平面直角坐标系与坐标变换
空间大地坐标系及平面直角坐标系转换公式
§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间大地坐标系可用图2-4来表示:图2-4空间大地坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我XX 用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切〔此子午线称为中央子午线或轴子午线〕,椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差〔一般为6度或3度〕X 围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如以下图2-5右侧所示。
浅析几种常用坐标系和坐标转换
浅析⼏种常⽤坐标系和坐标转换⼀般来讲,GPS直接提供的坐标(B,L,H)是1984年世界⼤地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为⼤地⾼即是到WGS-84椭球⾯的⾼度。
⽽在实际应⽤中,我国地图采⽤的是1954北京坐标系或者1980西安坐标系下的⾼斯投影坐标(x,y,),不过也有⼀些电⼦地图采⽤1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),⾼程⼀般为海拔⾼度h。
GPS的测量结果与我国的54系或80系坐标相差⼏⼗⽶⾄⼀百多⽶,随区域不同,差别也不同,经粗落统计,我国西部相差70⽶左右,东北部140⽶左右,南部75⽶左右,中部45⽶左右。
现就上述⼏种坐标系进⾏简单介绍,供⼤家参阅,并提供各坐标系的基本参数,以便⼤家在使⽤过程中⾃定义坐标系。
1、1984世界⼤地坐标系WGS-84坐标系是美国国防部研制确定的⼤地坐标系,是⼀种协议地球坐标系。
WGS-84坐标系的定义是:原点是地球的质⼼,空间直⾓坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)⽅向,即国际协议原点CIO,它由IAU和IUGG共同推荐。
X轴指向BIH定义的零度⼦午⾯和CTP⾚道的交点,Y轴和Z,X轴构成右⼿坐标系。
WGS-84椭球采⽤国际⼤地测量与地球物理联合会第17届⼤会测量常数推荐值,采⽤的两个常⽤基本⼏何参数:长半轴a=6378137m;扁率f=1:298.2572235632、1954北京坐标系1954北京坐标系是将我国⼤地控制⽹与前苏联1942年普尔科沃⼤地坐标系相联结后建⽴的我国过渡性⼤地坐标系。
属于参⼼⼤地坐标系,采⽤了前苏联的克拉索夫斯基椭球体。
其长半轴 a=6378245,扁率 f=1/298.3。
1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。
3、1980西安坐标系1978年,我国决定建⽴新的国家⼤地坐标系统,并且在新的⼤地坐标系统中进⾏全国天⽂⼤地⽹的整体平差,这个坐标系统定名为1980年西安坐标系。
平面直角坐标系坐标变化
平面直角坐标系中的变换彳----------- 必标系屮的对称平而l'i角坐标系屮的变换坐标系中的平移\------------ 怡标系屮的面枳和规律问题编写思路:本讲求而积时主要让学生掌握将点坐标转化为线段长度的过程•让学生亲自动手在坐标系中画出某个点关于横轴、纵轴以及原点的对应点,并且让他们自己总结两个对称点的横.纵坐标关系。
二:(1)对于点的平移:让学生亲自动手将某个点进行上、下、左、右平移,并且自己总结点的坐标变化规律。
对于任意的平移,可以将貝理解先上下平移、后左右平移的组合。
(2)对于图形的平移:让学生充分认识本质就是图形上的每个点都进行同一过程的平移,即对应点之间的平移过程完全一样。
从而将图形的平移转化成为点的平移。
并让学生体会平移前后的两个图形完全一样。
三、简单的数形结合:求三角形而积问题。
让学生充分掌握割补法求三角形而积,并理解为何要用割补法。
让学生熟练掌握并体会坐标与线段长的讣算关系。
四.找规律问题:老师可带着学生探索常见找规律问题的思路和方法.点P(-b)关于X轴的对称点是叫,-巧,即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P©,b),即纵坐标不变,横坐标互为相反数.点P(a.b)关于坐标原点的对称点是P'(—d),即横坐标互为相反数,纵坐标也互为相反数.【引例】在平而直角坐标系中,卩(-4 5)关于X 轴的对称点的坐标是 __________ 坐标是 ________ ,关于原点的对称点是 ___________【例1】(1)点P(3, -5)关于x 轴对称的点的坐标为()⑵点"-2, 1)关于y 轴对称的点的坐标为()⑶ 在平而直角坐标系中,点P(2, -3)关于原点对称点P 的坐标是 _____________ ⑷ 点P(2, 3)关于直线x = 3的对称点为 ________ ,关于直线y = 5的对称点为 ________ ⑸已知点P(“ + l,加-1)关于x 轴的对称点在第一彖限,求d 的取值范围.【例2】如图,在平而直角坐标系中,直线/是第一、三象限的角平分线.实验与探究:(1) 由图观察易知A(2, 0)关于直线/的对称点/V 的坐标为(0,2),请在图中分别标明3(5,3), C(-2,5)关于直线/的对称点X 、C'的位置,并写岀它们的坐标: B' __________ ,C ____________ ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平而内任一点关于第一、三象限的角平分线/的对称点P 的坐标为 ______________ (不必证明): ⑶点A(a , b)在直线/的下方,则d, 〃的大小关系为 ________________ :若在直线/的上方,则 __________ ・h + d\丁 >・(选讲),关于y 轴的对称点的A. (—3, —5)B. (5, 3)C. (一3, 5) D ・(3, 5)B. (2,1)C. (2, -1)D. (-2, 1)点P(a ,b)和点Q(c , d)的中点是M(1)点平移:①将点(x, y)向右(或向左)平移4个单位可得对应点(x + a t y)或(x-“, y).②将点(x, y)向上(或向下)平移〃个单位可得对应点(x,>'+/?)或(x, y-h).⑵图形平移:①把一个图形%个点的横坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向右(或向左)平移Q个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向上(或向下)平移a个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化.【弓I例】点M(-3, -5)向上平移7个单位得到点M,的坐标为:再向左平移3个单位得到【例3】(1)平而直角坐标系中,将P(-2,l)向右平移4个单位,向下平移3个单位,得到P __________ ,□平而直角坐标系中,线段虫妨'是由线段佔经过平移得到的,点A(-1,-4)的对应点为人(1, -1),那么此过程是先向________ 平移____ 个单位再向______ 平移 _____ 个单位得到的,则点B (1, 1)的对应点$坐标为______________ .⑶将点P(m-2,” + 1)沿求轴负方向平移3个单位,得到P^i-rn, 2),则点P坐标是_____________⑷ 平而直角坐标系中,线段A'B'是由线段初经过平移得到的,点A(-2, 1)的对应点为A f (3. 4),点B 的对应点为B'(4,0),则点B 的坐标为()A ・(9,3) B. (一 1,一3) C ・(3, — 3) D. (一3, —1)【例4】二如下左图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案 中左.右眼睛的坐标分别是(-4, 2), (-2, 2),右边图案中左眼的坐标是(3, 4),则右边 图案中右眼的坐标是 _____________________ .-如下右图是由若干个边长为1的小正方形组成的网格,请在图中作岀将“蘑菇”ABCDE 绕A点逆时针旋转奸 再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).