函数积分表

合集下载

函数积分表

函数积分表

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -+14.2x=22232(34815a x abx b C a -+15.=(0)(0)C b C b ⎧+><16.2a b - 17.x=b +18.x=2a x -+(三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x aC a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>⎪⎪⎨+<23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b+⎰=2d x b x a a ax b -+⎰25.2d ()xx ax b +⎰=221ln 2x C b ax b++()x ax b +bx b ax b +27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()xax b +⎰=221d 2()2x x b ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C + 32.C +33.xC34.x=C +35.2x2ln(2a x C + 36.2x=ln(x C +++37.1C a +a x39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x lna a C x +44.x =ln(x C ++(0)a >的积分45.=1arch x xC x a+=ln x C + 46.C +47.x C48.x =C +49.2x 2ln 2a x C +50.2x =ln x C +++51.1arccos aC a x+a x53.x 2ln 2a x C ++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C --++57.x arccos a a C x +58.x =ln x C ++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.1C a +a x67.x 2arcsin 2a x C a++68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x lna a C x -+72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x2n 2a x b c C+++75.xn 2a x b c C+++ 76.=C +77.x 2C +78.x =C +或79.x =((x b b a C --+80.x =((x b b a C --81.C()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C +92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d nx x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n +----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tan xa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos x a b x +⎰)2xC +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a117.arccos d x x x a ⎰=22()arccos 24x a x C a - 118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d axx x ⎰=21(1)e ax ax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b +++ 130.e sin d ax nbx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax nbx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+133.d ln xx x ⎰=ln ln x C +134.ln d nx x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d nx x ⎰=1(ln )(ln )d n nx x n x x --⎰136.(ln )d m nx x x ⎰=111(ln )(ln )d 11m n m n nx x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩ 145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π。

(完整版)常用函数积分表(增强版)

(完整版)常用函数积分表(增强版)

