初中数学旋转90度画法

合集下载

初中数学九年级旋转知识点

初中数学九年级旋转知识点

初中数学九年级旋转知识点在初中数学九年级,旋转是一个重要的几何变换方法。

通过旋转,我们可以改变图形的位置和方向,从而帮助我们解决一些几何问题。

本文将介绍九年级数学中与旋转相关的知识点,包括旋转的定义、旋转的性质以及旋转的应用。

一、旋转的定义旋转是指将一个图形绕着固定点旋转一定角度,保持图形内部的点与固定点的距离保持不变。

旋转的固定点称为旋转中心,旋转的角度称为旋转角度。

九年级数学中常用的旋转角度有90度、180度和270度。

二、旋转的性质1. 旋转保持图形面积不变:无论如何旋转一个图形,它的面积都保持不变。

2. 旋转保持图形周长不变:无论如何旋转一个图形,它的周长也保持不变。

3. 旋转保持图形对称性不变:如果一个图形是对称的,那么它的旋转图形也将保持对称性。

三、旋转的应用1. 确定旋转后的图形:通过给出旋转中心和旋转角度,我们可以确定旋转后的图形。

例如,给出一个三角形ABC,旋转中心为点O,旋转90度,我们可以通过连接OA、OB和OC来确定旋转后的图形。

2. 解决几何问题:旋转常常被用于解决一些几何问题。

例如,在证明两个图形相似时,可以通过旋转一个图形使其与另一个图形重合,从而得到相似的证明。

3. 观察图形性质:通过观察旋转后的图形,我们可以揭示一些图形的性质。

例如,通过旋转正方形,可以发现旋转后的图形仍然是正方形,这说明正方形具有旋转对称性。

四、注意事项在进行旋转时,需要注意以下几点:1. 旋转角度是逆时针方向旋转:九年级数学中的旋转一般都是逆时针方向旋转,所以在进行旋转时需要根据旋转角度确定旋转方向。

2. 旋转中心的选择:选择旋转中心时,需要注意选择一个能够旋转整个图形的点,使得旋转后的图形可以被完全覆盖。

3. 使用适当的工具:在实际操作中,可以使用直尺、量角器等几何工具来进行旋转操作,以确保旋转的准确性。

总结:初中数学九年级的旋转知识点是我们在几何学习中重要的一部分。

通过学习旋转的定义、性质和应用,我们可以更好地理解和解决与旋转相关的问题。

5.2在方格纸上画简单图形旋转90°后的图形课件2 2021-2022学年五年级数学下册-人教版

5.2在方格纸上画简单图形旋转90°后的图形课件2 2021-2022学年五年级数学下册-人教版

1.绕点 O 旋转,点 O 的位置不变。
A′
2.先画 OA′,OA 顺时针旋转 90°后的位
置 OA′,OA′垂直于 OA,点 A′与点 O
的距离应该是 4 格。
B′
3.先画 OB′,OB 顺时针旋转 90°后的位置 OB′,OB′垂直于
OB,点 B′与点 O 的距离应该是 4 格。
4.连接 A′B′,三角形 A′O B′就是AOB 绕点O顺时针旋转 90°后
1.在线完成5.2在方格纸上画简单图形旋转90°后 的图形课后作业。
2.和同学一起在方格纸上画出简单图形旋转。
再见
的图形。
画出三角形AOB绕点O顺时针旋转90°后的图形。 A
1.绕点 O 旋转,点 O 的
位置不变。
2.先画 OA′,OA 顺时针 旋转 90°后的位置 OA′, OA′垂直于 OA,点 A′与 点 O 的距离应该是 6 格。
B A′
O
画出三角形AOB绕点O顺时针旋转90°后的图形。 A
3.先画 OB′,OB 顺时
1.还记得这个三角尺的位置是怎样变化的吗?
2.三角尺的旋转有什么特点?
旋转时点 O 的位置不变,并且每旋转一次三角尺的两条直角 边都绕点 O 顺时针旋转了90°。
画出三角形 AOB 绕点 O 顺时针旋转 90°后的图形。
绕点O旋转,点O的位置应该不变。只要找出 点A和点B顺时针旋转90°后的位置……
在方格纸上画简单图形 旋转90°后的图形
探索图形旋转的特征和性质,能在方格纸上把简 单图形旋转90度。
欣赏图形变换所创造出的美,进一步感受旋转在 生活中的应用,体会数学的价值。
1.看图填空。 钟面上的时针从6:00到9:00绕中心点顺时针方向旋转了( 90° )。