二如图,把图1中的04经过平移得到00(如图2),如果图1中04上一点P 的坐标为伽皿),那么平移后在图2中的对应点P 的坐标为 __________ ・大图形的总而积减去周用小三角形的面积.一般方法有割补法和等积变换法.找规律的题目一左要先找/7 = 1、2、3几个图形规律,再推广到“的情况.从简单情形入手,从中发现规律,猜想、推测.归纳出结论,这是创造性思维的特点.i/\ V1例题精讲A ・v图1 图2在平面直角坐标系或网格中求而积,一般将难以求解的图形分割成易求解的图形的面积,可以用F二兀一 - —【引例】如图,直角坐标系中,△ABC的顶点都在网格点上,英中点A坐k标为(2,-1),则△4BC 的而积为 _____________ 平方单位.二如上右图,AABC,将△ABC 向右平移3个单位长度,然后再向上平移2个单位长度,可 以得到△ ・ ① 画出平移后的△人妨6 :② 写出△ AB.C,三个顶点的坐标:(在图中标岀)③ 已知点P 在x 轴上,以B“ P 为顶点的三角形面积为4,求P 点的坐标.【探究1】如图所示,4(1,4),B(4,3),(7(5,0),求图形如C 的面积.【例5】□直角坐标系中,已知人(-1,0)、5(3, 0)两点,点C 在y 轴上,△ABC 的而积是4,则点C 的坐标是 ___________ ■0如右图,已知直角坐标系中A(-1,4)、B(0,2),平移线段初,使点B 移到点C(3,0),此时点A 记作点D ,贝IJ 四边形ABCD 的 而积是 ___________ .【例6】□如下左图,在平而直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0), 8(9,0), C(7,5),D(2, 7)・求四边形ABCD 的而积.「41「J 1_1 T 丿r k —厂」I 厂 11- T 4—n T klrLIr典题精练L LIL」I- T -I- +• -1 ~J_L J•V A【探究2】如下图所示,A(-3,5), B(4,3),求图形OAB的而积.【教师备选】方法三、转化法:平行线,一边转到轴上【探究4】如图所示,求三角形AOB的而积.解析:过点A做0B的平行线,交y轴于点C,连接BC由一次函数知识可求出直线OB:y=-x t设直线AC:y=-x+b -2 - 2 求得y=l x+2 ,得C(0,2)由等积变换可知S厶AOB = S^Bg. ―― x 2x 4=4解析:过点A作BC的平行线交y轴于点D,连接DC利用一次函数求得BC:y=2x+2 ,设直线AD:y=2x+b 求得尸2x+7, D(0,7) 由等积变换可知S沁=S沁弓x 1 x 5=|【变式】已知,在平而直角坐标系中,A「B两点分别在才轴、y轴的正半轴上,且OB = OA = 3. ⑴直接写出点A、B的坐标:⑵若点C(-2, 2),求△BOC的面积;⑶点P是与〉,轴平行的直线上一点,且点P的横坐标为1.若的面积是6,求点P的坐标.【例7】□任平而直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有_______ 个.□如图,在平而直角坐标系中,第1次将MAB变换成△ OA.B.,第二次将变换成第3次将MAB 变换成△0比尽・已知A(l, 3), 4(2, 3), 4(4, 3), A(8, 3), B(2, 0), $(4, 0) , BJ8, 0),耳(16, 0)观察每次变化前后的三角形,找岀规律,按此变化规律再将△OA&3变换成△ O儿则点比的坐标是 _____ ,点厲的坐标是 _____ ,点人的坐标是_______ ,点乞的坐标是 ___________ ・【例8】一个粒子在第一象限内及x轴、y轴上运动,在第lmin内它从原点运动到(1, 0),而后接着按如图所示方式在与X轴、轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2013min后,求这个粒子所处的位置坐标・【变式】将正整数按如图所示的规律在平而直角坐标系中进行排列,每个正整数对应一个整点坐标(X, y)9且x, y均为整数.如数5对应的坐标为(-1,1),则数_________________ 对应的坐标是(-2,3),数2012对应的坐标是__________________【拓展】数1950对应的坐标是______________ ・【教师备选】【备选1】类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1 个单位,用实数加法表示为3 + (-2) = 1.若坐标平而上的点作如下平移:沿*轴方向平移的数屋为d (向右为正,向左为负,平移冋 个单位),沿y 轴方向平移的数量为方(向上为正,向下为负,平移问个单位),则把有序 数对{“,b}叫做这一平移的“平移量”;“平移量” {a, b}与“平移量” {c, d}的加法运算 法则为{“,b} + {c, d} = {a+c, b + d}. 解决问题:(1) 计算:{3, 1} + {1, 2};(2) 动点P 从坐标原点O 出发,先按照"平移量”{3, 1}平移到A,再按照"平移量”{1, 2} 平移到若先把动点P 按照“平移量” {1, 2}平移到C,再按照“平移量” {3, 1}平 移,最后的位置还是点B 吗?在图1中画出四边形OABC.(3) 如图2, 一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头0(5, 5),最后回到出发点O,请用“平移量”加法算式表示它的航行过程.37 36 35 34 3332 31 30 297 16 15 1413 12 11 18 19 61 2 2() 78 ,10 27 2122 23 2425 26图1【备选2】观察下列有规律的点的坐标:儿(1, 1), 4(2, -4), 4(3, 4),人(4, 一2),人(5, 7),肩6, -寸,4(7, 10), 4(8, —1)依此规律,人|的坐标为______________ ,州2的坐标为 ______________________________【备选3】一个动点P在平而直角坐标系中作折线运动,第一次从原点运动到(b 1)>然后按图中箭头所示方向运动,每次移动三角形的一边长•即(1, 1)-* (2, 0) - (3, 2) - (4, 0)-(5, 1)—........... ,按这样的运动规律,经过第17次运动后,动点P的坐标是___________ ,经过第2011次运动后,动点P的坐标是 __________ .【备选4】如图,在长方形网格中,每个小长方形的长为2,宽为1, B 两点在网格格点上,若点C也在网格格点上,以A、3、C为顶点的三角形面积为2,则满足条件的点C个数是( )A. 5B. 4B AD・2【备选5】在平而直角坐标系中,已知八(2・-2),任y轴上确左点P.使8"为等腰三角形,则符合条件的点P共有( )A. 2个B. 3个C. 4个D. 5个题型一坐标系中的对称巩固练习【练习1】□在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是( )A. (—5,—2)B. (一2, —5)C. (一2,5)D. (2, —5)□已知点P(x, y), n),如果x +加=0, y + 〃= 0 ,那么点P, Q ( )A・关于原点对称 B.关于x轴对称C・关于y轴对称D・关于过点(0,0), (1,1)的直线对称□已知:lx-ll+(.y + 2『=0,则(x, y)关于原点对称的点为_________________ .□已知点P(" + 3b,3)与点0(-5,“ + 2b)关于x轴对称,贝比= ______________ , b = _________ .题型二坐标系中的平移巩固练习【练习2】⑴线段CD是由线段初平移得到的,点A(-l, 5)的对应点是C(4, 2),则点B(4, -1)的对应点D的坐标为__________ ・⑵在平面直角坐标系中有一个已知点A ,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标为(-1,2),在旧的坐标系下,点A的坐标为_______ ・【练习3】如图,在平而直角坐标系中,若每一个方格的边长代表一个单位.□线段DC是线段经过怎样的平移得到的?□若C点的坐标是(4, 1), A点的坐标是(-1,-2),你能写岀B、D两点的坐标吗?□求平行四边形ABCD的而积.题型三坐标系中的面积和规律问题巩固练习【练习4】□已知A(0,—2), B(5,0), C(4,3),求△ABC的而积.□已知:A(4,0), 3(1-斗0), 0(1, 3), ZVWC 的而积=6,1)A B求代数式2A-2-5X + X2+4X-3X2 -2 的值.【练习5】如图,长为1,宽为2的长方形ABCQ以右下角的顶点为中心顺时针旋转90°,此时A点的坐标为________ :依次旋转2009次,则顶点A的坐标为___________ ・。
