等腰三角形培优辅导

合集下载

初二等腰三角形培优学案同步讲义

初二等腰三角形培优学案同步讲义

学科教师辅导讲义体系搭建一、知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。

(AAS)(2)等腰三角形的两底角相等。

即等边对等角。

(3)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

即三线合一。

(4)等边三角形的三个内角都相等,并且每个角都等于60°。

2、等腰三角形的判定定理(1)有两条边相等的三角形是等腰三角形。

(2)有两个角相等的三角形是等腰三角形。

即等角对等边。

(3)三个角都相等的三角形是等边三角形。

(4)有一个角等于60°的等腰三角形是等边三角形。

3、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

4、反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

考点一:等腰三角形的性质例1、一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16C.20 D.16或20例2、如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°例3、一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.例4、如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.例5、如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.考点二:等腰三角形的判定例1、△ABC的三边长a,b,c满足关系式(a﹣b)(b﹣c)(c﹣a)=0,则这个三角形一定是()A.等腰三角形B.等边三角形C.等腰直角三角形 D.无法确定例2、如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个例3、如图,△ABC中,BF、CF分别平分∠ABC和∠ACB,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②∠DFB=∠EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是.(填序号,错选、漏选不得分)例4、如图,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.①画出将△ACM绕某一点顺时针旋转180°后的图形;②∠BAC=90°(如图)附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.实战演练➢课堂狙击1、等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cmC.20cm D.16cm或20cm2、如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30°C.70° D.50°3、如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°4、如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC是等腰三角形的是()A.①② B.①③ C.③④ D.②③5、如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1= 度,图中有个等腰三角形.6、如图,AD是直角三角形△ABC斜边上的中线,把ADC沿AD对折,点C落在点C′处,连接CC′,则图中共有等腰三角形个.7、如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n C n= °.(用含n的代数式表示)8、如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.9、如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:△ABC是等腰三角形.➢课后反击1、已知等腰三角形的一个底角的度数为70°,则另外两个内角的度数分别是()A.55°,55° B.70°,40°C.55°,55°或70°,40° D.以上都不对2、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是()A.42° B.60°C.36° D.46°3、如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44° B.66°C.88° D.92°4、如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40° B.50°C.60° D.不能确定5、如图,在△ABC,∠A=36°,∠B=72°,AC的垂直平分线分别交AC、AB于点D,E,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个6、如图,△ABC中,AB=AC,AD是∠BAC的平分线,若△ABD的周长为12,△ABC的周长为16,则AD的长为.7、如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):.8、如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是.9、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.直击中考1、【2015•长沙】下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80° D.∠A:∠B:∠C=1:1:22、【2016•山东】如下图中,将△ABC沿BD对折,使得点C落在AB上的点C′处,且∠C=2∠CBD,已知∠A=36°.(1)求∠BDC的度数;(2)写出图中所有的等腰三角形(不用证明)重点回顾1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。

等腰三角形培优辅导精选

等腰三角形培优辅导精选

等腰三角形培优辅导知识要点1、等腰三角形的定义:有两条边相等的三角形是等腰三角形。

等边三角形的定义:三条边都相等的三角形是等边三角形,又叫正三角形,等边三角形是特殊的等腰三角形。

2、等腰三角形的性质:(1)、等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)、等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

(3)、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

(4)、等腰三角形底边上的垂直平分线到两条腰的距离相等。

(5)、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

(6)、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

(7)、等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,3、等腰三角形的判定:(1)、在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

(2)、在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

4、等边三角形的性质:⑴、等边三角形的三边都相等,内角都相等、且均为60度。

⑵、等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

5、等边三角形的判定:⑴三边相等的三角形是等边三角形(定义)。

⑵三个内角都相等的三角形是等边三角形(有两个角等于60度的三角形是等边三角形)。

⑶有一个角是60度的等腰三角形是等边三角形。

6、含30°角的直角三角形的重要结论:30°角所对的直角边是斜边的一半。

7、常做辅助线的方法:“遇到等腰常做高.角平分线,中线。

或者或者构造等腰三角形。

”遇到中线常延长中线,构造全等三角形。

遇到线段和差,常截取线段等于已知线段。

构造等腰三角形E DCAHF典型例题1、如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE •都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH 的形状并说明理由.2、如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE ⊥CF;(2)CF ∥AD.3. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数AD CAB 4.已知:如图在△ABC 中AB=AC,D 是AC 上一点,过D 作DE ⊥BC 于E,与BA 的延长线交于F.求证:AD=AF5如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,•给出下列三个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD .(1)上述三个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形); (2)选择第(1)小题中的一种情况,证明△ABC 是等腰三角形.6、如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC •于点D ,求证:BC=3AD.辅助线类题目解析:7.已知△ABC 中AB=AC,D 是AB 上一点,E 是AC 延长线上一点,且BD=CF,DE 交BC于F 求证:DF=EF23.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF20.如图, △ABC 中,AD ⊥BC 于D ,∠B=2∠C ,求证:AB+BD=CDB8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。