1.∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx2.∫(f(x)−g(x))dx=∫f(x)dx−∫g(x)dx3.∫f(x)dg(x)=f(x)g(x)−∫g(x)df(x)4.∫a x dx=a xln a+C,a≠1,a>05.∫x n dx=x n+1n+1+C,n≠−16.∫1xdx=ln|x|+C7.∫e x dx=e x+C8.∫sin x dx=−cos x+C9.∫cos x dx=sin x+C10.∫sec2x dx=tan x+C11.∫csc2x dx=−cot x+C12.∫sec x tan x dx=sec x+C13.∫csc x cot x dx=−csc x+C14.∫(ax+b)n dx=(ax+b)n+1a(n+1)+C,a≠0,n≠−115.∫dxax+b =1aln|ax+b|+C,a≠016.∫x(ax+b)n dx=(ax+b)n+1a2(ax+bn+2−bn+1)+C,a≠0,n≠−1,−217.∫xax+b dx=xa−ba2ln|ax+b|+C,a≠018.∫x(ax+b)2dx=1a2(ln|ax+b|+bax+b)+C,a≠019.∫x2ax+b dx=12a3[(ax+b)2−4b(ax+b)+2b2ln|ax+b|]+C20.∫x2(ax+b)2dx=1a3(ax+b−2b ln|ax+b|−b2ax+b)+C21.∫x2(ax+b)3dx=1a3(ln|ax+b|+2bax+b−b22(ax+b)2)+C22.∫x2(ax+b)n dx=1a3(−1(n−3)(ax+b)n−3+2b(n−2)(ax+b)n−2−b2(n−1)(ax+b)n−1)+C,n≠1,2,323.∫dxx(ax+b)=1bln|xax+b|+C,b≠024.∫dxx2(ax+b)=−1bx+ab2ln|ax+bx|+C25.∫dxx2(ax+b)2=−a(1b2(ax+b)+1ab2x−2b3ln|ax+bx|)+C26.∫x√ax+bdx=215a2(3ax−2b)(ax+b)32+C27.∫x2√ax+bdx=2105a3(15a2x2−12abx+8b2)(ax+b)32+C28.∫(√ax+b)n dx=2(√ax+b)n+2a(n+2)+C,a≠0,n≠−229.∫x n√ax+b dx=2a(2n+3)x n(ax+b)32−2nba(2n+3)∫x n−1√ax+bdx循环计算30.∫√ax+bx dx=2√ax+b+bx√ax+b=2√ax+b−2√b arctanh√ax+bb+C31.x√ax+b =√−b√ax+b−b+C,b<032.x√ax+b =√b|√ax+b−√b√ax+b+√b|+C,b>033.∫√ax+bx2dx=−√ax+bx+a2x√ax+b+C34.∫√ax+bx n dx=−(ax+b)32b(n−1)x n−1−(2n−5)a2b(n−1)∫√ax+bx n−1dx,n≠1循环计算35.n√ax+b =2a(2n+1)(x n√ax+b−bn n−1√ax+b)+C循环计算36.x2√ax+b =−ax+bbx−a2b x√ax+b+C,b≠037.x n√ax+b =−√ax+bb(n−1)x n−1−(2n−3)a2b(n−1)∫√ax+bx n−1dx,n≠1循环计算38.∫x n√ax+bdx=22n+1(x n+1√ax+b+bx n√ax+b−nb∫x n−1√ax+bdx)+C循环计算39. ∫dx a 2+x 2=1a arctan xa +C ,a ≠040. ∫dx(a 2+x 2)2=x2a 2(a 2+x 2)+12a 3arctan xa +C ,a ≠041. ∫dxa 2−x 2=12a ln |a+xa−x |+C =1a arctanh xa +C ,a ≠0,|a |>|x | 42. ∫dx(a 2−x 2)2=x2a 2(a 2−x 2)+14a 3ln |x+ax−a |+C43. ∫1x 2−a 2dx =12a ln |x−ax+a |+C =−1a arccoth xa +C ,a ≠0,|x |>|a | 44. √a 2+x 2=ln(x +√a 2+x 2)+C45. ∫√a 2+x 2dx =x2√a 2+x 2+a 22ln(x +√a 2+x 2)+C46. ∫(√a 2+x 2)3dx =x(√a 2+x 2)34+38a 2x√a 2+x 2+38a 4ln(x +√a 2+x 2)+C 47. ∫(√a 2+x 2)5dx =x(√a 2+x 2)56+524a2x(√a 2+x 2)3+516a 4x√a 2+x 2+516a 6ln(x +√a 2+x 2)+C48. ∫x(√a 2+x 2)2n+1dx =(√a 2+x 2)2n+32n+3+C 49. ∫x2√a 2+x 2dx=x8(a 2+2x2)√a 2+x 2−a 48ln(x +√a 2+x 2)+C50. ∫x 2(√a 2+x 2)3dx =x(√a 2+x 2)56−a 2x √a 2+x 224−a 4x √a 2+x 216−a 616ln(x +√a 2+x 2)+C 51. ∫x3√a 2+x 2dx=(√a 2+x 2)55−a 2(√a 2+x 2)33+C52. ∫x 3(√a 2+x 2)3dx =(√a 2+x 2)77−a 2(√a 2+x 2)55+C53. ∫x 3(√a 2+x 2)2n+1dx =(√a 2+x 2)2n+52n+5−a 2(√a 2+x 2)2n+32n+3+C54. ∫x4√a 2+x 2dx =x 3(√a 2+x 2)36−a 2x(√a 2+x 2)38+a 4x √a 2+x 216+a 616ln(x +√a 2+x 2)+C 55. ∫x 4(√a 2+x 2)3dx =x 3(√a 2+x 2)58−a 2x(√a 2+x 2)516+a 4x(√a 2+x 2)364+3a 6x √a 2+x 2128+3a 8128ln(x +√a 2+x 2)+C 56. ∫x 5√a 2+x 2dx =(√a 2+x 2)77−2a 2(√a 2+x 2)55+a 4(√a 2+x 2)33+C57. ∫x 5(√a 2+x 2)3dx =(√a 2+x 2)99−2a 2(√a 2+x 2)77+a 4(√a 2+x 2)55+C58. ∫x 5(√a 2+x 2)2n+1dx =(√a 2+x 2)2n+72n+7−2a 2(√a 2+x 2)2n+52n+5+a 4(√a 2+x 2)2n+32n+3+C59. ∫√a 2+x 2xdx =√a 2+x 2−a ln |a+√a 2+x 2x|+C =√a 2+x 2−a arcsinh ax +C 60. ∫(√a 2+x 2)3x dx =(√a 2+x 2)33+a2√a 2+x 2−a 3ln |a+√a 2+x 2x|+C61. ∫(√a 2+x 2)5x dx =(√a 2+x 2)55+a 2(√a 2+x 2)33+a 4√a 2+x 2−a 5ln |a+√a 2+x 2x|+C62. ∫(√a 2+x 2)77dx =(√a 2+x 2)77+a 2(√a 2+x 2)55+a 4(√a 2+x 2)33+a 6√a 2+x 2−a 7ln |a+√a 2+x 2x|+C63. ∫√a 2+x 2x 2dx =ln(x +√a 2+x 2)−√a 2+x 2x+C64. 2√a 2+x 2=−a 22ln(x +√a 2+x 2)+x √a 2+x 22+C =−a 22arcsinh xa +x √a 2+x 22+C65. x √a 2+x 2=−1a ln |a+√a 2+x 2x|+C =−1a arcsinh ax +C66. x 2√a 2+x 2=−√a 2+x 2a 2x +C ,a ≠067. √a 2−x 2=arcsin xa +C ,a ≠0,|x |≤|a |68. ∫√a 2−x 2dx =x 2√a 2−x 2+a 22arcsin xa +C ,a ≠0,|x |≤|a |69. ∫√a 2−x 2dx =12(x√a 2−x 2−sgn x arccosh |xa |)+C ,|x |≥|a | 70. ∫x√a 2−x 2dx =−(√a 2−x 2)33+C ,|x |≤|a |71. ∫x 2√a 2−x 2dx =a 48arcsin xa −18x√a 2−x 2(a 2−2x 2)+C ,a ≠0 72. ∫√a 2−x 2x dx =√a 2−x 2−a ln |a+√a 2−x 2x|+C ,|x |≤|a |73. ∫√a 2−x 2x 2dx =−arcsin xa −√a 2−x 2x +C ,a ≠074. 