变压器差动保护原理图解

合集下载

变压器继电保护差动优秀课件

变压器继电保护差动优秀课件

2020/10/24
11
保护装置外部转换
2020/10/24
12
保护装置内部转换
I
Y A
1
Y

I
Y C
1
I
Y B
1
I
A
1


不同 相
I
B
1
I
C
1
一次电流
I A ( I A I B ) / 3
I B ( I B I C ) / 3
I C ( I C I A ) / 3
主变Y侧 主变△侧不变换
若取 KTA IT.n 5
IY T.n
,
I T.n
则:变压器Y侧,电流为 35 A
变压器 侧,电流为 5A
2020/10/24
32
一、变压器差动保护的原理
1.内部故障时 设变压器两侧额定电流分别为
2020/10/24
IrI2 - I2 K 1TA I1- I1 Iunb
33
1.3相位补偿后,电流互感器变比的选择
特点:1、含有大量非周期分量,曲线偏向 时间轴一侧 。波形不对称
2、大量高次谐波。二次谐波为主 3、具有间断角
2020/10/24
6
采用速饱和变流器
电磁式差动继电器 变流器:差动电流不直接流入继电器线圈, 经变流器滤除电流中非周期分量
2020/10/24
K
Wd
W2
KD
7
波形不对称原理
微机保护可以识别差动电流的正负半周是否对称,当电流波形严重不 对称时判为励磁涌流情况,闭锁差动保护。
2020/10/24
Y侧
UY T.n
115KV,

双绕组单相变压器差动保护原理

双绕组单相变压器差动保护原理

双绕组单相变压器差动保护原理
对于双绕组单相变压器,其差动保护的原理接线图为下图1。

图中1I 、2I 分别为变压器一次侧和二次侧的一次电流,参考方
向为母线指向变压器;1I '、2I '为相应的电流互感器二次电流。


入差动继电器KD 的差动电流为:
12
r I I I ''=+
图1 双绕组单相变压器差动保护原理接线图
差动保护的动作判据为:
r set I I ≥
式中,set I 为差动保护动作电流, 12||r I I I ''=+为差动电流的有效值。

设变压器的变比为12/T n U U =,则有: 12121112121
(1)T TA T r TA TA TA TA TA I I n I I n n I I n n n n n +=+=+- 式中, 1TA n 、2TA n 分别为两侧电流互感器的变比。

若选择电流互感器的变比,使之满足:
21
TA T TA n n n = 这样:
12
1T r TA n I I I n +=
忽略变压器的损耗,正常运行和区外故障时一次电流的关系为120T n I I +=,这样正常运行和变压器外部故障时,差动电流为零,保护不会动作;变压器内部(包括变压器与电流互感器之间的引线)任一点故障时,相当于变压器内部多了一个故障支路,流入差动继电器的差动电流等于故障点电流(变换到电流互感器二次侧),只要故障电流大于差动继电器的动作电流,差动保护就能迅速动作。

变压器的纵差动保护原理及整定方法

变压器的纵差动保护原理及整定方法

热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。

由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。

例如在图1中,应使图1 变压器纵差动保护的原理接线'2I =''2I =1'1l n I =21''l n I 或 12l l n n 1'1''I I =B n 式中:1l n —高压侧电流互感器的变比;2l n —低压侧电流互感器的变比;B n —变压器的变比(即高、低压侧额定电压之比)。

由此可知,要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比B n ,这是与前述送电线路的纵差动保护不同的。

这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。

二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于İ1′′ n İ1′差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。