旋转中常见的几何模型初中数学模型

旋转中常见的几何模型初中数学模型
期末复习专题6
旋转中常见的几何模型
九年级上册








类型1 “手拉手”模型
模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.




图①:△AMC和△BNC都是等边
三角形,点A,B,C共线.
结论:
①△ACN≌△MCB,AN=MB;
②FC平分∠AFB.




图②:△ABD和△ACE都是等腰直




4.如图,已知正方形ABCD的边长为3,E,F分别是AB,BC边上的点,
且∠EDF=45°,将△DAE绕点D逆时针旋转90°得到△DCM.
(1)求证:EF=MF;
(1)证明:∵将△DAE绕点D逆时针旋转90°得到△DCM,
∴DE=DM,∠EDM=90°.
∵∠EDF=45°,
∴∠MDF=45°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,
= ,
∠ = ∠,
= ,
∴△BCE≌△ACD(SAS),∴BE=AD.
60°
60° 60°




2.如图①,C为线段AB上一点,分别以AC,BC为边在线段AB的同侧
作正方形ACDE和BCFG,连接AF,BD.
C
F
AO=2 3
BD=AF=2 3 +2
AO=2 3
BD=AF=2 3-2




类型2 旋转中的半角模型
模型特征:大角含半角+相等的边,通过旋转使

初中数学图形的旋转与平移练习题及答案

初中数学图形的旋转与平移练习题及答案

初中数学图形的旋转与平移练习题及答案旋转与平移是数学中研究图形变换的重要概念,它们在几何图形的研究和解题中扮演着重要的角色。

下面将为大家提供一些初中数学图形的旋转与平移的练习题及答案,帮助大家更好地理解和掌握这一知识点。

练习题一:1. 将图形A绕点O逆时针旋转90度,得到图形B,如图所示。

请画出图形B,并标出其顶点坐标。

解答:根据题目所给条件,我们可以得知图形B是将图形A绕点O逆时针旋转90度得到的。

假设图形A的顶点坐标依次为A(x1, y1),B(x2,y2),C(x3, y3),则图形B的顶点坐标为A'(-y1, x1),B'(-y2, x2),C'(-y3, x3)。