2√a 2−x 2=a 22arcsin xa −x √a 2−x 22+C ,a ≠0,x√a 2−x 275. x √a 2−x 2=−1a ln |a+√a 2−x 2x|+C ,a ≠076. x 2√a 2−x 2=−√a 2−x 2a 2x+C ,a ≠077. √x 2−a 2=ln|x +√x 2−a 2|+C 78. ∫√x 2−a 2dx =x2√x 2−a 2−a 22ln|x +√x 2−a 2|+C79. ∫(√x 2−a 2)ndx =x(√x 2−a 2)nn+1−na 2n+1∫(√x 2−a 2)n−2dx ,n ≠−1 循环计算 80. (√x 2−a 2)n=x(√x 2−a 2)2−n(2−n )a 2+n−3(2−n )a 2∫dx (√x 2−a 2)n−2,n ≠2 循环计算81. ∫x(√x 2−a 2)ndx =(√x 2−a 2)n+2n+2+C ,n ≠−2 82. ∫x 2√x 2−a 2dx =x8(2x 2−a2)√x 2−a 2−a 48ln|x +√x 2−a 2|+C83. ∫√x 2−a 2xdx =√x 2−a 2−a arcsec |xa |+C =√x 2−a 2−a arccos |ax |+C ,a ≠0 84. √x 2−a 2=√x 2−a 2+C 85. ∫x dx (√x 2−a 2)3=√x 2−a 2+C 86. ∫x dx (√x 2−a 2)5=−13(√x 2−a 2)3+C 87. ∫x dx (√x 2−a 2)7=−15(√x 2−a 2)5+C88. ∫x dx (√x 2−a 2)2n+1=−1(2n−1)(√x 2−a 2)2n−1+C89. ∫√x 2−a 2x 2dx =ln|x +√x 2−a 2|−√x 2−a 2x +C90. 2√x 2−a 2=a 22ln|x +√x 2−a 2|+x2√x 2−a 2+C91. ∫x 2(√x 2−a 2)3dx =√x 2−a2ln |x+√x 2−a 2a|+C 92. 4√x 2−a 2=x 3√x 2−a 24+38a 2x√x 2−a 2+38a 4ln |x+√x 2−a 2a|+C93. ∫x 4(√x 2−a 2)3dx =x √x 2−a 22−2√x 2−a 2+32a 2ln |x+√x 2−a 2a |+C 94. ∫x 4(√x 2−a 2)5dx =√x 2−a2x 33(√x 2−a 2)3+ln |x+√x 2−a 2a |+C95. ∫x 2m dx (√x 2−a 2)2n+1=−x 2m−1(2n−1)(√x 2−a 2)2n−1+2m−12n−1∫x 2m−2(√x 2−a 2)2n−1dx +C =(−1)n−ma 2(n−m )∑12(m+i )+1(n−m−1i )x 2(m+i )+1(√x 2−a 2)2(m+i )+1n−m−1i=0,n >m ≥096. ∫dx (√x 2−a 2)3=a 2√x 2−a 2+C 97. ∫dx (√x 2−a 2)5=1a 4(√x 2−a 2−x 33(√x 2−a 2)3)+C98. ∫dx (√x 2−a 2)7=−1a 6(√x 2−a 2−2x 33(√x 2−a 2)3+x 55(√x 2−a 2)5)+C99. ∫dx (√x 2−a 2)9=1a 8(√x 2−a 2−2x 33(√x 2−a 2)3+3x 55(√x 2−a 2)5−x 77(√x 2−a 2)7)+C100. ∫x 2(√x 2−a 2)5dx =−x 33a 2(√x 2−a 2)3+C101.∫x 2(√x 2−a 2)7dx =1a4(x 33(√x 2−a 2)3−x 55(√x 2−a 2)5)+C102. ∫x 2(√x 2−a 2)9dx =−1a 6(x 33(√x 2−a 2)3−2x 55(√x 2−a 2)5+x 77(√x 2−a 2)7)+C103. x √x 2−a 2=1a arcsec |xa |+C ,a ≠0 104. x 2√x 2−a 2=√x 2−a 2a 2x +C ,a ≠0105. ∫dx ax 2+bx+c =√4ac−b 2√4ac−b 24ac −b 2>0106.∫dxax 2+bx+c =√b 2−4ac √b 2−4ac =√b 2−4ac |√b 2−4ac2ax+b+√b 2−4ac |,4ac −b 2<0 107. ∫dxax 2+bx+c =−22ax+b ,4ac −b 2=0108. ∫dxax 2+bx+c =12a ln |ax 2+bx +c |−b2a ∫dxax 2+bx+c +C109.∫mx+nax 2+bx+c dx =m2a ln |ax 2+bx +c |+a √4ac−b 2√4ac−b 2+C ,4ac −b 2>0 110.∫mx+nax 2+bx+c dx =m2a ln |ax 2+bx +c |+a √b 2−4ac √b 2−4ac +C,4ac−b2<0111.∫mx+nax2+bx+c dx=m2aln|ax2+bx+c|−2an−bma(2ax+b)+C,4ac−b2=0112.∫dx(ax2+bx+c)n =2ax+b(n−1)(4ac−b2)(ax2+bx+c)n−1+(2n−3)2a(n−1)(4ac−b2)∫dx(ax2+bx+c)n−1+C113.∫x(ax2+bx+c)n dx=bx+2c(n−1)(4ac−b2)(ax2+bx+c)n−1−b(2n−3) (n−1)(4ac−b2)∫dx(ax2+bx+c)n−1+C114.∫dxx(ax2+bx+c)=12cln|x2ax2+bx+c|−b2c∫dxax2+bx+c+C115.√ax2+bx+c =√aln|2√a2x2+abx+ac+2ax+b|+C,a>0116.√ax2+bx+c =√a√4ac−b2+C,a>0,4ac−b2>0117.√ax2+bx+c =√a|2ax+b|+C,a>0,4ac−b2=0118.√ax2+bx+c =√−a√b2−4ac+C,a<0,4ac−b2<0119.∫dx(√ax2+bx+c)3=(4ac−b2)√ax2+bx+c+C120.∫dx(√ax2+bx+c)5=3(4ac−b2)√ax2+bx+c(1ax2+bx+c+8a4ac−b2)+C121.∫dx(√ax2+bx+c)2n+1=4ax+2b(2n−1)(4ac−b2)(√ax2+bx+c)2n−1+8a(n−1) (2n−1)(4ac−b2)∫dx(√ax2+bx+c)2n−1+C循环计算122.√ax2+bx+c =√ax2+bx+ca−b2a√ax2+bx+c+C123.∫x dx(√ax2+bx+c)3=(4ac−b2)√ax2+bx+c+C124.∫x dx(√ax2+bx+c)2n+1=−1(2n−1)a(√ax2+bx+c)2n−1−b2a∫dx(√ax2+bx+c)2n−1+C125.x√ax2+bx+c =√c(2√acx2+bcx+c2+bx+2cx)+C126.x√ax2+bx+c =√c(|x|√4ac−b2)+C127.∫sin2x dx=x2−sin2x4+C128.∫√1−sin x dx=∫√cvs x dx=2cos x2+sin x2cos x2−sin x2,√cvs x=2√1+sin x,其中cvsx是conversine函数129.∫sin n ax dx=−sin n−1ax cos axan +n−1n∫sin n−2ax dx+C循环计算130.∫sin axx dx=∑(−1)i(ax)2i+1(2i+1)(2i+1)!∞i=0+C131.∫sin axx n dx=−sin ax(n−1)x n−1+an−1∫cos axx n−1dx132.∫cos n ax dx=1an cos n−1ax sin ax+n−1n∫cos n−2ax dx+C,n≥2133.∫cos2x dx=x2+sin2x4+C134.∫cos axx dx=ln|ax|+∑(−1)i(ax)2i2i(2i)!∞i−1,n≠1135.∫cos axx n dx=−cos ax(n−1)x n−1−an−1∫sin axx n−1dx,n≠1136.∫sin ax cos ax dx=12asin2ax137.∫sin ax sin bx dx=sin[(a−b)x]2(a−b)−sin[(a+b)x]2(a+b)+C,a2≠b2138.∫sin ax cos bx dx=−cos[(a+b)x]2(a+b)−cos[(a−b)x]2(a−b)+C,a2≠b2139.∫cos ax cos bx dx=sin[(a−b)x]2(a−b)+sin[(a+b)x]2(a+b)+C,a2≠b2140.∫sin ax cos ax dx=−cos2ax4a+C,a≠0141.∫sin n ax cos ax dx=sin n+1ax(n+1)a+C,a≠0,n≠−1142.∫cos n ax sin ax dx=−cos n+1ax(n+1)a+C,a≠0,n≠−1143.∫tan ax dx=∫sin axcos ax dx=−1aln|cos ax|+C,a≠0144.∫cot ax dx=∫cos axsin ax dx=1aln|sin ax|+C,a≠0145.∫sin n ax cos m ax dx=−sin n−1ax cos m+1axa(m+n)+n−1 m+n ∫sin n−2ax cos m ax dx+C=sin n+1ax cos m−1axa(m+n)+m−1n+m∫sin n ax cos m−2ax dx+C,a≠0,m+n≠0循环计算146.∫sin ax sin bx dx=x sin(a−b)2(a−b)−x sin(a+b)2(a+b)+C,|a|≠|b|147.∫dxsin ax cos ax =1aln|tan ax|+C148.∫dxsin ax cos n ax =1a(n−1)cos n−1ax+∫dxsin ax cos n−2ax,n≠1149.∫dxcos ax sin n ax =−1a(n−1)sin n−1ax+∫dxcos ax sin n−2ax,n≠1150.∫sin axdxcos n ax =1a(n−1)cos n−1ax+C,n≠1151.∫sin2axdxcos ax =−1asin ax+1aln|tan(π4+ax2)|+C152.∫sin2axdxcos n ax =sin axa(n−1)cos n−1ax−1n−1∫dxcos n−2ax,n≠1153.