但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。

励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。

《变压器的差动保护》PPT课件

《变压器的差动保护》PPT课件

精选PPT
6
变压器差动保护其差动回路中的不平衡电流大,必须采取措施躲开不 平衡电流或设法减小不平衡电流的影响。
(一)变压器励磁涌流的特点及减小其对纵差保护影响的措施 1励磁涌流的产生及特点 变压器的励磁电流只通过变压器的原边线圈,它通过电流互感 器进入差动回路形成不平衡电流,在正常运行情况下,其值很小, 一般不超过变压器额定电流3%~5%。当发生外部短路时,由于 电压降压,励磁电流更小,因此这些情况下对差动保护的影响一 般可以不考虑。 当变压器空载合闸或外部故障切除后电压恢复过程中,由于变压 器铁心中的磁通量的突变,使铁心瞬间饱和,这时将出现数值很大的励磁 电流,可达5~10倍的额定电流,称为励磁涌流。此电流通过差动回路,如 不采取措施,纵差动保护将会误动作
精选PPT
7
QF1
TA1 K1
TA2 QF2
KD
Iop
变压器励磁电流形成的不平衡电流
精可达额定电流的5一10倍。 (2)含有大量非周期分量和高次谐波分量,且随时间衰减。 在起始瞬间,励磁涌流衰减的速度很快,对于一般的中小型 变压器,经0.5~1秒后,其值不超过额定电流的0.25~0.5倍 ,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~ 3s,即变压器的容量越大,衰减越慢,完全衰减需要十几秒 时间 (3)其波形有间断角,
将要饱和,电流互感器饱和时将产生各种高次谐波,其中包含二次 谐波分量。而变压器差动保护的涌流闭锁功能,目前大部分采用二 次谐波闭锁,当电流互感器饱和时,电流中的二次谐波分量将会使 差动保护闭锁,不能动作出口。这时,只能靠差动速断保护动作出 口,因为涌流闭锁不闭锁速断。因此,变压器差动保护中要设置速 断保护。 • 根据差动速断保护的特点,要求差动速断保护满足以下两点要求: • (1)动作电流应能躲过最大励磁涌流电流。 • (2)区内发生最大短路电流故障时,应有足够的灵敏度(一般这 种故障都是发生在高压套管引线上)。

变压器差动保护ppt课件

变压器差动保护ppt课件

IA2 I0 IB2 I0 IC2 I0
22
1. 三相电力变压器保护的接线 (2) Y/Δ-11接线两绕组三相变压器
常规变压器保护接线 Y
方式:
I
Y A1

I
Y B1

I
A1
nTAY
nTA
I
Y A1

I
Y B1

Ia
Ib
nTAY
nTA
nTA nTAY
一次额定电流为150~5000A。
nTA nT 难以完全满足造成。
nTAY
3
设变压器星形侧一次电流IY为,TA的变比为nTA
三角侧一次电流I为 ,TA的变比为nTA
对于Y/d-11变压器:
Iunb

I 3 I nTA nTA
(1
nTAnT ) I 3 3nTA nTA
2电力变压器保护
1
2.1 变变压压器器的保故护—障—类主型要和内不容 正常 工作状态
2.2 变压器的纵差动保护 2.3 变压器相间短路的后备保护 2.4 变压器接地短路的后备保护
变压器保护
2.1 变压器的故障类型和 不正常工作状态
3
2.1.1变压器故障和不正常运行状态
1.变压器故障 (1)油箱内部故障
1)各相绕组之间的相间短路; 2)单相绕组部分线匝之间的匝间短路; 3)单相绕组和铁心间绝缘损坏引起的接地短路。 (2)油箱外部故障 1)引出线的相间短路; 2)绝缘套管闪烁或破坏、引出线通过外壳
发生的单相接地短路。
4
2.1.1变压器故障和不正常运行状态
2.变压器异常运行状态 (1)外部相间短路引起的过电流; (2)外部接地短路引起的过电压; (3)负荷超过额定容量引起的过负荷; (4)漏油等原因引起的油面降低; (5)过励磁。

主变差动保护(共7张PPT)