练习题二:2. 将线段AB向右平移5个单位得到线段CD,如图所示。

如果A的坐标为(1, 2),请画出线段CD,并求出C点的坐标。

解答:根据题目所给条件,我们知道线段AB向右平移5个单位得到线段CD,那么坐标的改变量就是平移的距离。

假设A点的坐标为(x1, y1),则C点的坐标为(x1 + 5, y1)。

练习题三:3. 将线段EF绕点O顺时针旋转180度得到线段GH,如图所示。

请写出线段GH的坐标,并判断是否与线段EF相等。

解答:根据题目所给条件,我们知道线段EF绕点O顺时针旋转180度得到的线段GH。

假设E点的坐标为(x1, y1),F点的坐标为(x2, y2),则G 点的坐标为(-x1, -y1),H点的坐标为(-x2, -y2)。

通过对比可以发现,线段GH与线段EF在长度、形状上完全相同。

练习题四:4. 将正方形ABCD绕点O逆时针旋转90度得到正方形EFGH,如图所示。

若正方形ABCD的边长为5个单位,请计算正方形EFGH的边长。

解答:根据题目所给条件,我们知道正方形EFGH是将正方形ABCD绕点O逆时针旋转90度得到的。

假设正方形ABCD的边长为 a,则正方形EFGH的边长也为 a。

练习题五:5. 将图形P绕点O逆时针旋转270度得到图形Q,如图所示。

画出简单图形旋转90度后的图形(例3) 公开课课件

画出简单图形旋转90度后的图形(例3) 公开课课件
图形的运动(三)
例3 画出简单图形旋转 90°后的图形
一、复习导入,揭示课题
问题:1.还记得这个三角尺的位置是怎样变化的吗? 2.三角尺的旋转有什么特点?
旋转时点O的位置不变,并且每旋转一次三角尺的两条直 角边都绕点O顺时针旋转了90°。
二、探究新知,明确画法
画出三角形AOB绕点O顺时针旋转90°后的图形。
最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。
三、巩固提升
如图,长方形的两条对称轴相交于点 O。
问题:按上面的方法试一试,你发现下面的图形有什么特点?
四、拓展应用
五、布置作业
作业:第86页练习二十一,第5题。
蔡琰(作者有待考证)的《胡笳十八 拍》 郭璞的《游仙诗》 鲍照的《拟行路难》 庾信的《拟咏怀》 都特别喜欢。不过都是组诗,太长了 ,就不 贴了orz 。
问题:1.自己试着画一画。 2.你是怎么画的?
二、探究新知,明确画法
画出三角形AOB绕点O逆时针旋转 90°后的图形。 B′
A′
1.绕点 O 旋转,点 O 的位置不变。 2.先画 OA′,OA 逆时针旋转 90°后的位置 OA′,OA′垂直于 OA,
点 A′与点 O 的距离应该是 4 格。 3.先画 OB′,OB 逆时针旋转 90°后的位置 OB′,OB′垂直于 OB,

初中数学辅助线添加技巧:旋转

初中数学辅助线添加技巧:旋转

初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。

初中数学辅助线添加秘籍5、图形变换 旋转

初中数学辅助线添加秘籍5、图形变换  旋转

初中数学辅助线添加秘籍5、图形变换—旋转一:如何构造旋转图形1、遇中点,旋180°,构造中心对称图形,即倍长中线。

2、遇90°,旋90°,构造垂直—等腰直角三角形、正方形。

3、遇60°,旋60°,构造等边。

口诀:边相等,就旋转。

二:倒角(旋转后,常见图形)、如图,边长为的正方形AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.2、如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PA C绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为????,∠APB=????°.答案此题答案为:6;150°.解:连接PP′.∵△P′AB是△PAC绕点A旋转得到的,∴△P′AB≌△PAC.∵△P′AB≌△PAC,PA=6,PB=8,PC=10,∴P′A=PA=6,P′B=PC=10,∠PAC=∠P′AB.∵△ABC为正三角形,∴∠BAC=60°,∴∠PAC+∠BAP=60°.∵∠PAC=∠P′AB,∴∠P′AB+∠BAP=∠P′AP=60°.∵∠P′AP=60°,PA=P′A,∴△PAP′是等边三角形,∴PP′=PA=6,∴∠P′PA=60°.∵在△PBP′中PP′=6,PB=8,P′B=10,∴△PBP′是直角三角形,∴∠BPP′=90°,∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.3、如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对答案此题答案为:A.解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.4、如图,为线段上一动点(不与点、重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接。

北师版数学六年级下册-知识讲解 在方格纸上画简单图形旋转90°的方法

北师版数学六年级下册-知识讲解 在方格纸上画简单图形旋转90°的方法

在方格纸上画简单图形旋转90°的方法问题(1)导入画出图中的小旗绕点M顺时针旋转90°后的图形。

过程讲解1.理解题意题中要求在方格纸上将小旗绕点M顺时针旋转90°。

2.明确画法(1)找旋转的关键线段:旗杆以点M为旋转点,顺时针旋转90°,使旋转前后的旗杆互相垂直,如图①;(2)用数格的方法找到旗面旋转后的对应点,画出旗面,如图②。