∫sin n axdxcos ax =−sin n−1axa(n−1)+∫sin n−2axdxcos ax+C154.∫sin n axdxcos m ax =sin n+1axa(m−1)cos m−1ax−n−m+2m−1∫sin n axdxcos m−2ax+C=−sin n−1axa(n−m)cos m−1ax +n−1n−m∫sin n−2axdxcos m ax+C=sin n−1axa(m−1)cos m−1ax−n−1 m−1∫sin n−1axdxcos m−2ax+C,m≠1,m≠n155.∫cos axdxsin n ax =−1a(n−1)sin n−1ax+C156.∫cos2axdxsin ax =1a(cos ax+ln|tan ax2|)+C157.∫cos2axdxsin n ax =−1n−1(cos axa sin n−1ax+∫dxsin n−2ax)+C,n≠1158.∫cos n axdxsin m ax =−cos n+1axa(m−1)sin m−1ax−n−m−2m−1∫cos n axdxsin m−2ax+C=cos n−1axa(n−m)sin m−1ax+n−1 n−m ∫cos n−2axdxsin m ax+C=−cos n−1axa(m−1)sin m−1ax−n−1m−1∫cos n−2axdxsin m−2ax+C,m≠1,m≠n159.∫dxb+c sin ax =a√b2−c2|√b−cb+ctan(π4−ax2)|+C,a≠0,b2>c2160.∫dxb+c sin ax =a√c2−b2|c+b sin ax+√c2−b2cos axb+c sin ax|+C,a≠0,b2<c2161.∫dx1+sin ax =−1atan(π4−ax2)+C,a≠0162.∫dx1−sin ax =1atan(π4+ax2)+C,a≠0163.∫x dx1+sin ax =xatan(ax2−π4)+2c2ln|cos(ax2−π4)|+C164.∫x dx1−sin ax =xacot(π4−ax2)+2c2ln|sin(π4−ax2)|+C165.∫sin axdx1±sin ax =±x+1ctan(π4∓ax2)+C166.∫dxb+c cos ax =a√b2−c2|√b−cb+ctan ax2|+C,a≠0,b2>c2167.∫dxb+c cos ax =a√c2−b2|c+b cos ax+√c2−b2sin axb+c cos ax|+C,a≠0,b2<c2168.∫dx1+cos ax =1atan ax2+C,a≠0169.∫dx1−cos ax =−1acot ax2+C,a≠0170.∫x dx1+cos ax =xatan ax2+2a2ln|cos ax2|+C,a≠0171.∫x dx1−cos ax =−xacot ax2+2a2ln|sin ax2|+C,a≠0172.∫cos axdx1+cos ax =x−1atan ax2+C173.∫cos axdx1−cos ax =−x−1acot ax2+C174.∫cos ax cos bx dx=x sin(a−b)2(a−b)+x sin(a+b)2(a+b)+C,|a|≠|b|175.∫dxcos ax±sin ax =√2a|tan(ax2±π8)|+C176.∫dx(cos ax+sin ax)2=12atan(ax∓π4)+C177.∫dx(cos x+sin x)n =1n−1(sin x−cos x(cos x+sin x)n−1−2(n−2)∫dx(cos x+sin x)n−2)+C178.∫dx(cos ax+sin ax)n=179.∫cos axdxcos ax+sin ax =x2+12aln|sin ax+cos ax|+C180.∫cos axdxcos ax−sin ax =x2−12aln|sin ax−cos ax|+C181.∫sin axdxcos ax+sin ax =x2−12aln|sin ax+cos ax|+C182.∫sin axdxcos ax−sin ax =x2−12aln|sin ax−cos ax|+C183.∫cos axdxsin ax(1+cos ax)=−14atan2ax2+12aln|tan ax2|+C184.∫cos axdxsin ax(1−cos ax)=−14acot2ax2−12aln|tan ax2|+C185.∫sin axdxcos ax(1+sin ax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C186.∫sin axdxcos ax(1−sin ax)=14atan2(ax2+π4)−12aln|tan(ax2+π4)|+C187.∫sin ax tan ax dx=1a(ln|sec ax+tan ax|−sin ax)+C188.∫tan n axdxsin2ax =1a(n−1)tan n−1ax,n≠1189.∫tan n axdxcos2ax =1a(n+1)tan n+1ax,n≠−1190.∫cot n axdxsin2ax =1a(n+1)cot n+1ax,n≠−1191.∫cot n axdxcos2ax =1a(1−n)tan1−n ax,n≠1192.∫tan m axcot n ax =1a(m+n−1)tan m+n−1ax−∫tan m−2axcot n axdx,m+n≠1193.∫x sin ax dx=1a2sin ax−xacos ax+C,a≠0194.∫x cos ax dx=cos axa2+x sin axa+C195.∫x n sin ax dx=−x na cos ax+na∫x n−1cos ax dx,a≠0循环计算196.∫x n cos ax dx=x na sin ax−na∫x n−1sin ax dx,a≠0循环计算197.∫tan ax dx=−1aln|cos ax|+C,a≠0198.∫cot ax dx=1aln|sin ax|+C,a≠0199.∫tan2ax dx=1atan ax−x+C,a≠0200.∫cot2ax dx=−1acot ax−x+C,a≠0201.∫tan n ax dx=tan n−1axa(n−1)−∫tan n−2ax dx,a≠0,n≠1循环计算202.∫cot n ax dx=−cot n−1axa(n−1)−∫cot n−2ax dx,a≠0,n≠1循环计算203.∫dxtan ax+1=x2+12aln|sin ax+cos ax|+C204.∫dxtan ax−1=−x2+12aln|sin ax−cos ax|+C205.∫tan axdxtan ax+1=x2−12aln|sin ax+cos ax|+C206.∫tan axdxtan ax−1=x2+12aln|sin ax−cos ax|+C207.∫dx1+cot ax =∫tan axdxtan ax+1=x2−12aln|sin ax+cos ax|+C208.∫dx1−cot ax =∫tan axdxtan ax−1=x2+12aln|sin ax−cos ax|+C209.∫sec ax dx=1a ln|sec ax+tan ax|+C=1aln|tan(ax2+π4)|,a≠0210.∫csc ax dx=−1a ln|csc ax+cot ax|+C=1aln|tan ax2|+C,a≠0211.∫sec n ax dx=sec n−2ax tan axa(n−1)+n−2n−1∫sec n−2ax dx,a≠0,n≠1循环计算212.∫csc n ax dx=−csc n−2ax cot axa(n−1)+n−2n−1∫csc n−2ax dx,a≠0,n≠1循环计算213.∫sec n ax tan ax dx=sec n axna+C,a≠0,n≠0214.∫csc n ax cot ax dx=−csc n axna+C,a≠0,n≠0215.∫dxsec x+1=x−tan x2+C216.∫arcsin ax dx=x arcsin ax+1a√1−a2x2+C,a≠0217.∫x arcsin xa dx=(x22−a24)arcsin xa+x4√c2−x2+C218.∫x2arcsin xa dx=x33arcsin xa+x2+2c29√c2−x2+C219.∫x n arcsin x dx=1n+1(x n+1arcsin x+x n√1−x2−nx n−1arcsin xn−1+n∫x n−2arcsin x dx)+C220.∫arccos ax dx=x arccos ax−1a√1−a2x2+C,a≠0221.∫x arccos xa dx=(x22−a24)arccos xa−x4√a2−x2+C222.∫x2arccos xa dx=x33arccos xa−x2+2a29√a2−x2+C223.∫arctan ax dx=x arctan ax−12aln(1+a2x2)+C,a≠0224.∫x arctan xa dx=a2+x22arctan xa−ax2+C225.∫x2arctan xa dx=x33arctan xa−ax26+a36ln a2+x2+C226.∫x n arctan xa dx=x n+1n+1arctan xa−an+1∫x n+1a2+x2dx+C,n≠1227.∫arccot ax dx=x arccot ax+12aln(1+a2x2)+C228.∫x arccot xa dx=a2+x22arccot xa+ax2+C229.∫x2arccot xa dx=x33arccot xa+ax26−a36ln(a2+x2)+C230.