坐标转换
§6 平面直角坐标变换一 平移坐标变换定义:若二平面直角坐标系{O ;i ,j}和{O ′;i ′,j ′}满足i=i ′,j=j ′,则坐标系{O ′;i ′,j ′}可看成是由{O ;i ,j }经过平移得到的,称由坐标系{O ;i ,j}到坐标系{O ′;i ′,j ′}的变换为平移坐标变换。
平移变换公式设平面上一点M 在新系{O ′;i ′,j ′}与旧系{O ;i ,j}下的坐标分别为 (x ′,y ′),(x,y ),而O ′在旧系下的坐标为(a,b ),则 xi+yj= OP = O O +P O '=ai+bj+x ′i ′+y ′j ′=ai+bj+x ′i+y ′j=(a+x ′)i+(b+y ′)j∴⎩⎨⎧+'=+'=b y y a x x ——平移坐标变换公式 二 旋转坐标变换:定义:若二坐标系{O ;i ,j}和{O ′;i ′,j ′}满足O ≡O ′,另∠(i ,j ′)=θ 则坐标系{O ′;i ′,j ′}可看成是由坐标系{O ;i ,j}绕O 旋转θ角得到的,称由{O ;i ,j}到{O ′;i ′,j ′}的变换为旋转坐标变换。
旋转变换公式由于∠(i ,i ′)=0,∴∠(i ,j ′)=2π+θ ∴i ′=cos θi+sin θj ,j ′=cos (2π+θ)i+sin (2π+θ)j=-sin θi+cos θj ∴xi+yj=OP =P O '=x ′i ′+y ′j ′=x ′(cos θi+sin θj )+y ′(-sin θi+cosθj )=(x ′cos θ-y ′sin θ)i+(x ′sin θ+y ′cos θ)j即⎩⎨⎧'+'='-'=θθθθcos sin sin cos y x y y x x 用x,y 表示x ′,y ′,有⎩⎨⎧+-='+='θθθθcos sin sin cos y x y y x x 三 一般坐标变换:称由坐标系{O ;i ,j}得坐标系{O ′;i ′,j ′}的变换为一般坐标变换。
工程测量中不同坐标系变换与精度
工程测量中不同坐标系变换与精度
工程测量中,不同坐标系之间的变换和精度非常重要。
其中,常用的坐标系包括平面
直角坐标系、大地坐标系、投影坐标系等,不同坐标系之间的变换需要考虑到坐标系的基
准面、坐标轴方向、单位等因素。
一、坐标系的基准面
1. 平面直角坐标系的基准面为水平面,通常采用大地水准面作为参考面。
3. 投影坐标系的基准面通常为椭球面或平面,不同的投影方式会导致不同的基准面。
二、坐标轴方向的变换
不同坐标系的坐标轴方向也可能不同,因此需要进行某些坐标轴的转换。
1. 平面直角坐标系通常采用右手坐标系,其中x轴与东向、y轴与北向成正交关系。
2. 大地坐标系中,通常采用地心坐标系或以某个恒星为基准的坐标系,其中z轴与
地轴或某个恒星的指向相同。
3. 投影坐标系的坐标轴方向也有所不同,例如通常采用高斯投影系统的平面坐标系中,x轴指向中央经线的正方向,y轴指向赤道正方向。
三、单位的变换
2. 大地坐标系中,通常采用度或弧度作为单位。
四、变换精度的影响
不同坐标系之间的变换会影响精度,因此需要进行适当的考虑和处理。
1. 坐标系的变换会引入误差,误差的大小与变换参数的精度有关。
2. 不同坐标系之间的误差也有所不同,例如平面直角坐标系与大地坐标系之间的误
差通常比两个大地坐标系之间的误差更小。
综上所述,工程测量中的不同坐标系之间的变换和精度是非常重要的,需要进行适当
的考虑和处理。
为了保证测量的精度和稳定性,应选择合适的坐标系和变换方法,并进行
精确的计算和校正。
坐标系的转换
对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。
坐标转换就是转换参数。
常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。
对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。
确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。
其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。
对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。
详细方法见第三类。
3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。
专题12 平面直角坐标系篇(解析版)
专题12 平面直角坐标系考点一:平面直角坐标系之坐标特点1. 有序数对:有顺序的两个数a与b组成的数对叫做有序数对。
表示为()ba,,可以用来表示位置。
2. 平面直角坐标系各部分的坐标特点:①x轴上的所有点的坐标可表示为()0,x。
②y轴上的所有点的坐标可表示为()y,0。
③第一象限内的所有点的坐标横纵坐标都是正数。
即(﹢,﹢)。
④第二象限内的所有点的坐标横坐标是负数,纵坐标是正数。
即(﹣,﹢)。
⑤第三象限内的所有点的坐标横纵坐标都是负数。
即(﹣,﹣)。
⑥第四象限内的所有点的坐标横坐标是正数,纵坐标是负数。
即(﹢,﹣)。
3. 点到坐标轴的距离:点()ba,到横坐标的距离等于纵坐标的绝对值。
即b。
点()ba,到纵坐标的距离等于横坐标的绝对值。
即a。
1.(2022•六盘水)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是( )A.狐狸B.猫C.蜜蜂D.牛【分析】根据点的坐标解决此题.【解答】解:由题意知,咚咚﹣咚咚对应(2,2),咚﹣咚对应(1,1),咚咚咚﹣咚对应(3,1).∴咚咚﹣咚对应(2,1),表示C;咚咚咚﹣咚咚对应(3,2),表示A;咚﹣咚咚咚对应(1,3),表示T.∴此时,表示的动物是猫.故选:B.2.(2022•柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是( )A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】根据综合楼和食堂的坐标分别是(4,1)和(5,4),建立适当的平面直角坐标系,即可解答.【解答】解:建立如图所示的平面直角坐标系:∴教学楼的坐标是(2,2),故选:D.3.(2022•铜仁市)如图,在矩形ABCD中,A(﹣3,2),B(3,2),C(3,﹣1),则D的坐标为( )A.(﹣2,﹣1)B.(4,﹣1)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】先根据A、B的坐标求出AB的长,则CD=AB=6,并证明AB∥CD∥x轴,同理可得AD∥BC ∥y轴,由此即可得到答案.【解答】解:∵A(﹣3,2),B(3,2),∴AB=6,AB∥x轴,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD∥x轴,同理可得AD∥BC∥y轴,∵点C(3,﹣1),∴点D的坐标为(﹣3,﹣1),故选:D.4.(2022•宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A.(1,3)B.(3,4)C.(4,2)D.(2,4)【分析】直接利用点的坐标特点得出与小丽相邻且能比较方便地讨论交流的同学的座位位置.【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.5.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.6.(2022•乐山)点P(﹣1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可.【解答】解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.7.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第一象限内点的坐标特点得出a、b的符号,进而得出答案.