问题(2)导入画出三角形ABC旋转90°后的图形。

过程讲解1.理解题意题中要求在方格纸上分别画出三角形ABC绕点A顺时针旋转90°和绕点B逆时针旋转90°后的图形。

2.明确画法(1)画三角形ABC绕点A顺时针旋转90°后的图形。

①旋转关键线段:将线段AB以点A为旋转点,顺时针旋转90°到B’处,使B'A垂直于BA,如图(1);②画出线段AC旋转后的对应线段AC’,如图(2);③连接B'C’,就得到了三角形ABC绕点A顺时针旋转90°得到的图形AB'C’,如图(3)。

(2)画三角形ABC绕点B逆时针旋转90°后的图形。

①旋转关键线段:将线段AB以点B为旋转点,逆时针旋转90°到A"处,使A"B垂直于AB,如图(1);②画出线段AC旋转后的对应线段A"C",如图(2);③连接BC",就得到了三角形ABC绕点B逆时针旋转90°得到的图形A"BC",如图(3)。

归纳总结在方格纸上画简单图形旋转90°的方法:先找到关键线段旋转90°后的位置,再根据线段旋转后的位置关系连接线段。

人教版九年级上册数学:旋转作图(公开课课件)

人教版九年级上册数学:旋转作图(公开课课件)
变式:若BC为2cm,求五边形AP′BCP的面积为 ___________.
创建幸福教育 享受教育幸福
针对训练
2.如图,E是正方形ABCD中CD边上任意一点, 以点A为中心,把△ADE顺时针旋转90°,画出旋 转后的图形.
A
D
E
B
C
创建幸福教育 享受教育幸福
方法1:
A
D
E
C
F
B
图中 △ABF 为所求图形.
创建幸福教育 享受教育幸福
追问:
(5)若∠AOA ' =90°,∠COA ' =60°,求∠A 'OC '的度数.
(6)如果仅知△ABC与其旋转后得到 的△A'B'C',你能确定其旋转 中心吗?说说你的方法.
创建幸福教育 享受教育幸福
针对训练
1.如图,△ABC 是等边三角形,P 是△ABC 内一 点.△APC 沿顺时针方向旋转后与△AP′B重合, 最小旋转角等于________度.
(2)EF2=BE2+DF2.
创建幸福教育 享受教育幸福
创建幸福教育 享受教育幸福
方法2:
A
D
E
C
F
B
图中 △ABF 为所求图形.
创建幸福教育 享受教育幸福
方法3:
A
F
B
图中 △ABF 为所求图形.
D
变式1:连接EF,已知AE=2cm,则 EF=_______,∠AEF=_______.
E
变式2:如果E为正方形ABCD内 任意一点,上述结论还成立吗?
创建幸福教育 享受教育幸福
思考:旋转与平移的区别和联系?
相同之处:
1.都是图形变化的方法之一;
2.变化前后,图形的形状大小不发生改变,只是

人教版九年级数学上册 (课题学习图案设计)旋转 课件

人教版九年级数学上册 (课题学习图案设计)旋转 课件

23.3 课题学习 图案设计
学习目标
1.能够辨别出图案是如何通过平移、轴对称和旋转中的一种或组合设计出来的.

2.能够利用图形变换(平移、轴对称和旋转) 中的一种或组合进行图案设计,设

计出称心如意的图案.

3.经历了观察、操作、交流等过程,培养学生观察能力、动手能力、以及与他

人合作交流的能力.
O
5次.
先翻折,再平移
创设情 境
探究新 知
应用新 知
巩固新 知
课堂小 结
布置作 业
随堂练习
练习1
下图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展 开图看作“基本图案”,则该图形是由“基本图案”( D ) A.平移一次形成的. B.平移两次形成的. C.以轴心为旋转中心,旋转120°后形成的. D.以轴心为旋转中心,旋转120°,240°后形成的.
3.如图,下列4×4网格图是由16个相同的小正方形组 成,网格图中有4个小正方形已涂上阴影,请在空白小 正方形中,按下列要求涂上阴影. (2)在右图中选取2个空白小正方形 涂上阴影,使6个阴影小正方形组 成一个轴对称图形,但不是中心 对称图形.
课堂小结
图案 设计
分析图案设计 分清基本图形 知道形成过程 轴对称
沿向直右线平l移翻2折次
以点O为旋转中心, 按逆时针方向旋转90°, 3次.
l
创设情 境
探究新 知
应用新 知
巩固新 知
课堂小 结
布置作 业
操 作
这个图案
经过平移、旋转、轴对称,同学们还
能变换出其它美丽的图案吗?
创设情 境
探究新 知
应用新 知
巩固新 知