∫x n arccot xa dx=x n+1n+1arccot xa+an+1∫x n+1a2+x2dx,n≠1231.∫arcsec ax dx=x arcsec ax+ax|x|ln(x±√x2−1)+C232.∫x arcsec x dx=12(x2arcsec x−√x2−1)+C233.∫x n arcsec x dx=1n+1(x n+1arcsec x−1n[x n−1√x2−1+(1−n)(x n−1arcsec x+(1−n)∫x n−2arcsec x dx)])+C234.∫arccsc ax dx=x arccsc ax−ax|x|ln(x±√x2−1)+C235.∫sinh ax dx=1acosh ax+C236.∫cosh ax dx=1asinh ax+C237.∫sinh2ax dx=14a sinh2ax−x2+C238.∫cosh2ax dx=14a sinh2ax+x2+C239.∫sinh n ax dx=1an sinh n−1ax cosh ax−n−1n∫sinh n−2ax dx+C,n>0 =1a(n+1)sinh n+1ax cosh ax−n+2n+1∫sinh n+2ax dx+C,n<0,n≠−1240.∫cosh n ax dx=1an sinh ax cosh n−1ax+n−1n∫cosh n+2ax dx,n<0,n≠−1241.∫dxsinh ax =1aln|tanh ax2|+C=1aln|cosh ax−1sinh ax|+C=1aln|sinh axcosh ax+1|+C=1 a ln|cosh ax−1cosh ax+1|+C242.∫dxcosh ax =2aarctan e ax+C243.∫dxsinh n ax =cosh axa(n−1)sinh n−1ax−n−2n−1∫dxsinh n−2ax,n≠1244.∫dxcosh n ax =sinh axa(n−1)cosh n−1ax+n−2n−1∫dxcosh n−2ax,n≠1245.∫cosh n axsinh m ax dx=cosh n−1axa(n−m)sinh m−1ax+n−1n−m∫cosh n−2axsinh m axdx=−cosh n+1axa(m−1)sinh m−1ax +n−m+2m−1∫cosh n axsinh m−2axdx+C=−cosh n−1axa(m−1)sinh m−1ax+n−1 m−1∫cosh n−2axsinh m−2axdx+C,m≠n,m≠1246.∫sinh m axcos n ax dx=sinh m−1axa(m−n)cosh n−1ax+m−1m−n∫sinh m−2axcosh n axdx+C=sinh m+1axa(n−1)cosh n−1ax +m−n+2n−1∫sinh m axcosh n−2axdx+C=sinh m−1axa(n−1)cosh n−1ax+m−1 n−1∫sinh m−2axcosh n−2axdx+C,m≠n,n≠1247.∫x sinh ax dx=1a x cosh ax−1a2sinh ax+C248.∫x cosh ax dx=1a x sinh ax−1a2cosh ax+C249.∫tanh ax dx=1aln|cosh ax|+C250.∫coth ax dx=1aln|sinh ax|+C251.∫tanh n ax dx=−tanh n−1axa(n−1)+∫tanh n−2ax dx+C,n≠1252.∫coth n ax dx=−coth n−1axa(n−1)+∫coth n−2ax dx,n≠1253.∫sinh ax sinh bx dx=a sinh bx cosh ax−b cosh bx sinh axa2−b2+C254.∫cosh ax cos bx dx=a sinh ax cosh bx−b sinh bx cosh axa2−b2+C255.∫cosh ax sinh bx dx=a sinh ax sinh bx−b cosh ax cosh bxa2−b2+C256.∫sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)−ca2+c2sinh(ax+b)cos(cx+d)+C257.∫sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+C258.∫cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)−ca2+c2cosh(ax+b)cos(cx+d)+C259.∫cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+C260.∫arcsinh xa dx=x arcsinh xa−√x2+a2+C261.∫arccosh xa dx=x arccosh xa−√x2−a2+C262.∫arctanh xa dx=x arctanh xa+a2ln|a2−x2|+C,|x|<|a|263.∫arccoth xa dx=x arccoth xa+a2ln|x2−a2|+C,|x|<|a|264.∫arcsech xa dx=x arcsech xa−a arctanx√a−xa+xx−a+C,x∈(0,a)265.∫arccsch xa dx=x arccsch xa+a ln x+√x2+a2a+C,x∈(0,a)266.∫xe ax dx=e axa2(ax−1)+C,a≠0267.∫b ax dx=b axa lnb+C,a≠0,b>0,b≠1268.∫x2e ax dx=e ax(x2a −2xa2+2a3)+C269.∫x n e ax dx=x n e axa −na∫x n−1e ax dx,a≠0270.∫e ax dxx =ln|x|+∑(ax)ii·i!∞i=1+C271.∫e ax dxx n =1n−1(−e axx n−1+a∫e axx n−1dx)+C,n≠1272.∫e ax ln x dx=1ae ax ln|x|−Ei(ax)+C273.∫e ax sin bx dx=e axa2+b2(a sin bx−b cos bx)+C274. ∫e axcos bx dx =e axa 2+b 2(a cos bx +b sin bx )+C 275. ∫e ax sin nbx dx =e ax sin n−1x a 2+n 2(a sin x −n cos x )+n (n−1)a 2+n 2∫e ax sin n−2x dx276.∫eaxcos n bx dx =e ax cos n−1xa 2+n 2(a cos x +n sin x )+n (n−1)a 2+n 2∫e ax cos n−2x dx277. ∫xe ax 2dx =12a e ax 2+C 278. σ√2π−(x−μ)22σ2dx =12σ(1+√2σ+C279.∫e x 2dx =ex 2(∑a 2jx 2j+1n−1j=0)+(2n −1)a 2n−2∫e x2x 2n dx ,n >0 其中a 2j =1·3·5···(2j−1)2j+1=2j!j!22j+1+C280. ∫e −ax 2dx ∞−∞=√πa the Gaussian integral281. ∫x 2n e −x 2a 2dx∞0=√π(2n )!n!(a 2)2n+1282. ∫ln ax dx =x ln ax −x +C283. ∫(ln x )2dx =x (ln x )2−2x ln x +2x +C 284. ∫(ln ax )n dx =x (ln ax )n −n ∫(ln ax )n−1dx 285. ∫dxln x=ln |ln x |+ln x +∑(ln x )i i·i!∞i=2+C286. ∫dx (ln x )n =−x(n−1)(ln x )n−1+1n−1∫dx(ln x )n−1+C ,n ≠1 287. ∫x m ln x dx =x m+1(ln xm+1−1(m+1)2)+C ,n ≠−1 288. ∫x m (ln x )n dx =x m+1(ln x )nm+1−nm+1∫x m (ln x )n−1dx +C ,m ≠−1289. ∫(ln x )n dxx =(ln x )n+1n+1+C ,n ≠−1290. ∫ln xdx x m =−ln x(m−1)x m−1−1(m−1)2x m−1,m ≠1 291. ∫(ln x )n dxx m=−(ln x )n(m−1)x m−1+nm−1∫(ln x )n−1dxx m,m ≠1 292. ∫x m dx (ln x )n=−x m+1(n−1)(ln x )n−1+m+1n−1∫x m dx(ln x )n−1,n ≠1293.∫x n (ln ax)mdx =x n+1(ln ax )mn+1−mn+1∫x n (ln ax )m−1dx ,n ≠−1294.∫(ln ax)mx dx=(ln ax)m+1m+1+C,m≠−1295.∫dxx ln ax=ln|ln ax|+C296.∫dxx n ln x =ln|ln x|+∑(−1)i(n−1)i(ln x)ii·i!∞i=1+C297.∫dxx(ln x)n =−1(n−1)(ln x)n−1,n≠1298.∫sin(ln x)dx=x2[sin(ln x)−cos(ln x)]+C299.∫cos(ln x)dx=x2[sin(ln x)+cos(ln x)]+C300.∫e x(x ln x−x−1x)dx=e x(x ln x−x−ln x)+C。