【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.8.(2022•衢州)在平面直角坐标系中,点A(﹣1,﹣2)落在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A 点位置.【解答】解:∵﹣1<0,﹣2<0,∴点A (﹣1,﹣2)在第三象限,故选:C .9.(2022•河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( )A .﹣21<m <0B .m >﹣21C .m <0D .m <﹣21【分析】根据点P 在第三象限,即横纵坐标都是负数,据此即可列不等式组求得m 的范围.【解答】解:根据题意得,解①得m <0,解②得m <.则不等式组的解集是m <﹣.故选:D .10.(2022•兰州)如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是 .【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;【解答】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,∴黄河母亲像的坐标是(﹣4,1).故答案为:(﹣4,1).11.(2022•广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第 象限.【分析】根据点P(m+1,m)在第四象限,求出m的取值范围,得到1<m+2<2,进而得到点Q所在的象限.【解答】解:∵点P(m+1,m)在第四象限,∴,∴﹣1<m<0,∴1<m+2<2,∴点Q(﹣3,m+2)在第二象限,故答案为:二.12.(2022•鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智慧攻防转换有乐趣”为主题的中国象棋文化节.如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是 .【分析】应用平面内点的平移规律进行计算即可得出答案.【解答】解:根据平面内点的平移规律可得,把“帅”向左平移两个单位,向上平移3个单位得到“兵”的位置,∴(﹣1﹣2,﹣2+3),即(﹣3,1).故答案为:(﹣3,1).13.(2022•烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 .【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“帅”所在的位置:(4,1),故答案为:(4,1).考点二:平面直角坐标系之坐标变换1. 平行于x 轴(垂直于y 轴)的直线上的点的坐标:纵坐标相等。
初中数学图形的坐标与变换知识点归纳
初中数学图形的坐标与变换知识点归纳初中数学中,图形的坐标与变换是一个重要且基础的知识点。
它涉及到平面直角坐标系、图形的平移、旋转、翻转等概念和运算。
下面,我们将对初中数学中相关的知识点进行归纳,帮助大家更好地理解和掌握这些内容。
1. 平面直角坐标系平面直角坐标系是研究平面上点的位置关系的工具。
它由两条互相垂直的数轴(x轴和y轴)组成,原点为坐标原点,分别与x轴和y轴的正方向上的单位长度为1的线段为坐标轴。
2. 点的坐标表示在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
这种用数对表示点的方法称为点的坐标。
3. 图形的平移平移是指图形在平面上沿着一定的方向移动一定的距离,但形状和大小保持不变。
平移可以用坐标表示,对于平移向量(a, b),图形上的每个点(x, y)移动到新位置(x+a, y+b)。
4. 图形的旋转旋转是指图形绕一个固定点旋转一定的角度。
对于顺时针旋转θ度的情况,图形上的每个点(x, y)绕旋转中心点O旋转θ度后的新位置为(x', y'),通过一定的数学公式可以得到旋转后的新坐标。
5. 图形的翻转翻转是指图形相对于某个轴对称的操作。
包括水平翻转和垂直翻转两种情况。
水平翻转是指图形相对于x轴对称,垂直翻转是指图形相对于y轴对称。
翻转后图形上的每个点(x, y)的新坐标可以通过一定的变换公式得到。
6. 点的对称性在平面直角坐标系中,点的对称性也是一个重要的概念。
对称点是指两个在坐标系中关于某个点对称的点,就是它们关于这个点的连线的中点。
7. 图形的对称性除了点的对称性,图形的对称性也是一种重要的性质。
图形如果存在一个中心对称轴,当图形上的每一个点关于该对称轴与对应的对称点重合时,我们说图形具有中心对称性。
如果一个图形既有中心对称性,又有轴对称性,则称为既有中心对称性又有轴对称性。
通过对初中数学中图形的坐标与变换知识点的归纳,我们可以更好地理解和应用这些知识,解决与图形相关的问题。
常用坐标系介绍及变换PPT课件
目录
• 常用坐标系介绍 • 坐标变换基础 • 坐标变换的应用 • 坐标变换的数学表达 • 坐标变换的物理意义 • 坐标变换的计算机实现
01
常用坐标系介绍
笛卡尔坐标系
01
02
03
直角坐标系
以原点为中心,x轴、y轴、 z轴分别代表三个相互垂 直的坐标轴,用于描述平 面和空间中的点。
二维坐标变换
总结词
二维坐标变换是指平面内的坐标变化, 包括平移、旋转、缩放等操作。
详细描述
二维坐标变换涉及平面内的点,可以 通过平移、旋转或缩放等操作进行坐 标变化。这种变换在平面几何、图形 处理等领域应用广泛,可以通过矩阵 运算实现快速变换。
三维坐标变换
总结词
三维坐标变换是指空间中的坐标变化,包括平移、旋转、缩放等操作。
详细描述
三维坐标变换涉及空间中的点,可以通过平移、旋转或缩放等操作进行坐标变化。这种变换在三维建模、动画制 作、机器人控制等领域应用广泛,需要使用三维矩阵运算进行实现。
03
坐标变换的应用
图形变换
图形变换是指通过数学方法将一个二维或三维图形在坐标系 中进行平移、旋转、缩放等操作,以达到改变图形位置、大是一种数值计算方法,通过将物体离散化为有限个单元,可 以分析物体的受力情况和形变程度。有限元分析在工程领域中有着广泛 的应用,可以提高设计效率和精度。
06
坐标变换的计算机实现
OpenGL中的坐标变换
投影变换
将三维场景投影到二维屏 幕上,包括正交投影和透 视投影。
视图变换
将场景中的坐标系与观察 者的坐标系进行关联,实 现视景体裁剪。
旋转变换不改变图形的大小和形状, 只改变其方向。
平面直角坐标系与坐标变换
平面直角坐标系与坐标变换在数学中,平面直角坐标系是一种常用的坐标系统,用于描述平面上的点的位置。
其由两条相互垂直的直线组成,分别称为x轴和y轴,并以原点作为起点,用于确定点的位置。
而坐标变换则是对平面直角坐标系进行转换的过程,可以将点从一个坐标系映射到另一个坐标系上。
一、平面直角坐标系平面直角坐标系是由两条相互垂直的直线组成的,通常分别被称为x轴和y轴。
x轴表示水平方向,与纵向垂直的y轴表示竖直方向。
这两条直线的交点被称为原点O,是整个坐标系的起点。
在平面直角坐标系中,每个点的位置都可以通过一组有序的实数(x,y)来表示。
其中,x表示该点在x轴上的坐标,y表示该点在y轴上的坐标。
这一对坐标值可以用一个有序对表示,记作P(x,y),其中P代表该点。
二、坐标变换坐标变换是指将点从一个坐标系映射到另一个坐标系上的过程。
在平面直角坐标系中,常用的坐标变换包括平移、旋转和缩放等。
1. 平移平移是指将平面上的点在不改变其朝向和大小的前提下,沿着指定的方向移动一定的距离。
平移可以通过改变点的坐标来实现。
假设有一个点P(x,y),如果要将其平移d个单位长度,可以将其坐标变为P'(x+d,y)。
2. 旋转旋转是指将平面上的点按照指定的角度绕某一固定点旋转。
旋转可以通过改变点的坐标来实现。
设有一个点P(x,y),以原点O为中心,按逆时针方向旋转θ角度后得到的点记作P'(x',y')。
旋转的坐标变换公式为:```x' = x * cosθ - y * sinθy' = y * cosθ + x * sinθ```3. 缩放缩放是指将平面上的点按照指定的比例在x轴和y轴方向上进行拉伸或收缩。
缩放也可以通过改变点的坐标来实现。
设有一个点P(x,y),在x轴和y轴方向上分别缩放sx和sy倍后得到的点记作P'(x',y')。
缩放的坐标变换公式为:```x' = x * sxy' = y * sy```三、应用场景平面直角坐标系与坐标变换在数学和物理等领域有广泛的应用。