主变差动保护(共7张PPT)
主变差动保护
变压器保护
500kV主变差动保护定义(5.1.1.1条):
2)由变压器各侧电流构成,能反映变压器内部各种故障的差动保护有纵差保护和分相 差动保护。纵差保护是指由变压器各侧外附CT构成的差动保护,该保护能反映变压 器各侧的各类故障。分相差动保护是指将变压器的各相绕组分别作为被保护对象, 由每相绕组的各侧CT构成的差动保护,该保护能反映变压器某一相各侧全部故障;低压侧
高本中规压 范侧中外高附中故压C障T和和公分公共共量绕绕组差组分C动侧T 差:动零保护序指分由量自耦、变负压器序高分、中量压和侧外变附化CT量和公差共动绕组(CT可构成配的置差,动保不护需。 整定)。 21、 、低低压压侧侧审有无定总总会断断:路路器器CT: :断线闭锁差动为有条件闭锁,即当“CT断线闭锁差动保护”控制字置“1”时,
小区差动保护是由低压侧三角形两相绕组内部CT和一个反映两相绕组差电流的外附CT 构成的差动保护。本规范中分相差动保护是指由变压器高、中压侧外附CT和低压侧三角 内部套管(绕组)CT构成的差动保护。 3)分侧差动保护是指将变压器的各侧绕组分别作为被保护对象,由各侧绕组的首末端CT按
相构成的差动保护,该保护不能反映变压器各侧绕组的全部故障。本规范中高中压和公共绕组
选配
各厂家自定
高压侧
1、高中压侧分相差动保护
高中压侧分相差动保护无
涌流,不反应匝间故障。
1
2、纵差保护
2
纵差保护有Y/△转换、反 应匝间故障,涌流采用按 相闭锁或一相闭锁三相。
变压器保护
中压侧
低压侧
传统变压器保护配置图
高压侧
1、分侧差动保护
分侧差动保护无涌流,不
反应匝间故障。
1
2、分相差动保护

变压器差动保护ppt课件

变压器差动保护ppt课件

nT
判据: Id IH IL Iset
nTAL
Id
I set K I rel unbmax
I·L
·IL'
11
2.2.2 变压器差动保护的不平衡电流
一、稳态运行条件下的不平衡电流
正常运行或故障后已达稳态,差动电流 中只有工频分量;忽略变压器的励磁电流 (2~5%)
12
1. 三相电力变压器保护的接线 (1) Y/Y-12接线双绕组三相变压器
I&d I&H' I&L'
I·H
·IH'
nTAH
正常运行或外部故障时,应使
Id 0
Id
nT
IH IL
Id
nTAL
I·L
·IL'
IH IL nTAH nTAL
TA变比选取原则
nTAL nTAH
nT
10
2.2.1 变压器纵差动保护的基本原理
I·H
·IH'
nTAH
内部故障时:
Id Ik
Id
解决办法: 选择两侧同相位的电流量构成差动回
路。
15
1. 三相电力变压器保护的接线
(2) Y/Δ-11接线两绕组三相变压 器
Y
IA2
IC2 IA2
IA2
30 IA2 IB2
IC2 IC2
IB2 IC2
IB2 IB2
IA2
IA2 IB2
IB2
IB2 IC2
IC2
IC2 IA2
16
1. 三相电力变压器保护的接线 (2) Y/Δ-11接线两绕组三相变压器
2电力变压器保护
1
2.1 变变压压器器的保故护—障—类主型要和内不容 正常 工作状态

变压器零序差动保护

变压器零序差动保护

第四节 变压器零序差动保护1.概述通常的差动保护用在N Y ,d 接线的三项变压器,当N Y 侧单相接地短路时灵敏度不高,故提出零序差动保护方案。

单相式超高压大型变压器绕组的短路类型主要是绕组对铁芯(即地)地绝缘损坏,即单相接地短路,相间短路(指箱内故障)可能性极小,因此认真对待变压器绕组地单相短路故障保护,十分必要。

2.原理2.1 普通变压器的零序差动保护先看图1(a)所示N Y ,d 变压器,N Y 侧电源断开,该侧发生金属性单相接地短路,短路点距中性点的长度占全绕组总长的%α,电流Y I 和∆I 如图所示,变压器的电抗为0.10,∆侧接于无穷大电源。