初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)

初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)

专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。

1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论【详解】(1)∵ABC,ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE在△ADB和△AEC中,AD=AE∠BAD=∠CAE AB=AC∴ABD ≅ACE (SAS );(2)当D ,E ,C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°,∴∠AEC =180°-∠AED =120°,由(1)可知,△ADB ≅△AEC ,∴∠ADB =∠AEC =120°,∴∠EDB =∠ADB -∠ADE =120°-60°=60°②当点E 在线段CD 的延长线上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°∴∠ADC =180°-∠ADE =120°,由(1)可知,△ADB ≅△AEC∴∠ADB =∠AEC =60°,∴∠EDB =∠ADB +∠ADE =60°+60°=120°综上所述,∠EDB 的大小为60°或120°(3)过点A 作AF ⊥BC 于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3∴AF =AB 2-BF 2=62-32=33∴DF =33-4此时S .DBC =12BC ⋅DF =12×6×(33-4)=93-12;当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3,∴AF =AB 2-BF 2=62-32=33∵AD =4∴DF =AF +AD =33+4此时,S .DBC =12BC ⋅DF =12×6×(33+4)=93+12;综上所述,△DBC 的面积S 取值是93-12≤5≤93+12【点评】 利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键2已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E 在线段AD 的延长线上时,请判断∠AFC 和∠FAC 的数量关系,并证明你的结论;(3)拓展延伸:若点E 在直线AD 上运动,若存在一个位置,使得ΔACF 是等腰直角三角形,请直接写出此时∠EBC 的度数.【答案】(1)55°;(2)∠AFC +∠FAC =90°,见解析;(3)15°或75°【解析】(1)55°,理由:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;∵∠AFC =35°,∴∠FAC =55°;(2)结论:∠AFC +∠FAC =90°,理由如下:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;(3)∠EBC =15°或75°分两种情况:①点E 在点A 的下方时,如图:∵ΔACF 是等腰直角三角形,∴AC =CF ,由(2)得ΔABE ≌ΔCBF ,∴CF =AE ,∴AC =AE =AB ,∴∠ABE =180°-30°2=75°,∴∠EBC =∠ABE -∠ABC =75°-60°=15°;②点E 在和点A 的上方时,如图:同理可得∠EBC =∠ABE +∠ABC =75°.2已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(0°<α<90°),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF 的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF 的度数;(3)联结AF ,求证:DE =2AF .【答案】(1)30°;(2)不变;45°;(3)见解析【解析】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE=CD,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=180°-α2=90°-α2,在△CEB中,CE=CB,∠BCE=90°-α,∴∠CEB=∠CBE=180°-∠BCE2=45°+α2,∴∠BEF=180°-∠CED-∠CEB=45°.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。