平面向量的坐标表示和坐标变换
平面向量的坐标表示和坐标变换平面向量在数学和物理学中具有广泛的应用,它们可以通过坐标表示和进行坐标变换。
本文将介绍平面向量的坐标表示方法以及常见的坐标变换。
一、平面向量的坐标表示在平面直角坐标系中,平面向量可以使用坐标表示。
对于一个平面向量,我们可以用一个有序数对(a, b) 来表示,其中a为向量在x轴上的投影,b为向量在y轴上的投影。
这种表示方法被称为分量表示法。
例如,对于平面向量a,其坐标表示为 (a₁, a₂)。
其中,a₁为向量在x轴上的投影,a₂为向量在y轴上的投影。
二、坐标表示的运算1. 向量加法两个平面向量的坐标表示相加,可以分别将其水平和垂直分量相加。
假设有向量a(a₁, a₂)和向量b(b₁, b₂),它们的和向量c 可以表示为:c = (a₁ + b₁, a₂ + b₂)2. 向量数量乘法向量的数量乘法即将向量的每个分量与一个实数相乘。
假设有一个向量a(a₁, a₂)和一个实数k,那么向量a与k的乘积可以表示为:ka = (ka₁, ka₂)三、坐标变换在平面向量的研究中,常常需要进行不同坐标系之间的转换。
这就需要进行坐标变换。
1. 坐标系的平移当坐标系发生平移时,向量的坐标表示也会发生变化。
假设有一个向量a,其在原始坐标系下的坐标表示为(a₁, a₂),经过平移后,坐标系的原点移动到新的坐标原点P。
那么,向量a在新坐标系下的坐标表示为(a₁ + p, a₂ + q),其中(p, q)为坐标系的平移向量。
2. 坐标系的旋转当坐标系发生旋转时,向量的坐标表示也会发生变化。
假设有一个向量a,其在原始坐标系下的坐标表示为(a₁, a₂),经过逆时针旋转角度θ 后,向量a在新坐标系下的坐标表示为:a' = (a'₁, a'₂)其中,a'₁ = a₁cosθ - a₂sinθa'₂ = a₁sinθ + a₂cosθ3. 坐标系的缩放当坐标系发生缩放时,向量的坐标表示也会发生变化。
初中数学:平面直角坐标系
关于早恋的观后感在如今这个充满青春活力和懵懂情愫的时代,早恋似乎已经成为了一个绕不开的话题。
最近,因为一些机缘巧合,我对早恋这个现象有了更深的思考和感受。
前几天,我去参加了一个表妹的家长会。
表妹今年上初二,正是青春懵懂的时候。
那天,我坐在教室的后排,听着老师在讲台上讲述着班级里的各种情况,其中就提到了早恋这个敏感的话题。
老师说,他们班上有两个孩子,原本成绩都还不错,可自从陷入了早恋的漩涡,成绩那是直线下滑。
这两个孩子,每天上学就想着怎么跟对方见面,下课了就凑在一起窃窃私语,作业也不好好写,上课更是心不在焉。
听到这里,我心里不禁咯噔一下,开始想象这两个孩子的模样和他们相处的情景。
我想起了自己初中的时候,班上也有那么一对小情侣。
那时候,大家都还很青涩,对于感情也是懵懵懂懂的。
他们俩呢,总是一起上学、一起放学。
课间的时候,男生会跑到女生的座位旁边,给她递上一瓶水或者一个小零食,女生则会红着脸接过,然后低下头轻轻地笑。
那时候的他们,觉得这就是爱情,觉得这样的陪伴就是永恒。
可是后来呢?中考的压力越来越大,作业越来越多,考试越来越频繁。
他们开始没有时间一起聊天,一起散步。
女生因为成绩下降被家长狠狠地批评了一顿,男生也因为总是想着和女生在一起而忽略了学习,被老师多次找去谈话。
慢慢地,他们之间开始有了争吵,有了矛盾。
最终,在中考前的那段时间,他们分手了,而且两个人的成绩都受到了很大的影响,没能考上理想的高中。
再看看表妹班上的这两个孩子,他们现在或许觉得自己很幸福,觉得找到了那个懂自己、爱自己的人。
但他们却没有意识到,这个年纪的他们,根本没有足够的能力和心智去处理感情带来的各种问题。
他们以为的爱情,可能只是一时的冲动和好奇。
早恋,就像是一颗还没成熟的果子。
看起来鲜艳诱人,但咬下去却是酸涩的。
这个年纪的孩子,应该把更多的精力放在学习和成长上,去积累知识,去培养自己的兴趣爱好,去结交更多志同道合的朋友。
而不是过早地陷入感情的纠葛中,让自己迷失方向。
平面直角坐标系与坐标变换
平面直角坐标系与坐标变换平面直角坐标系是一个由两条互相垂直的线所确定的平面坐标系,常用于表示平面上的点的位置。
在平面直角坐标系中,每个点的位置都可以由其横坐标(x)和纵坐标(y)来确定。
坐标变换是指将一个平面直角坐标系中的点的坐标转换为另一个平面直角坐标系中的点的坐标的过程。
一、平面直角坐标系平面直角坐标系由横轴和纵轴组成,它们互相垂直,并且在原点处交叉。
横轴被称为x轴,纵轴被称为y轴。
在平面直角坐标系中,点的位置可以由其横坐标和纵坐标的数值来确定。
横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。
坐标轴上的正半轴方向被规定为正方向,负半轴方向被规定为负方向。
平面直角坐标系的单位长度可以任意选择,通常选择单位长度为1。
二、坐标变换1. 平移变换平移变换是指将一个平面直角坐标系中的点的坐标移动到另一个平面直角坐标系中的点的坐标的过程。
平移变换可以沿着横轴或纵轴方向进行。
沿着横轴方向的平移变换将横坐标增加或减少某个数值,不影响纵坐标。
沿着纵轴方向的平移变换将纵坐标增加或减少某个数值,不影响横坐标。
平移变换可以用下列公式表示:新点的横坐标 = 原点的横坐标 + 平移量新点的纵坐标 = 原点的纵坐标 + 平移量2. 旋转变换旋转变换是指将一个平面直角坐标系中的点的坐标绕一个固定点旋转一定角度后,得到另一个平面直角坐标系中的点的坐标的过程。
旋转变换可以是顺时针方向或逆时针方向。
旋转变换可以用下列公式表示:新点的横坐标 = 原点的横坐标* cosθ - 原点的纵坐标* sinθ新点的纵坐标 = 原点的横坐标* sinθ + 原点的纵坐标* cosθ其中,θ表示旋转的角度,cosθ表示θ的余弦值,sinθ表示θ的正弦值。
3. 缩放变换缩放变换是指将一个平面直角坐标系中的点的坐标在横轴和纵轴方向上进行拉伸或压缩的过程。
缩放变换可以分别在横轴和纵轴上进行,也可以在两个方向上同时进行。
缩放变换可以用下列公式表示:新点的横坐标 = 原点的横坐标 * 缩放因子新点的纵坐标 = 原点的纵坐标 * 缩放因子其中,缩放因子表示缩放的比例。
几种常用平面直角坐标系与国家统一3°带坐标系转换原理、方法
平 面直角坐标 系是 国家统一 3 。 带平面直角坐标 系的 变换 , 本文研 究几种常 用地方平面直 角坐标 系与 国家统 一 3 。
带 坐标 系相 互 转 换 的原 理 与 方 法 。
关键词 : 地方平 面直 角坐标 系; 中央子午线 ; 高斯投 影 ; 投 影基 准面 中图分类号 : P 2 2 6 . 3 文献标识码 : A 文章编号 : 1 6 7 2— 5 8 6 7 ( 2 0 1 4 ) 1 l 一 0 1 8 5— 0 4
摘 要 : 开展 大比例 尺测图时 , 当测 区距 离国家统一 3 。 带 中央子午线较远或测 区高程较 大时, 国家统一 3 。 带坐标
系不 能 满足 城 市 建设 和 工 程 建 设 的 需要 , 需 要 建 立 长度 变形 值 不 大 于 2 . 5 c m / k m 的 地 方 平 面 直 角 坐标 系 。地 方
第3 7卷 第 1 1期
2 0 1 4年 1 1月
测 绘 与 空 间 地 理 信 息
G E OMA T I C S& S P AT I A L l NF OR MA T l oN T E CHN OL OGY
Vo 1 . 3 7, No. 1 1 No v .,2 01 4
几 种 常 用 平 面 直 角 坐 标 系与 国家 统 一 3 。 带 坐 标 系转 换 原 理 、 方 法
钱 小龙 ,路 晓 明 ,冯 梅
( 1 . 河南省遥感测绘院 , 河南 郑州 4 5 0 0 0 3; 2 . 河南 省国土资源调查规划院 , 河南 郑州 4 5 0 0 1 6 )
t e m ,t h i s p a p e r d i d r e s e a r c h o n s e v e r a l c o mmo n p r i n c i p l e s nd a me t h o d s o f c o o r d i n a t e t r a n s f o ma r t i o n b e t w e e n p l a n e r e c t a n g u l a r c o o r d i ・ n a t e s y s t e m a n d n a t i o n a l 3 。z o n e c o o r d i n a t e s y s t e m.