培优专题等腰三角形(含答案)

培优专题等腰三角形(含答案)

9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。

【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

等腰三角形一对一辅导讲义

等腰三角形一对一辅导讲义

教学目标1.掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.2.会利用等腰三角形的性质进行推理、计算和证明.重点、难点1、本节教学的重点是理解并掌握等腰三角形的性质:等边对等角;三线合一.2、等腰三角形三线合一性质的运用,在解题思路上需要作一些转换。

考点及考试要求1、等腰三角形的性质2、等腰三角形的证明教学内容第一课时等腰三角形知识梳理1、已知线段a,h(如下图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h。

2、如果等腰三角形有两边的长分别为12cm,5cm,这个三角形的周长是 cm。

3、请写出周长为8cm,且边长均为整数的等腰三角形的各边长。

4、一个等腰三角形的两个内角度数之比为4∶1,求这个三角形各角度数。

5、已知:如图,AB=AC,BD⊥AC,垂足为点D。

求证:∠DBC=21∠A。

课前检测AB CD图2-5AB CD (1)等腰三角形的定义等腰三角形:有两条边相等的三角形叫等腰三角形(如下图AB=AC),相等的两边叫做腰(AB和AC),另一边叫底边(BC),两腰的夹角叫做顶角(A∠),腰和底边的夹角叫做底角(C∠∠和B)(2)等腰三角形的性质等腰三角形性质定理1:等腰三角形的两个底角相等。

或“在一个三角形中,等边对等角”。

等腰三角形性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

简称等腰三角形三线合一。

注:上述性质指导学生通过证全等自己来推理(3)等边三角形等边三角形是特殊的等腰三角形,各边相等,各角均为60度。

第二课时等腰三角形典型例题题型一:根据等腰三角形的性质计算角的度数或边的长度例1:等腰三角形两个内角的度数之比为1:2,这个等腰三角形底角的度数为【点拨】:本题的考点是等腰三角形两底角相等,但题目中没有明确是底角:顶角=1:2还是顶角:底角=1:2,所以要分两种情况进行讨论,根据三角形内角和为180度求出三角形的三个角的度数,很多学生容易漏掉一种情况。

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题【例题讲解】例题1.如图,直线l 1、12相交于点A ,点B 是直线外一点,在直线l 1、12上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有个.【提示】①以B 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;②以A 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;③作线段AB 的垂直平分线,与l 1、12交点即为满足条件点C.(此方法简称为“两圆一线”)【巩固训练】1、一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在坐标轴上取一点C ,使△ABC 为等腰三角形,则这样的点C 最多有个。

2、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条例题2.一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在y 轴上取一点C ,使得AC =BC ,求出C 点坐标?【代数法、几何法均可解】解:如图所示,直线AB 的解析式为y =43x +4,当y =0时,x =-3,则A (-3.0);当x =0时,y =4,则B (0,4)。

设C 点坐标为(x .0),在Rt △AOB 中,由勾股定理得5==,在Rt △BOC 中,由勾股定理得BC =。

①当以AB 为底时,AC =BC ,则3+x 整理得6x =7,解得x =76,则(76,0);②当以BC 为底时,可得AC =AB ,则35x --=,解得x =2或-8,则C (2,0)或(-8,0);③当以AC 为底时,可得AB =BC ,整理得x 2=9,解得x =±3,则C (3,0)或(-3,0)(舍去)。