积分公式表,常用积分公式表

积分公式表,常用积分公式表

积分公式表1、基本积分公式: (1)(2)(3)(4)(5)(6)(7) (8)(8) (10) (11)2、积分定理:(1)()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰ (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰ (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰3、积分方法()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv附:理解与记忆对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, ,积分后的函数仍是幂函数,而且幂次升高一次.特别当 时,有 .当 时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故( , )式右边的 是在分母,不在分子,应记清. 当 时,有 .是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 )例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。

积分表

积分表

(b2 < 4ac) (b2 > 4ac)
∫ dx (ax2 + bx + c)n−1
15. ∫ 16.

dx 2ax + b (2n − 3)2a = + (ax2 + bx + c)n (n − 1)(4ac − b2 )(ax2 + bx + c)n−1 (n − 1)(4ac − b2 )
4
√ √ √ 1 √ 1 a4 x2 x2 − a2 dx = x (x2 − a2 )3 + a2 x x2 − a2 − ln |x + x2 − a2 | 4 8 8 √ ∫ √ x2 − a2 a 41. dx = x2 − a2 − a arccos x x √ √ ∫ √ x2 − a2 x2 − a 2 42. + ln | x + x2 − a 2 | d x = − x2 x ∫ √ dx √ 43. = ln |x + x2 − a2 | x2 − a2 ∫ x dx 1 √ 44. =− 2√ 2 a x − a2 (x2 − a2 )3 ( ) ∫ dx 1 x 1 x3 √ 45. = 4 √ − √ a x2 − a2 3 (x2 − a2 )3 (x2 − a2 )5 ( ) ∫ dx 1 x3 1 x5 x 2 √ =− 6 √ + √ 46. − √ a x2 − a2 3 (x2 − a2 )3 5 (x2 − a2 )5 (x2 − a2 )7 ∫ √ x √ 47. dx = x2 − a2 x2 − a2 ∫ x 1 √ 48. dx = − √ x2 − a 2 (x2 − a2 )3 ∫ 1 x √ √ 49. dx = − (x2 − a2 )2n+1 (2n − 1) (x2 − a2 )2n−1 √ ∫ √ x2 x x2 − a2 a2 √ 50. + ln |x + x2 − a2 | dx = 2 2 x2 − a2 ∫ √ x2 x √ 51. dx = − √ + ln |x + x2 − a2 | x2 − a 2 (x2 − a2 )3 ∫ 1 x3 x2 √ 52. dx = − 2 √ a 3 (x2 − a2 )3 (x2 − a2 )5 ( ) ∫ x2 1 1 x3 1 x5 √ √ 53. dx = 4 − √ a 3 (x2 − a2 )3 5 (x2 − a2 )5 (x2 − a2 )7 40. √ √ x4 x3 x 2 − a 2 3 2 √ 2 3 √ + a x x − a2 + a4 ln |x + x2 − a2 | 54. dx = 4 8 8 x2 − a2 ∫ ∫ 1 x2m−1 2m − 1 x2m−2 x2m √ √ √ 55. dx = − + dx 2n − 1 (x2 − a2 )2n−1 2n − 1 (x2 − a2 )2n+1 (x2 − a2 )2n−1 ∫

基本积分表

基本积分表

cos x -y^-dxsin xcsc x cot xdx cscx c a x dxkdx kx cx adx -dx In x c xcosxdx sinx csin xdx cosx c sec 2xdx tanx c csc 2xdxcotx csecxta nxdx secx ce x dx -aIn a基本积分表1、2、3、 4、5、6、 7、8、 9、10、11、 12、13、14、15、dx arctanxdx arcs in x cshxdx chx其中shx- -e e 为双曲正弦函数2chxdx shx其中chx- - e e 为双曲余弦函数dx基本积分表的扩充16、 tan xdxln c osx c 17、 cot xdx ln sin xc18、 secxdx ln s ecxtanx c19、 cscxdx ln c scxcot xc ln tan2cx arcs in — casin a +sin B =2sin[( a + B )/2] • cos[( a - B )/2] sin a -sin B =2cos[( a + B )/2] • sin[( a - B )/2]20、21、22、—dx x —dx a^arctan^a1 2 a丄2a24、dx In x \ x 2a 2c25、sin a sin B= - [cos( cos a cos B =[cos( sin a cos B =[sin( cos a sin B=[sin(dx In x x 2 a 2a + B) - cos( a - B )]/2 a + B )+cos( a a +B )+sin( a a + B)-sin( 【注意右式前的负号】-B )]/2 -B )]/2 a - B )]/223、COS a +COS B =2cos[( a + B )/2] • COS[( a- B )/2]cos a -cos B =-2sin[( a +B )/2] • si n[( a- B )/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系:tan a • cotla sin a • esc仏cos a • se c a 商的关系:sin a /cos c tan a= sec a /csc a cos a /sin c cot a= csc a /sec a 平方关系:sin A2( aH)- cos A2( a C1 1 + tan A2( a=)sec A2( a ) 1 + cot A2( aCcsc A2( a)平常针对不同条件的常用的两个公式sin2 a +cos2 a =1an a *cot a =1一个特殊公式(sina+sin ) * (sina+sin ) =sin (a+ 0) *sin (a- 0) 证明:(sina+sin ) * (sina+sin 0 =2 sin[( 0 +a)/2] cosRa )/2] *2 cos[( 0 +a)/2] sin)/2] =sin(a+ 0) *sin (a- 0)锐角三角函数公式正弦:sin a£ a的对边/ / a的斜边余弦:cos aM a的邻边/Z a的斜边正切:tan a= a 的对边/ Z a的邻边余切:cot aZ a的邻边/Z a的对边二倍角公式正弦sin2A=2sinA cosA 余弦 1.Cos2a=CosA2(a)-SinA2(a)=2CosA2(a)-1 =1-2Si nA2(a) 2.Cos2a=1-2S in 八2@) 3.Cos2a=2CosA2(a)-1正切tan2A= (2tanA) / (1-tanA2(A))三倍角公式sin3 a =4sin a・sin( n /3+ a )sin( c(/33 a =4cos a・cos( n /3+ a )cos a )冗/3 tan3a = tan a • tan( n /3+a) • -aa n(半角公式tan( A/2)=(1-cosA)/si nA=si nA/(1+cosA);cot(A/2)=si nA/(1-cosA)=(1+cosA)/si nA. si nA2(a/2)=(1-cos(a))/2cosA2(a/2)=(1+cos(a))/2 tan (a/2)=(1-cos(a))/si n(a)=s in (a)/(1+cos(a))和差化积sin 0 +sin © = 2 sin[( 0 +© )/2-] ^20sin 0sin © = 2 cos[( 0 + © )/2] si<n[(/2] fe os 0 +cos © = 2 cos[( 0 + © )/2] cos[( -© )/2] cos 0-cos © =-2 sin[( 0 + © )/2] sin[© )/2]( tan A+ta nB=sin(A+B)/cosAcosB=ta n(A+B)(1-ta nAta nB)tan A-ta nB=si n(A-B)/cosAcosB=ta n(A-B)(1+ta nAta nB)两角和公式cos( a + B )=cos a co s i B a sin B cos© a=cos a cos B +sin a sin B sin( a + B )=sina cos B + cos a sin B sin(B a=sin a coscg)s a sin B积化和差sin a sin B = [cos© -cas( a + B )] 12 cos a cos B = [cos( a + B )+cOS"2a sin a cos B = [sin( a+ B -+s)W2 ^cos a sin B = [sin( -sir+ B-)B )]/2 双曲函数si nh(a) = [e A a-e A(-a)]/2 cosh(a) = [e A a+e A(-a)]/2 tan h(a) = sin h(a)/cosh(a) 公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin (2k n+a) = sin a cos (2k n+a) = cos a tan (2k n+a) = tan a cot(2k n + a) = cot a 公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系:sin( (n+ a) = -sin a cos ( n+ a) = -cos a tan ( n + a) = tan a cot (n+a) = cot a 公式三:任意角a与-a的三角函数值之间的关系:sin (-a) = -sin a cos (- a) = cos a tan (- a) = -tan a cot(-a) = -cot a 公式四:利用公式二和公式三可以得到n- a与a的三角函数值之间的关系:sin ( n- a) = sin a cos ( n- a) = -cos a tan ( n- a) = -tan acot ( n- a) = - cot a 公式五:利用公式-和公式三可以得到2 n- a与a的三角函数值之间的关系:sin(2 n- a) = -sin a cos ( 2 n- a) = cos a tan (2 n - a) =- tan a cot (2 n- a) = -cot a 公式六:n /2 土及3 n /2 土与a 的三角函数值之间的关系:sin ( n /2+ a = cos a cos ( n /2+ a = -sin a tan ( n /2+ a =- cot a cot (n /2+ )= -tan a sin (n /2 a) = cos a cos ( n /2 a) = sin a tan (n /2- a) = cot a cot ( n /2- a) = tan a sin (3 n /2+ o) = -cos a cos (3 n /2+ a =sin a tan (3 n /2+ ) = -cot a cot (3 n /2+ >= -tan a sin (3 n /2- a) = -cos a cos (3 n /2 a) = -sin a tan (3n /2- a) = cot a cot (3 n /2 a) = tan a (以上k € Z) A - sin( 3 t+ 0 )+ B • sin( 3 t+\4{(A2 +B2 +2ABcos(-砌} •sin{ 3 t +arcsin[ (A • sin 0 +B • sin © ) / V{人八2 +BA2; +-2AB}(}os(A表示根号,包括{……} 中的内容诱导公式sin(- a ) =-sin a cos( - a ) = cos a tan ( - a )=tan a sin( n /2a ) = cos acos( n /2- a ) = sin a sin( n /2+ a ) = cos ocos( n /2+ a ) -sin a sin( n a )= sin a cos( n- a ) =-cos a sin( n + a ) =sin a cos( n + a )二cos a tanA= sinA/cosA tan ( n /2+ a) =—cot a tan (n /2—a) = cot a tan (n—a) =一ta n a tan (n+a) = tan a 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin a=2tan( a/2)/[1+(tan( a/c2o))s2a] =[1-(tan( a/2))2]/[1+(tan( a/2))2] tan a=2tan( a /2)-/([t1an( a/2))2]其它公式(1) (sin a )2+(cos a )2(2)1+(tan a )2=(sec a )3)1+(cot a )2=(csc a 证明下面两式,只需将一式,左右同除(sin a )2第二个除(cos a )即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证:A+B=t -Ctan(A+B)=tan( -C) (tanA+tanB)/(1- tanAtanB)=(tan -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=n n (n€ Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC )2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