教案平面直角坐标系与坐标变换
教案平面直角坐标系与坐标变换教案:平面直角坐标系与坐标变换一、平面直角坐标系的定义与特点平面直角坐标系是我们研究平面几何问题时常用的工具,它由两条相互垂直的坐标轴和一个原点组成。
其中一条坐标轴称为x轴,另一条坐标轴称为y轴,原点是坐标轴的交点。
在平面直角坐标系中,每个点都可以用一对数字(x, y)来表示,其中x表示点在x轴上的投影的长度,y表示点在y轴上的投影的长度。
x 和y称为该点的横坐标和纵坐标。
平面直角坐标系的特点如下:1. 坐标轴相互垂直,能够准确表示点的位置关系;2. 坐标轴上的单位长度相等,方便进行长度、距离的计算;3. 坐标轴上的刻度线便于读取坐标值。
二、平面直角坐标系中的基本运算1. 点的坐标运算在平面直角坐标系中,可以进行点的加法、减法和数的乘法运算。
- 点的加法:对于两个点A(x1, y1)和B(x2, y2),它们的和可表示为C(x1+x2, y1+y2)。
- 点的减法:对于两个点A(x1, y1)和B(x2, y2),它们的差可表示为C(x1-x2, y1-y2)。
- 数的乘法:对于一个点A(x, y)和一个实数k,点A与k的乘积可表示为B(kx, ky)。
2. 坐标变换在平面直角坐标系中,我们经常需要进行坐标变换。
常见的坐标变换有平移、旋转和对称等。
- 平移变换:将点A(x, y)平移向右(或左)a个单位,向上(或下)b个单位,得到新的点B(x+a, y+b)。
- 旋转变换:围绕原点O(x0, y0)将点A(x, y)逆时针旋转θ角度,得到新的点B(x', y')。
旋转公式如下:x' = (x-x0) * cos(θ) - (y-y0) * sin(θ) + x0y' = (x-x0) * sin(θ) + (y-y0) * cos(θ) + y0- 对称变换:对于点A(x, y),存在一个直线L,当L为x轴、y轴或原点O时,分别得到关于x轴、y轴或原点对称的新点B。
平面直角坐标系与坐标变换
平面直角坐标系与坐标变换在我们的数学世界中,平面直角坐标系就像是一个神奇的地图,能够清晰地定位和描述点的位置。
而坐标变换则像是这个地图上的魔法,让我们可以从不同的角度去观察和理解这些点的位置关系。
先来说说平面直角坐标系。
想象一下,在一个平坦的平面上,我们画两条互相垂直的线,一条水平的线称为 x 轴,一条垂直的线称为 y 轴。
这两条线的交点被称为原点,通常标记为 O 。
通过这两条轴,我们可以给平面上的任何一个点赋予一个特定的坐标。
比如,有一个点 P ,它距离 x 轴 3 个单位长度,距离 y 轴 2 个单位长度,并且在 x 轴上方和 y 轴右侧,那么它的坐标就是(3, 2) 。
这里的 3 叫做横坐标,2 叫做纵坐标。
横坐标表示点在 x 轴上的位置,纵坐标表示点在 y 轴上的位置。
平面直角坐标系的出现,让我们能够用数学的语言来精确地描述平面上的位置和图形。
比如,一条直线可以用一个方程来表示,一个圆也可以用特定的方程来描述。
接下来,咱们再聊聊坐标变换。
坐标变换就是改变点的坐标表示方式,但点在平面上的实际位置并没有改变,只是我们观察它的角度或者参照系发生了变化。
最常见的坐标变换有平移、旋转和缩放。
平移变换就像是把整个坐标系在平面上移动。
假设我们把整个平面直角坐标系向右移动 2 个单位,向上移动 3 个单位。
那么原来坐标为(x, y) 的点,在新的坐标系中的坐标就变成了(x 2, y 3) 。
旋转变换则是让坐标轴绕着原点旋转一定的角度。
比如说,我们把坐标轴逆时针旋转 90 度。
原来坐标为(x, y) 的点,在新的坐标系中的坐标就变成了(y, x) 。
缩放变换呢,就是把坐标轴的单位长度进行放大或者缩小。
如果 x 轴和 y 轴的单位长度都扩大 2 倍,那么原来坐标为(x, y) 的点,在新的坐标系中的坐标就变成了(x/2, y/2) 。
坐标变换在很多领域都有着重要的应用。
在物理学中,当我们研究物体的运动时,可能需要在不同的参考系下观察和描述物体的位置和速度,这就需要用到坐标变换。
平面直角坐标系中的变换
第4讲 平面直角坐标系中的变换已知点P (a ,b ),则点P 到x 轴的距离为 ; 点P 到y 轴的距离为 . 若点P (a ,b )在第一、三象限的角平分线上,则 ,即横、纵坐标 ; 若点P (a ,b )在第二、四象限的角平分线上,则 ,即横、纵坐标 .【例1】基础过关(1)点A (3,-1)在第______象限,点B (-1,-3)在第______象限,点C (3, 1)在第______象限,点A (-3,1)在第______象限.(2)若点P (a ,b )在第二象限,则点(-b ,a )在第______象限.(3)如果点P 在轴上,则____,此时P 的坐标为_____ ;当____时,点P 在横轴上,此时P 点坐标为 ______ ;(4)点P(x ,y),若xy=0,则点P 在____________上.(5)已知点P (-x+1,2x-7)在第三象限的角平分线上,则x=______.(6)已知点P (2x ,x+3)在第二象限坐标轴夹角平分线上,则点Q (-x+2,2x+3)的坐标为 .(7)如果点A (2,m ),点B (n-6) 且AB//y 轴,则_______.(8)点P 在第四象限,且到x 轴的距离为2,到y 轴的距离为5,则点P 的坐标为_______.(9)点P (-a 2-2,b 2+1)到x 轴的距离为______,到y 轴的距离为______.【例2】基础过关(1)如果a -b <0,且ab <0,那么点(a ,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.()5,2a a +-y a =a =(),1a a -板块一 平面直角坐标系的基础知识(2)如果<0,那么点P (x ,y )在( )A 、第二象限B 、第四象限C 、第四象限或第二象限D 、第一象限或第三象限(3)点(x ,1-x )不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限(4)已知点P (2x-10,3-x )在第三象限,则x 的取值范围是( )A 、53<<xB 、3≤x ≤5C 、5>x 或3<xD 、x ≥5或x ≤3 点P (m ,n)关于x 轴的对称点为 ,即横坐标不变,纵坐标互为相反数;点P (m ,n)关于y 轴的对称点为 ,即纵坐标不变,横坐标互为相反数;点P (m ,n)关于原点的对称点为 ,即横、纵坐标都互为相反数;点P (m ,n)关于点Q (a ,b )的对称点是 .【例3】基础过关(1)点P (3,-5)关于x 轴对称的点的坐标为( )A .(-3,-5)B .(5,3)C .(-3,5)D .(3,5)(2)点P (-2,1)关于y 轴对称的点的坐标为( )A . (-2,-1)B .(2,1)C .(2,-1)D .(-2,1)(3) 在平面直接坐标系中,P (-4,5)关于x 轴对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点是 .(4)点P (2,3)关于直线x =3的对称点为 ,关于直线y =5的对称点为 .(5)点(-2,3)关于点(1,2)对称的点是 .(6)已知点P (a +1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.xy 板块二 坐标系中的对称【例4】对称的应用如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)观察与探究:由图观察已知A(2,0)关于直线l的对称点A’的坐标为(0,2),请在图中分别标明B(5,3),C(-2,5)关于直线l的对称点B’、C’的位置,并写出它们的坐标:B’,C’;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a,b)关于第一、三象限的角平分线l的对称点P’的坐标为(不必证明);(3)运用与拓展:点A(a,b)在直线l的下方,则a,b的大小关系为;若在直线l的上方,则.板块三坐标系中的平移将点(x,y)向右平移a个单位长度,得到的对应点的坐标是:____________;将点(x,y)向左平移a个单位长度,得到的对应点的坐标是:____________;将点(x,y)向上平移b个单位长度,得到的对应点的坐标是:____________;将点(x,y)向下平移b个单位长度,得到的对应点的坐标是:.将一个图形各个点的横坐标加上(或减去)一个正数a,相应的新图形将向(或向)平移个单位长度;将一个图形各个点的纵坐标加上(或减去)一个正数a,相应的新图形将向(或向)平移个单位长度;平移只改变图形的,图形的和不发生改变.平行于x轴(或横轴)的直线上的点的相同;平行于y轴(或纵轴)的直线上的点的相同.【例5】基础过关(1)点M(-3,-5)向上平移7个单位得到点M1的坐标为;再向左平移3个单位得到点M2的坐标为.(2)在平面直角坐标系中,若将点p(x,y)向右平移a个长度单位得到点的坐标是,若向下平移b个长度单位,得到的点的坐标是.