC is the midpoint, side of the AE=BA connection EM, and extend the BC line to D, verify the BC=2CDAB=AC, the 26 known isosceles triangle ABC, AD, BC in group D, CG, AB, AD, AC BG respectively in E, F, BE2=EF and EG prove:27, known in ABC, AD / BAC=900 BC in D P group, AD midpoint, BP extension line AC to E EF BC in F, an EF2=AE AC confirmation:28., as shown in the parallelogram,1. APD ~ CDQTwoMap your own painting, with a triangle of 30 degrees can be drawn outDreams of an isosceles triangle ABC / ABC = 120 DEGL / DAP= / DCQ=30 / CDQ / PDA=150 ~ * ~ / ADP / APD=150 degrees and dreamsL / CDQ= / APD / DAP= / QCD and dreamsStar delta APD Delta CDQ ~ AP/CD=PD/DQ frequencyD is the midpoint of AC AD=DC dreams AP/DP=AD/DQ AP/AD=PD/QD perylene perylene perylene / PDQ= / PAD dreamsStar delta APD to DPQ3. a triangle has 1 angles of 30, and the other has 2 30 degrees angles, in favor of the 155| review (6)(1) dreams / ABC=120 / A= / L degrees, C=30 degrees,Dreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees degrees,L / APD= / CDQ,Star delta APD to CQD(2) set up; as shownDreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees, degrees, R / APD= / CDQ / A= / C, andStar delta APD to CQD / A= / C only, the other corresponding angle are not equal, therefore, Delta APD and delta DPQ is similar;(3), two triangle into a more general condition, but the ABC must be an isosceles triangle, and / EDF= / A, otherwise it is not established.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似三角形中的动点问题
1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF 中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,
求t的值.
2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.
(1)①当t=2.5s时,求△CPQ的
面积;
②求△CPQ的面积S(平方米)关
于时间t(秒)的函数解析式;
(2)在P,Q移动的过程中,当△
CPQ为等腰三角形时,求出t的值.
3.如图1,在Rt△ABC 中,ACB
=90°,AC=6,BC=8,点D
在边AB上运动,DE平分垂足为N.
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
4.如图所示,在△ABC中,
BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.
(1)当x为何值时,PQ∥BC?
(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.
5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。

(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
二、构造相似辅助线——双垂直模型
6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.
7.在△ABC中,
AB=,
AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.
8.在△ABC中,AC=BC,∠
ACB=90°,点M是AC上的
一点,点N是BC上的一点,
沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,
矩形ABCO的边OA在x
轴上,边OC在y轴上,
点B的坐标为(1,3),将
矩形沿对角线AC翻折B
点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()
A. B.
C.
D.
10..已知,如图,直线y=﹣
2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

求C、D两点的坐标。

三、构造相似辅助线——A、X字型
11.如图:△ABC中,D是AB上一点,AD=AC,BC 边上的中线AE交CD于F。

求证:
求证:
13.在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:
(1)
当时,EF=;(2)当时,EF=;
(3)
当时,EF=.当时,参照上述研究结论,请你猜想用a、b和k表示EF的一般结论,并给出证明.
14.已知:如图,在△ABC中,M
是AC的中点,E、F是BC上的
两点,且BE=EF=FC。

求BN:NQ:QM.15.证明:(1)重心定理:三角形顶点到重心的距离
等于该顶点对边上中线长的.(注:重心是三角形三条中线的交点)(2)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例.
四、相似类定值问题
16.如图,在等边△ABC中,M、N分别是边AB,AC 的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点E、F.
求证:.
17.已知:如图,梯形ABCD中,AB//DC,对角线AC、
求证:.
18.如图,在△ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在△ABC上。

求证:.
19.已知,在△ABC中作内接菱形CDEF,设菱形的边长为a .求证:.
五、相似之共线线段的比例问题
20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S ,交于点.求证:
(2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);
21.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF .
22.如图,已知&Delta;ABC中,AD,BF分别为BC,AC 边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。

求证:DE2=EG•EH 23.已知如图,P为平行四边形ABCD的对角线AC 上一点,过P的直线与AD、BC、CD的延长线、AB 的延长线分别相交于点E、F、G、H.
求证:
24.已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);
在AD上有一点P,且∠BPC为
直角.求证:PD2=AD·DH 。

六、相似之等积式类
型综合
25.已知如图,CD是Rt△ABC
斜边AB上的高,E为BC的中点,ED的延长线交CA于F。

求证:
26如图,在Rt△ABC中,CD是斜边AB上的高,点M 在CD上,DH⊥BM且与AC的延长线交于点E.
求证:(1)△AED∽△CBM;(2)
27.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.
(1)求证:.
(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由. CG,AE与CG相交于点M,CG与AD相交于点N.求证:.
29.如图,BD、CE分别是△ABC的两边上的高,过D 作DG⊥BC于G,分别交CE及BA的延长线于F、H。

求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH
七、相似基本模型应用
30.△ABC和△DEF是两个等腰
直角三角形,∠A=∠D=90°,△DEF
的顶点E位于边BC的中点上.
(1)如图1,设DE与AB交于
点M,EF与AC交于点N,求
证:△BEM∽△CNE;
(2)如图2,将△DEF绕点E旋转,使得DE与BA 的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似。

相关文档
最新文档