变压器差动保护的电流互感器二次接线为常规方式(即变压器Y 接,互感器二次侧∆接;变压器∆接,互感器二次侧Y 接)。

输入变压器差动保护的电流是∆I ,当短路点靠近中性点时,即0→α,电流0→∆I ,注意到∆I 中只有正、负序分量,不包含零序分量,所以∆I 总是小于Y I ,使通常的差动保护灵敏度不高且有动作死区。

再看图1(b)的两侧电源N Y ,d 变压器,单相接地短路将Y 绕组分为两部分(1W 和2W ),各自流过电流1Y I 和2Y I ,如果有1Y I 1W >2Y I 2W ,则∆I 的正向将如图所示,这时1Y I 和∆I 将呈现穿越特性,通常的差动保护灵敏度低,或者根本不动作。

对于上述单相短路灵敏度低的问题,如果在N Y 侧三相电流互感器二次侧接成零序滤过器方式,再与中性点互感器二次组成差动接线,就构成了变压器的接地零序差动保护。

这种零序差动保护,无论图1(a)或(b),都能反应全部短路电流Y I (=1Y I 和2Y I ),灵敏度大大提高。

2.2 自耦变压器的零序差动保护按照相间短路差动保护互感器二次侧接线惯例,自耦变压器高中压侧电流互感器二次必为∆接线,差动继电器中不流过零序电流,所以这种差动保护对接地短路的灵敏度低,而对中高压侧中性点均直接接地的自耦变压器,单相接地是其主要故障形式之一,加装零序差动保护将提高自耦变压器内部接地短路的灵敏度。

变压器差动保护原理及逻辑图

变压器差动保护原理及逻辑图

变压器差动保护的基本原理及逻辑图1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。

但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。

此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断角。

表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:①采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。

但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。

此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断角。

表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

3.电力变压器的纵联差动保护(一)-工作原理(课件)

3.电力变压器的纵联差动保护(一)-工作原理(课件)

一、纵联差动保护的基本原理
1.变压器正常运行或者外部故障时差动电流分析
差动电流: Id
I1'
I2' =
I1 nTA1
I2 nTA2
这个电流在变压器正常运行或外部故障时不一定为零。
I1'
I
2' ,即I
' d
=
0
一、纵联差动保护的基本原理
如何选择合适的电流互感器变比,使正常运行或变压器外 部故障时差动电流为零?
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(1)励磁涌流对差动保护的影响 由变压器的原理可知,变压器的励磁电流只流过变压器其 中的一侧。因此通过TA反映到差动回路中不能被平衡。但在 变压器正常工作情况下,励磁电流很小,反映到差动回路可以 忽略不计。
二、纵差动保护的不平衡电流及相应措施
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(2)励磁涌流产生的原因
如果考虑剩磁Φr,这样经过半个周期后铁芯中的磁通将达到 幅值2Φm+Φr。因此:
铁芯中的磁通达到最大值—>变压器严重饱和—>励磁阻抗降 低—>对应的励磁电流很大—>类似于“涌动的潮流”,故简称 “励磁涌流”。
二、纵差动保护的不平衡电流及相应措施
1.变压器的励磁涌流
(1)励磁涌流对差动保护的影响 但是当变压器空载合闸或外部故障切除后电压恢复过程中,
由于变压器铁芯中的磁通急剧增大,使变压器铁芯瞬时饱和, 出现数值很大的励磁电流(称为:励磁涌流)。
励磁涌流可达变压器额定电流的 6~8 倍,如不采取措施, 变压器纵差保护将会误动。
二、纵差动保护的不平衡电流及相应措施

差动保护和比例差动保护原理(含图)

差动保护和比例差动保护原理(含图)