(3)平面直角坐标系中,线段A1B1是由线段AB经过平移得到的,点A(-1,-4)的对应点为A1(1,-1),点B(1,1)的对应点B1为.(4)将点P(m-2,n+1)沿x轴负方向平移3个单位,得到P1(1-m,2),则点P坐标是.【例6】平移的应用(1)如图1,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛坐标分别是(-4,2)(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是.(2)如图2是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE绕A点逆时针旋转90°再向右平移2个单位的图形(其中C、D为所在小正方形边的中点).图1 图2 图3 图4 板块四坐标系中的面积与规律问题【例7】面积问题(1)如图3,直角坐标系中,△ABC的顶点都在网格点上,其中点A的坐标为(2,-1),则△ABC的面积为平方单位.(2)如图4,已知直角坐标系中A(-1,4)、B(0,2),平移线段AB,使点B移到点C (3,0),此时点A记作点D,则四边形ABCD的面积是.(3)已知:如图,在平面直角坐标系中,四边形ABCD各项点的坐标分别为A(0,0),B(9,0),C(7,5),D(2,7).求四边形ABCD的面积.【例8】找规律问题(1)如图5,在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有个.(清华附中期中)(2)如图6,在平面直角坐标系中,第1次将△OAB 变换成△OA 1B 1,第二次将三角形OAB 变换成OA 2B 2,第三次将△OAB 变换成△OA 3B 3.已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变化前后的三角形,找出规律,按此变化规律再将△OA 3B 3变换成△OA 4B 4,则点A 4的坐标是 ,则点B 4的坐标是 ,则点A n 的坐标是 ,则点B n 的坐标是 .(北京十二中期中)(3)如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在1989min 后,求这个粒子所处的位置坐标.【巩固练习】1.已知点A ()4,x y -,点()1,2B y x -关于x 轴对称,求x y 的值.2.如图,将边长为1的正方形OAPB 沿x 轴正方向边连续翻转2006次,点P 依次落在点1232006,,P P P P 的位置,则2006P 的横坐标2006x =______,2006P 的纵坐标2006y =______.3.在平面直角坐标系中,等腰三角形ABC 的顶点A 的坐标为(2,2).(1)若底边BC 在x 轴上,设点B 、C 坐标分别为(m ,0)、(n ,0),你认为m 、n 应满足怎样的条件?答:____________. (2)若底边BC 两端点分别在x 轴、y 轴上,设点B 、C 的坐标分别为(m ,0)、(0,n ),你认为m 、n 应满足怎样的条件?答:____________.课后作业1.(1)在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(-5,-2)B.(-2,-5)C.(-2,5)D.(-2,-5)(2)已知点P(x,y),Q(m,n),如果x+m=0,y+n=0那么点P,Q()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于过点(0,0)(1,1)的直线对称(3)已知:|x-1|+(y+2)²=0,则(x,y)关于原点对称的点为.(4)已知点P(a+3b,3)与点Q(-5,a+2b)关于x轴对称,则a=b= 2.(1)将点P(-4,3)先向右平移2个单位,再向上平移1个单位后,则得到点P’的坐标为.(2)点A向左平移3个单位,再向下平移1个单位到点(-1,3),则点A的坐标为.(3)在平面直角坐标系中有一个已知点A,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标系下点A的坐标为(-1,2),在旧的坐标系下点A的坐标为.(4)在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位(5)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.3.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中画出△ABC向右平移3个单位,再向下平移2个单位的图形△A1B1C1.(3)写出点A1,B1,C1的坐标.4.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.(1)线段DC是线段AB经过怎样的平移得到的?(2)若C点的坐标是(4,1),A点的坐标是(-1,-2),你能写出B、D两点的坐标吗?(3)求平行四边形ABCD的面积.5.如图,长为1,宽为2的长方形ABCD以右下角的顶点为中心顺时针旋转90°,此时A 点的坐标为;依次旋转2009次,则顶点A的坐标为.。
直角坐标系与坐标变换
直角坐标系与坐标变换直角坐标系,又称笛卡尔坐标系,是描述平面或空间中点位置的常用坐标系统。
它由两条垂直的坐标轴组成,通常标记为x和y。
直角坐标系中,原点表示位置的参考点,x轴和y轴分别表示水平和垂直方向。
在平面直角坐标系中,每个点都可以由一对有序实数(x,y)来表示。
x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。
点的坐标是相对于原点的水平和垂直距离。
在立体直角坐标系中,除了平面直角坐标系中的两个坐标轴,还加入了一条垂直于平面的z轴。
每个点都可以由一个有序实数元组(x,y,z)来唯一确定。
坐标变换是指将一个点的坐标从一个坐标系转换到另一个坐标系。
常见的坐标变换方式有平移、旋转和缩放等。
平移是通过将坐标系整体移动,实现点的坐标变换。
平移的实质是在原有的坐标基础上加上一个平移向量,使所有点的坐标都发生相应的变化。
旋转是通过将坐标系绕着某一点或某一轴进行旋转,实现点的坐标变换。
旋转的实质是通过一系列的线性变换将原有坐标系中点的坐标映射到新坐标系中。
缩放是通过改变坐标系中的比例尺度,实现点的坐标变换。
缩放的实质是通过乘以一个比例因子来改变点的位置。
除了上述基本的坐标变换方式,还有一种特殊的坐标变换叫做仿射变换。
仿射变换是指保持直线在变换前后的位置关系不变的变换。
它可以用来实现平移、旋转和缩放等各种变换。
总结来说,直角坐标系是一种常用的坐标系统,用于描述平面或空间中点的位置。
坐标变换是指将点的坐标从一个坐标系转换到另一个坐标系。
常见的坐标变换方式有平移、旋转、缩放和仿射变换等。
通过坐标变换,我们可以方便地进行几何问题的分析和计算。
2023年中考数学----《平面直角坐标系---坐标变换》知识总结与专项练习题(含答案解析)
2023年中考数学----《平面直角坐标系---坐标变换》知识总结与专项练习题(含答案解析)知识总结1. 平行于x 轴(垂直于y 轴)的直线上的点的坐标:纵坐标相等。
2. 平行于y 轴(垂直于x 轴)的直线上的点的坐标:横坐标相等。
3. 坐标的平移变换:①当坐标进行左右平移时:纵坐标不变,横坐标加减,右加左减。
平移多少个单位就加减多少。
即若()b a ,向左移动m 个单位,则移动后的点的坐标为()b m a ,−;若()b a ,向右移动m 个单位,则移动后的点的坐标为()b m a ,+。
②当坐标进行上下平移时:横坐标不变,纵坐标加减,上加下减。
平移多少个单位就加减多少。
即若()b a ,向上移动m 个单位,则移动后的点的坐标为()m b a +,;若()b a ,向下移动m 个单位,则移动后的点的坐标为()m b a −,。
4. 坐标的对称变换:①关于x 轴对称的点的坐标:横坐标不变,纵坐标互为相反数。
即()b a ,关于x 轴对称的点的坐标为()b a −,。
②关于y 轴对称的点的坐标:纵坐标不变,横坐标互为相反数。
即()b a ,关于y 轴对称的点的坐标为()b a ,−。
③关于原点对称的点的坐标:横纵坐标均互为相反数。
即()b a ,关于原点对称的点的坐标为()b a −−,。