常用积分表

常用积分表

∫ 33.
x dx = x2 + a2 + C
x2 + a2
∫ 34.
x dx = − 1 + C
(x2 + a2 )3
x2 + a2
3
∫ 35.
x2 dx = x x2 + a2 − a2 ln( x + x2 + a2 ) + C
x2 + a2
2
2
∫ 36.
x2
dx = − x + ln(x + x2 + a2 ) + C
∫ 83. sin xdx = − cos x + C
7
(a < b)
84. ∫ cos xdx = sin x + C
85. ∫ tan xdx = − ln cos x + C
86. ∫ cot xdx = ln sin x + C
∫ 87.
sec
xdx
= ln
π tan(
+
x)
+C
= ln
sec
∫ 4.
x2 ax +
dx b

1 a3
⎡ ⎢⎣
1 2
(ax
+
b)2

2b(ax
+
b)
+
b2
ln
ax
+
b
⎤ ⎥⎦
+
C
5.பைடு நூலகம்∫
dx x(ax + b)
=−
1 ln b
ax + b x
+C

(完整版)基本积分表

(完整版)基本积分表

基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

一元函数积分

一元函数积分

类似
cos x dx d sin x sin x sin x
机动
目录
上页
下页
返回
结束
例5. 求 解:
1 ( x a) ( x a) 1 1 1 1 ( ) 2 2 2a ( x a )( x a ) 2a x a x a x a
1 dx dx ∴ 原式 = x a x a 2a
4. 求下列积分:
提示:
(1)
1 1 1 x2 ) x2 1 ( 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
1 sin 2 x cos 2 x (2) 2 2 sin x cos x sin 2 x cos 2 x
sec x csc x
a sec t tan t d t sec t d t ∴ 原式 a tan t ln sec t tan t C1
x ln a
x2 a2
t
x2 a2 C1 a
(C C1 ln a)
机动 目录 上页 下页 返回 结束
当x a 时, 令 x u , 则 u a , 于是
x 2 f (ln x) d x
提示:
1 2 x C 2
x
e
f (ln x) e
ln x
1 x
机动 目录 上页 下页 返回 结束
2. 若

是 e x 的原函数 , 则 1 f (ln x) C0 ln x C d x x x
提示: 已知 f ( x) e x
例3. 求
解:
a
dx
x 1 (a)2

高等数学常用积分公式查询表

高等数学常用积分公式查询表

导数公式:基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax b C b x+-+ 6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++9.2d ()x x ax b +⎰=211ln ()ax bC b ax b b x+-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+>+<16.2a bx b --17.x=b 18.x=2a +(三)含有22x a ±的积分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x a C a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b +⎰=2d x b xa a axb -+⎰25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()xx ax b +⎰=22221ln 22ax b a C b x bx +-+ 28.22d ()xax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a+=ln(x C ++ 32.=C +33.x=C +34.x=C +35.2x =2ln(2a x C -++36.2x =ln(x C ++37.1C a +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C + 46.C +47.x =C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++51.1arccos aC a x +52.C +53.x =2ln 2a x C ++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C +56.xx ⎰=422(2ln 88x a x a x C -++57.x x⎰=arccos a a C x +58.x =ln x C +++(0)a >的积分59.=arcsinxC a+ 60.C +61.x =C62.x C +63.2x =2arcsin 2a x C a ++ 64.2x arcsinxC a-+65.1C a +66.C +67.x =2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.d x x⎰a C +72.2d x x ⎰=arcsin xC x a--+(0)a >的积分73.2ax b C +++08070141常用导数和积分公式74.x =2n 2a x b c C+++75.xn 2a x b c C+++ 76.C +77.x =2C +78.x =C +79.x =((x b b a C --+80.x =((x b b a C -+-81.C ()a b <82.x 2()4b a C -+ ()a b <(十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2xC +=ln csc cot x x C -+ 89.2secd x x ⎰=tan x C +90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin x a b x +⎰tan xa b C ++22()a b >104.d sin x a b x+⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a-117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e s i n d a x n n n b b x x a b n--++⎰ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e c o s d a x n n n b b x x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π。

常用积分表

常用积分表

2
4
8
-4-
(二)递推型
∫ 1设In =
1 dx (x2 + a2 )n
= 则I n
2n − 3 a2 (2n − 2)
I n −1
+
2a2
(n
x − 1)( x 2
+
a2
)n−1
= I1 arctan x + C
∫ 2设In = sinn xdx
则I n
= − cos x sinn−1 n
x
+
n
−2 −1
In−2
I0 =x + C, I1 = ln tan x + sec x + C
-5-
第二部分:定积分与反常积分
∫1
π
2 sinn
xdx =
(n −1)!!, (n为奇数)
0
n!!
∫π
2 2 si= nn xdx
(n −1)!!⋅ π , (n为偶数)
0
n!! 2
∫3
π 2
cosn
xdx
=
(n
− 1) !! ,
(n为奇数)
0
n!!
∫π
4 2 co= sn xdx
(n −1)!!⋅ π , (n为偶数)
0
n!! 2
∫5 ∞ e−x2 dx = π −∞
6"γ "函数 :
∫ γ (α ) = ∞ xα −1e−xdx 0
(1= )γ (1) 1,= γ ( 1 ) π
2
(2)γ= (α +1) αγ (α ),γ= (n +1) n!
1 ln ε −1t + = ε +1 + C,(ε >1) (t arctan x)

定积分公式表完整

定积分公式表完整

定积分公式表(可以直接使用,可编辑实用优秀文档,欢迎下载)1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 ) 例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰(1)u ≠-(3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+(19)ln(x C =+(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