差动保护和比例差动保护原理(含图)1.差动速断保护反映变压器内部或引出线严重短路故障,任一相电流大于整定值,保护跳闸并发信号,其动作方程为:Id>I1式中,Id为短路电流,I1差动保护定值。

Ih为高压侧电流,Il为低压侧电流TAP=(VWDG2×CT2×C)/(VWDG1×CT1)式中:VWDG1为高压侧线电压;VWDG2为低压侧线电压;CT1为高压侧CT变比;CT2为低压侧CT变比。

当相位调整选择“退”时,为外部接线补偿,C=3。

差动电流的计算方法为:Id=|Ih+ Il*TAP| ,其中Idh、Idl都为矢量。

制动电流的计算方法为:Ir= Imax |Ih、Il*TAP|。

(表示选择其中最大相)当相位调整选择“投”时,为内部软件补偿,。

C=1单加高压侧形成的差动电流的计算方法为:Idh=Ih线/3;单加低压侧形成的差动电流的计算方法为:Idl=Il*TAP;高压侧和低压侧同时施加,各相差动电流的计算方法为:Id=|Idh +Idl| ,其中Idh、Idl都为矢量。

高压侧和低压侧同时施加,各相制动电流的计算方法为:Ir=Imax |Idh、Idl|。

差动速断保护原理逻辑图如下:图6-1 差动速断保护原理逻辑图2.比率差动保护变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。

随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。

为防止差动保护误动作,引入比率差动保护。

其能可靠地躲过外部故障时的不平衡差动电流。

其动作方程如下:Id>I2 Id>K*Ir式中: Id 为差动电流,Ir 为制动电流,K为比率制动系数。

I2为启动电流。

图6-3 比例差动保护的动作特性差动速断动作区比率差动动作Id I1I2/K1I2Ir K1比率制动区比率差动保护原理逻辑图如下:I2图6-4 比率差动保护原理逻辑图3.二次谐波闭锁比率差动为了躲过变压器合闸瞬间的励磁涌流,本装置利用二次谐波作为励磁涌流闭锁判据,动作方程如下:Id2ψ>Kxb.Idψ式中:Id2ψ为A、B、C三相差动电流的二次谐波;Id?ψ为对应的三相差动电流;Kxb为二次谐波制动系数。

变压器差动保护PPT

变压器差动保护PPT

I&d I&H' I&L'
I·H
·IH'
nTAH
正常运行或外部故障时,应使
Id 0
Id
nT
IH IL
Id
nTAL
I·L
·IL'
IH IL nTAH nTAL
TA变比选取原则
nTAL nTAH
nT
10
2.2.1 变压器纵差动保护的基本原理
I·H
·IH'
nTAH
内部故障时:
Id Ik
Id
1)各相绕组之间的相间短路; 2)单相绕组部分线匝之间的匝间短路; 3)单相绕组和铁心间绝缘损坏引起的接地短路。 (2)油箱外部故障 1)引出线的相间短路; 2)绝缘套管闪烁或破坏、引出线通过外壳
发生的单相接地短路。
4
2.1.1变压器故障和不正常运行状态
2.变压器异常运行状态 (1)外部相间短路引起的过电流; (2)外部接地短路引起的过电压; (3)负荷超过额定容量引起的过负荷; (4)漏油等原因引起的油面降低; (5)过励磁。
nT
判据: Id IH IL Iset
nTAL
Id
I set K I rel unbmax
I·L
·IL'
11
2.2.2 变压器差动保护的不平衡电流
一、稳态运行条件下的不平衡电流
正常运行或故障后已达稳态,差动电流 中只有工频分量;忽略变压器的励磁电流 (2~5%)
12
1. 三相电力变压器保护的接线 (1) Y/Y-12接线双绕组三相变压器
Y
负序分量:
IB2 IA2
IB2
IA2 IA2
IA2 IC2