三角形旋转解题技巧初中

三角形旋转解题技巧初中

三角形旋转解题技巧初中引言三角形是初中数学中重要的几何图形之一,而旋转是一种常见的几何变换。

本文将介绍如何运用旋转解决与三角形相关的问题。

我们将从基本概念开始,逐步深入探讨旋转解题技巧,并通过实例演示其应用。

1. 旋转的基本概念1.1 什么是旋转?旋转是指以某个固定点为中心,按照一定的角度和方向,将图形或物体绕着该点进行移动的操作。

在数学中,我们通常以坐标平面上的原点为中心进行旋转操作。

1.2 旋转角度在二维平面上,我们使用弧度或度数来表示旋转角度。

一个完整的圆周对应360°或2π弧度。

在初中数学中,我们通常使用度数来表示旋转角度。

1.3 顺时针和逆时针顺时针方向是指按照钟表走时方向进行旋转;逆时针方向则是相反方向。

在解题过程中,需要根据具体情况确定顺时针或逆时针方向。

2. 三角形的旋转性质2.1 三角形的旋转不改变其形状和大小在二维平面上,三角形绕着一个点进行旋转后,仍然是一个三角形,并且其形状和大小保持不变。

这一性质是我们运用旋转解决三角形问题的基础。

2.2 顶点旋转当我们将一个三角形绕着顶点进行旋转时,可以通过观察发现以下性质:•旋转前后的两条边长度不变;•旋转前后的两条边夹角度数不变。

这些性质对于解题非常有用,可以帮助我们确定未知边长或夹角度数。

2.3 边中点旋转当我们将一个三角形绕着边的中点进行旋转时,可以通过观察发现以下性质:•旋转前后的两条边长度不变;•旋转前后的两条边夹角度数相等;•边中点连线在旋转前后保持不变。

这些性质同样对于解题非常有用,可以帮助我们确定未知边长或夹角度数,并且可以构造出一些特殊图形来简化问题。

3. 旋转解题技巧3.1 求未知边长当我们已知一个三角形的两条边和它们的夹角度数,需要求解第三条边长时,旋转可以帮助我们简化问题。

以顶点旋转为例,假设三角形ABC中,已知边AB和AC的长度分别为a和b,夹角BAC的度数为θ°。

我们需要求解BC的长度。

人教版初中数学九年级上册23.1图形的旋转课件(共35张PPT)

人教版初中数学九年级上册23.1图形的旋转课件(共35张PPT)
转60 ˚,得点D ; 3. 连接CD, 则线段CD即
为所求作.
例题讲解
(3)已知△OAB,画出△OAB绕点O逆时
针旋转100°后的图形。
C 图形的旋转作法
作法:
1. 连接OA。 2. 作∠AOC=100°, 在OC上截取OA′=OA 。
A′ B
3. 连接OB 。
4. 作∠BOD=100°,
B′
A
教材62页1、4题
新知讲解 知识3、旋转的图形
让我们一起来欣赏一下美丽的图案,体会 一下旋转的奥秘.你们猜猜旋转到底和什么有关呢?
β α
O
O
(1)旋转中心不变,改变旋转角(如图).
新知讲解
(2)旋转角不变,改变旋转中心.
O1
α
α O2
新知讲解
(3)美丽的图案是这样形成的.
例题讲解
B A
例2、按要求画出下列图形 (1)将A点绕O沿顺时针方向旋转60˚。
归 转动的角叫做__旋__转__角___.
纳 :
如果图形上的点 P 经过旋转变为点 P′,那么这两个 点叫做这个旋转的__对__应__点__.
P
O 120°
P′
新知讲解
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_4_5 度到点B.
新知讲解
B/
B
A
0
/
90
A
P
线段AB绕_P_点,往_逆_时_针方向,转动了_9_0 度到线段A’B’.
A
D
E
B
C
例题讲解
解:因为点A是旋转中心,所以它的对应
A
Байду номын сангаас
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学旋转90度画法
1.我们先格子中一个5x3直角三角形,如图所示。

2 我们在直角三角形的右边标注为o点,也就是以o点为中心,如图所示。

3 我们把直角三角形向右旋转90°,以o点为中心顺时针旋转90°得到红色的直角三角形,如图所示。

4 接下来,我们同样的以o点为中心向左旋转90°,也就是黑色的直角三角形逆时针旋转90°,如图所示。

5我们分别把(顺时针和逆时针的)两个图形画好之后,还需要画出(原图形到新图形)旋转过程的箭头,如图所示。

6最后,我们给逆时针的图形也画上旋转箭头,这样我们就知道图形是旋转到哪一个方向了,如图所示。

相关文档
最新文档