三角函数积分表

三角函数积分表

1.积分只有sin 的函数smcrdT = --coscTc… i n — 1• n-1 .sm J :COST | -------------n(其中CV 时是Coversine 函数)sin ex r cos erTsin ex dx =——-c 2dr 1 士 sin ex1 fcr -tan —— c E 21 + sin ex X [CT —tan (— c \ 2.E dr X /7T -COtI — c \4f . , rnnr sin ex dx = — — cos 以 + —cCOSCTdx其中>0) 「 x sm --------dx =EtQ '(疽萨—6)24 沱 7T 2sin er d x 3C= E(-iy (CT )2讦 1 i=0(2i + 1) - (2i 4 1)!sill CT dr sin ex (n - I"】十cos ex----- —dx T n-1d.rexsin ex,J t 一 -In tan — cdi cos exn-2di' sin" CT er■ T1 —V sin - exsin er dx 1 ± sin ex1 + - tan G 干导) -可编辑修改-sin sin" cr dx =——sin"'1cxcoscT+ nc nW" cx dx7T 干亍 cx\ 2T )+ ?lnCOS CT dr = In 也 .rL U(口)"1 ^(-1)2T(2?)!dr 1------- =-In tan cos ex cd.r 1 ex一 tan — cx dx r CT 2 er | - ——cot Q In sin 1 — ms ex c 2 2f . 」 sin(ci - c 2>sin sin ST dx = —? ---------------- —1 1一 2(e :| - c 2) sin(c L + C 2)T 2(C1 I c 2)其中ki| + |色I)2.积分只有cos 的函数cog dx= kin 以c… , cos 71-1 exsmex n — 1 f -1_9 cos c<r dx = ----------------------- 1 ------- I cos CTn J(n > 0)T COS CT. dx =——- c 2 cos ex T sin er+csin CT it rx n cos ex dx = -------------- — — / sin ex dxc c J[2 2 2 ni[X t Q 3(疽/ — 6) 【x cos --------- d je =——、,;E —-I a 24??27T Jn = 1,3,5 …cos er d rCOSCT (n - 1)^-1silica---- —ax x n ~[(H 丰 1)COS ri CT sin ern-1CTd.rc(n — l)cos COS^-2 CTdr 1 — cos cz CTcot —— )x dx1 + COS CT X —tan c ex2 ¥ * ?ln ex cos — 2CT 7T\ I T +4)|f dx x 1---------- —=—-+ — In sin ex — cos ex J tan CT — 1 2 2c r 1In sm ex + cos ex 2 2c 1 tan ex dx x 1---------- =一 + — In sin ex — cos ex tan CT — 1 2 2c4.积分只有se9的函数5.积分只有csc 的函数cos cr dr 1 er.------------ —x — - tan ——1 + cos ex c 2/cos er dx 1 ex----------- =—X — _ cot —— 1 — cos ex c 2 f sin & — C 2)T + c^)r I COS Ci J COS C 2T (IX = —: ------- T — I —7 -------------- L j 2(C ]一血) 2(勺 + 阪)(111 丰 I 包I)3.积分只有tan 的函数J taner C /T = — - In | COSCT | j tan n ex dr =— ------ tan n-1 er — / tan T?-2 er dr c(n- 1) J(for n 1)dx tan ex I 1sin ex | COS CTI/t an CJ T dx tan ex | 1 (for n / 1)r dxJ $ec r + 1T=x — tan —9cos CT ± S I IICT )2w 1 i ・ In sin ex — cos CT9 Or ■Mlr sinex drsin CJC dx, I iesc ex djr = - In esc ex — cot exc esc 11ex drcsc"^1 ex cos ex n — 2 f _._2,----- ; ---- ------- p ------- / esc ex ax e(n - 1) n-1 J(for n 1}6.积分只有cot 的函数cot ca: dx = - In I sin exc cot 1; c :v. dx——-——-cot"-1 ex — [cot"—2 cx (for n 1) c{n — 1) J (1T1 + cot CTr tancj : dr J tan ex | 1 ch: 1 — cot err tan ex dx J tan er — 17.积分只有sin 和cos 的函数di'COS CJ' ± sillCTIn tan cy/2c.r 7T±8 sin x — cos J ? dx - . 一… 一一 〜 z----------- = --------- ( ------------------ —-—2(n — 2) cos/+ sin 工户 n — I \(cos ar + sinT )n-1dx(cos r + sin/广cos ex dxcos ex + sin ex x I =—+— 2 2c In sin ex 卜 cos excos CT — sin ex 2ccos ex cos ex dx cos ex — sin ex—In |sin ex + cos CJC2ccos ex dx ex sin 也]1 + cos ex4c 2 2ccos ex dxsincT[ 1 H——cos ex)1 9 CT——cot —4c 2— hl2cextan—— 2sin er cos dr =— 2c ■ 2 siner. . cos(ci+色)更smcixcosc^x ax = 一——: -------------------------------- :—2(cj + 见)cos(ci —班)w2(1—或(for \c x\^\c2\)n j ' ・n+lsin ex cos CT dx = —; ----- r sin exc(n+ 1)(for n 丰 1)sin CT cos u er dx =—―-——;cos ra+1ex c(n + 1)9 7i m sin ci cos er» T1 FTl sin CJ: cos CT. sin 1 ex cos +1 ex n —1 dr =c{n + m), sin n+1ex cos m-1ex m —1 dx =---------------+ m)sin" = er cos TU er dr n+ m J* Tl -TTl —-2sin ex cos ex axn + m J(fo(fordxsin er cos CT 1-In tan er cdi rsin ci co* CT1 j d世c(n —l)cos n-1ex J sin CT cos n-2CT(for n 7^ 1)dr■77.am CT cos erdrc(n — 1) sin71-1ex J sin" " ex cos ex(for n 丰1)sincjr dx COS n CT1c(n. —1) cos^-1ex(for n 丰1 jsin2er dx COM CT1 11/7T ex ——sin ex H——In tan (——| - c c \4 2sin2ex dx cos n CT sin" er dr cos exsin exc(n — 1) cos n-1ex n —i Jsin n-1ex r sin73-2性dr-7(^17 1 1~drcos71-2ex(for n 1)COSCJJ(for “ 1)8. 积分只有sin 和tan 的函数I sin ex tan CT = - (In | sec ex + tan er9. 积分只有cos 和tan 的函数]tan 11+1CT (for n / — 1)10. 积分只有sin 和cot 的函数1 — sinc.r I | cos urj aec ex dx = - In |se€er I tan exf n , sec 71-1 er sin ex n — 2 f ?/ sec CT ax = --------- ; -------- + ----- / sec CT ax J c(n - 1) n-lJsin 11CT . c(n - 1) sin"-1CJ?(for n 1)cos 2er drsin ex cos 2 ex dx sin n ex-(cos ex \ In tanCSI TlCOS CT 1 f dx 21 席)+ J(for n 丰 1)tan 77 CJ : cAr2 sin - er— 1) (空) (for n 产 1)cot* er dxsin 2 ex-7 ----- -T Cot"】 CT 的+ 1)(for n / —1)11.积分只有cos 和cot 的函数cot" cr drCOS 2CT— ------- t an 1-n er (for n # 1) c(l - n) ' 厂12.积分只有tan 和co!的函数tan m(cj?) i m+n _i----- :—-ax = -------------------- tan cot" (CT ) c(m + n — 1) 也1欢-2(cr)硕阿)血(f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.(0)(0)C b C b ⎧+>+<16.2a b - 17.x=b 18.x=2a +(三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x aC a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b+⎰=2d x b x a a ax b -+⎰ 25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()xax b +⎰=221d 2()2x x b ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C ++ 32.C +33.xC34.x=C +35.2x 2ln(2a x C ++36.2x ⎰=ln(x C +++37.1C a +38.2C a x -+39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.1arccos aC a x+52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos a a C x -+58.2d x x ⎰=ln x C x-+++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.1C a +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-++71.d x x⎰a C72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x2n 2a x b c C++++75.xn 2a x b c C-+++ 76.=C +77.x 2C ++78.x =C +79.x =((x b b a C --+80.x =((x b b a C --81.C()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d nx x ⎰=1211cos sin cos d n n n x x x x n n ---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tan xa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos x a b x +⎰)2xC +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a-117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d axx x ⎰=21(1)e ax ax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n xn x a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰(十五)含有双曲函数的积分137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

相关文档
最新文档