最新★变压器差动保护PPT课件

最新★变压器差动保护PPT课件
电子数据交 按照同一规定的一套通用标准格式,将标准的经济信息, 换(EDI) 通过通信网络传输,在贸易伙伴的电子计算机系统之间进
行数据交换和自动处理 个人电脑 实现了数据的一体化和共享,提高了物流运作决策的有效
性和灵活性 人工智能和 可以在承运人选择、营销、存货管理以及在信息系统设计
专家系统 等方面进行应用
开发步骤
结构 化系 统开 发方 法
自顶向下整体性的分析与设计和 自底向上逐步实施 用户至上;深入调查研究 严格区分工作阶段 充分预料可能发生的变化 工作文件标准化和文献化
系统规划阶段 系统分析阶段 系统设计阶段 系统实施阶段 系统运行阶段
原型 方法
循序渐进 系统分析初期阶段引入模拟手段 启发对问题进行确切描述和认识 提高用户参与的积极性
信息加工
信息输出
信息存储
信息控制系统
信息反馈
信息使用
管理系统
物流市场营销信息 系统的基本内容
内部报
告系统
内容
集中反映了货 物的订单、入 库、在库、出 库、运输、装 卸、加工以及 现金流量、应 收应付帐款、 作业进度、服 务效益等
市场情
市场调
报系统
研系统
方法
1)本企业营销人员、驻外机构 2)企业的供应商、中间商、顾客以
动作区
0.5 非动作区
Ie
Ir
11
第三章 物流市场营销信息管理
通过本章学习,了解物流市场营销 信息系统的基本理论和技术基础以及物 流信息开发的基本方法,熟悉顾客关系 管理理论,掌握物流市场营销调研与预 测的基本方法,学会对物流市场营销进 行系统的管理。
第一节 物流市场营销信息系统
一、物流市场营销信息系统概述

变压器差动保护调试方法-变压器差动保护接线原理图

变压器差动保护调试方法-变压器差动保护接线原理图

微机变压器差动保护一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。

如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。

必需消除这种不平衡电流。

(一)用电流互感器二次接线进行相位补偿其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图1所示图1变压器为Y o/△ -11连接和TA/Y连接的差动保护原理接线・・■■jioTh采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流I A2、丨B2、G , 刚好与三角形侧的电流互感器二次回路中的电流I a2、G 、I c2同相位,如图2所示。

) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从而简化了 TA 二次接线,增加了电流回路的可靠性。

但是如图 3当变压器为Y o / △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量图。

图2向量图图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整1、常规差动保护中电流互感器二次电流的相位校正大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下:丫0侧:IA2 = ( I A2 — I B2 ) / 3 I B2 = ( I B2 — I C2 ) / - 3I C2 = (I C2 — I A2 ) /3△侧:I a2=I a2 I b2 = Ib2 I c2=I c2式I A2、l B2、G 为Y 0侧TA 二次电流,I A 2、&、G 为侧校正后的各相电流;I a2、b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理与逻辑图1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,与各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点与克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。

但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。

此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断角。

表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如以下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器差动保护原理图解
差动爱护是依据被爱护区域内的电流变化差额而动作的。

它广泛用来爱护大容量的电力变压器、变电所母线、高压电动机等。

如右图所示是电力变压器的差动爱护原理图。

电流互感器TA1和TA2之间的区域就是差动爱护区,当爱护区内发生短路故障时,即变压器内部(如dl点),电流继电器KA中将产生较大的启动电流使爱护装置动作,而当爱护区外短路时,即变压器外部如(d2点),电流继电器中只流过一较小的不平稳电流,爱护装置不会动作。

所谓变压器的纵联差动爱护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的爱护。

纵联差动爱护装置,一般用来爱护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。

对于变压器线圈的匝间短路等内部故障,通常只作后备爱护。

纵联差动爱护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。

因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。

在正常状况下或爱护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但假如在爱护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到爱护作用。

变压器纵差爱护是根据循环电流原理构成的,变
压器纵差爱护的原理要求变压器在正常运行和纵差爱护区(纵差爱护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差爱护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差爱护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

相关文档
最新文档