练习题1、(2022•贵港)若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是()A.﹣1 B.﹣3 C.1 D.2【分析】根据两点关于y轴对称的点的坐标的特点列出有关a、b的方程求解即可求得a﹣b的值.【解答】解:∵点A(a,﹣1)与点B(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a﹣b=﹣2﹣(﹣1)=﹣1,故选:A.2、(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y 轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.3、(2022•沈阳)在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(﹣3,﹣2)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点A(2,3)关于y轴的对称点坐标为(﹣2,3).故选:B.4、(2022•新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B的坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【解答】解:∵点A(2,1)与点B关于x轴对称,∴点B的坐标是:(2,﹣1).故选:A.5、(2022•郴州)点A(﹣3,2)关于x轴对称的点的坐标为.【分析】根据关于x轴对称的点的坐标特征,即可解答.【解答】解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2),故答案为:(﹣3,﹣2).6、(2022•台州)如图是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为()A.(40,﹣a)B.(﹣40,a)C.(﹣40,﹣a)D.(a,﹣40)【分析】根据轴对称的性质即可得到结论.【解答】解:∵飞机E(40,a)与飞机D关于y轴对称,∴飞机D的坐标为(﹣40,a),故选:B.7、(2022•百色)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,1)B.(3,3)C.(﹣1,1)D.(﹣1,3)【分析】根据平移与图形的变化规律进行计算即可.【解答】解:根据平移与图形变化的规律可知,将△ABC向左平移2个单位,再向上平移1个单位,其图形上的对应点B′的横坐标减少2,纵坐标增加1,由于点B(1,2),所以平移后的对应点B′的坐标为(﹣1,3),故选:D.8、(2022•赤峰)如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是()A.(﹣3,2)B.(0,4)C.(﹣1,3)D.(3,﹣1)【分析】根据点的平移规律,即可解答.【解答】解:如图:由题意得:点A的对应点A′的坐标是(﹣1,3),故选:C.9、(2022•淄博)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是.【分析】根据点A(﹣3,4)的对应点是A1(2,5),可得点A向右平移5个单位,向上平移1个单位至A1,进而可以解决问题.【解答】解:∵点A(﹣3,4)的对应点是A1(2,5),∴点B(﹣4,2)的对应点B1的坐标是(1,3).故答案为:(1,3).10、(2022•大连)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减求解即可.【解答】解:将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是(1+4,2),即(5,2),故答案为:(5,2).11、(2022•辽宁)在平面直角坐标系中,线段AB的端点A(3,2),B(5,2),将线段AB 平移得到线段CD,点A的对应点C的坐标是(﹣1,2),则点B的对应点D的坐标是.【分析】根据点A、C的坐标确定出平移规律,再根据平移规律解答即可.【解答】解:∵点A(3,2)的对应点C的坐标为(﹣1,2),∴平移规律为向左平移4个单位,∴B(5,2)的对应点D的坐标为(1,2).故答案为:(1,2).12、(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.13、(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)【分析】根据平面直角坐标系中任意一点(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点(5,1)关于原点O中心对称的点的坐标为(﹣5,﹣1).故选:D.14、(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4 B.4 C.12 D.﹣12【分析】首先根据关于原点对称的点的坐标特点可得a+2=﹣4,﹣b=﹣2,分别求出a、b 的值,再代入即可得到答案.【解答】解:∵在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则∴得a+2=﹣4,﹣b=﹣2,解得a=﹣6,b=2,∴ab=﹣12.故选:D.15、(2022•湘西州)在平面直角坐标系中,已知点P(﹣3,5)与点Q(3,m﹣2)关于原点对称,则m=.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得m﹣2=﹣5,∴m=﹣3.故答案为:﹣3.16、(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.【分析】根据关于原点对称的点的坐标,可得答案.【解答】解:∵点A(﹣2,b)与点B(a,3)关于原点对称,∴a=2,b=﹣3,∴a﹣b=2+3=5,故答案为:5.17、(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点A(1,﹣5)关于原点对称点为点B,∴点B的坐标为(﹣1,5).故答案为:(﹣1,5).18、(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点M(﹣2,3)关于原点对称,∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为(2,﹣3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系与坐标变换平面直角坐标系是数学中常用的坐标系统之一,它提供了描述平面上任意点位置的方法。
坐标变换则是在不同的坐标系之间进行转换,使得不同坐标系下的点能够相互对应。
一、平面直角坐标系的定义与性质
平面直角坐标系由两个相互垂直的坐标轴组成,通常分别称为x轴和y轴。
x轴与y轴的交点称为坐标原点,用O表示。
在同一个直角坐标系中,点的位置可以由其在x轴和y轴上的投影来确定。
在平面直角坐标系中,每个点都可以通过一对有序实数(x,y)来表示,其中x称为点的横坐标,y称为点的纵坐标。
横坐标决定了点在x轴方向上的位置,纵坐标决定了点在y轴方向上的位置。
通常将坐标表示为一个有序对的形式,如P(x,y)。
平面直角坐标系中,两点之间的距离可以用勾股定理来计算。
设
P1(x1, y1)和P2(x2, y2)是直角坐标系中的两点,则P1P2的距离为:
√[(x2-x1)² + (y2-y1)²]。
二、坐标变换的基本概念
不同的坐标系可以通过坐标变换来相互转换,常见的坐标变换包括平移、旋转和缩放等。
坐标变换可以应用于多个领域,如计算机图形学、物理学、工程学等。
1. 平移变换
平移变换改变了坐标系的原点位置,将原点沿着指定的方向移动一
定距离。
平移变换可以表示为:x' = x + a,y' = y + b。
其中,(x, y)是原坐标系中的点,(x', y')是变换后的坐标系中的点,(a, b)是平移的距离。
2. 旋转变换
旋转变换改变了坐标系中点的方向和位置,通常围绕原点进行旋转。
旋转变换可以表示为:x' = xcosθ - ysinθ,y' = xsinθ + ycosθ。
其中,(x, y)是原坐标系中的点,(x', y')是旋转后的坐标系中的点,θ是旋转角度。
3. 缩放变换
缩放变换改变了坐标系中点的大小,可以进行等比缩放或非等比缩放。
缩放变换可以表示为:x' = ax,y' = by。
其中,(x, y)是原坐标系中
的点,(x', y')是缩放后的坐标系中的点,a和b分别为x和y方向的缩
放因子。
三、坐标变换的应用
坐标变换在实际问题中有广泛的应用,例如在地图测绘、图形变换
和运动学分析中。
1. 地图测绘
坐标变换在地图测绘中起着重要的作用。
利用坐标变换,可以将平
面上的点在不同的坐标系下进行转换,从而实现不同地图之间的数据
对齐和叠加。
2. 图形变换
坐标变换在计算机图形学中广泛应用,可以实现图像的平移、旋转、缩放等操作。
通过坐标变换,可以将图像投影到屏幕上或者在三维空
间中进行绘制。
3. 运动学分析
在运动学分析中,坐标变换可以描述物体在运动过程中的位置和速
度变化。
通过坐标变换,可以将物体的运动分解为平动和转动两个分量,并且可以通过变换矩阵计算物体在不同坐标系下的运动状态。
综上所述,平面直角坐标系是描述平面上点位置的重要工具,而坐
标变换可以实现不同坐标系之间的转换。
理解和掌握平面直角坐标系
以及坐标变换的原理和应用,对于深入研究数学、物理、工程等领域
具有重要意义。