综上所述,满足条件的点C 的坐标是(76,0)或(2,0)或(3,0)或(-8,0)例题3.如图,直线x =-4与x 轴交于点E ,一开口向上的抛物线过原点交线段OE 于点A ,交直线x =-4于点B ,过B 且平行于x 轴的直线与抛物线交于点C ,直线OC 交直线AB 于D ,且AD :BD =1:3.(1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.解:(1)如图过点D 作DF ⊥x 轴于点F .由题意可知OF =AF 则2AF +AE =4①∵DF ∥BE ,∴△ADF ∽△ABE ,∴12AF AD AE AB ==,即AE =2AF ②①与②联立解得AE =2,AF =1.∴点A 的坐标为(-2,0);(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y =ax 2+bx∵抛物线过原点(0,0)和A 点(-2,0),∴对称轴为直线x =202-+=-1∵B 、C 两点关于直线x =-1对称B 点横坐标为-4,∴C 点横坐标为2,∴BC =2-(-2)=6∵抛物线开口向上,∴∠OAB >90°,OB >AB =OC .∴当△OBC 是等腰三角形时分两种情况讨论:①当OB =BC 时设B (-4,y 1),则16+y 12=36解得y 1=±(负值舍去).将A (-2,0),B (-4,)代入y =ax 2+bx得420164a b a b -=⎧⎪⎨-=⎪⎩解得5452a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为yx 2x ②当OC =BC 时设C (2,y 2),则4+y 22=36解得y 2=±负值舍去)将A (-2,0),C(2,代入y =ax 2+bx ,得42042a b a b -=⎧⎪⎨+=⎪⎩,解得2a b ⎧=⎪⎨⎪=⎩∴此抛物线的解析式为y =22x 2x 例题4.如图甲,在△ABC 中,∠ACB =90°,AC =4cm,BC =3cm.如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm /s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,请写出S 关于t 的函数表达式?(2)如图乙,连接PC ,将△POC 沿QC 翻折,得到四边形PQP 'C ,当四边形PQP 'C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?解:(1)如图1,过点P 作PH ⊥AC 于H ,∵∠C =90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC ,∴PH AP BC AB =,∵AC =4cm ,BC =3cm ,∴AB =5cm ∴535PH t -=,∴PH =3-35t ,∴△AQP 的面积为:S =12×AQ ×PH =12×t ×(3-35t )=23518()1025t --+∴当t 为52秒时,S 最大值为185cm 2.(2)如图2,连接PP ',PP '交QC 于E ,当四边形PQP 'C 为菱开时,PE 垂直平分QC ,即PE ⊥AC ,QE =EC ,∴△APE ∽△ABC ,∴AE AP AC AB =,∴AE =(5)44455AP AC t t AB ⋅-⨯==-+∴QE =AE -AQ =45t -+4-t =95t -+4,QE =12QC =12(4-t )=12-t +2∴95t -+4=12-t +2,∴解得:t =2013,∵0<2013<4.∴当四边形PQP 'C 为菱形时,t 值是2013秒;(3)由(1)知,PD =335t -+,与(2)同理得:QD =AD -AQ =945t -+∴PQ ==在△APQ 中,①当AQ =AP ,即=5-t 时,解得:t 1=52,②当PQ =AQ ,t 时,解得:t 2=2513,t 3=5.③当PQ =AP-t 时,解得:t 4=0,t 5=4013∵0<t<4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.例题5.已知,如图,在Rt △ABC 中,AC =6,AB =8,D 为边AB 上一点,连接CD ,过点D 作DE ⊥DC 交BC 与E ,把△BDE 沿DE 翻折得△DE B 1,连接B 1C(1)证明:∠ADC =∠B 1DC ;(2)当B 1E /∥AC 时,求折痕DE 的长;(3)当△B 1CD 为等腰三角形时,求AD 的长.解:(1)证明由折叠的性质得:∠BDE =∠B 1DE ,∵DE ⊥DC ,∴∠ADC =180°-90°-∠BDE =90°-∠BDE ,∠B 1DC =90°-∠B 1DE ,∴∠ADC =∠B 1DC(2)解延长B 1E 交AB 于F .∵B 1E ∥AC ,∠A =90°,∴B 1F ⊥AB ,∴∠EB 1D +∠BDB 1=90°.∵∠B =∠EB 1D ,∴∠B +∠BDB 1=90°,∴∠BGD =90°,在△BDC 和△B 1FD 中,111B EB D BGD B FD BD DB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△B 1FD .∴DF =DG ,在△ADC 和△GDC 中,90ADC CDG A DGC DC DC ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△ADC ≌△GDC ,∴DG =AD .∴DF =AD =DG ,设DF =AD =DG =x ,∴BF =8-2x ,∵EF ∥AC ,∴△BFE ∽△BAC ,∴EF BF AC AB =,∴EF =1232x -,∵△EFD ∽△ACD ,∴DF EF AC AD=,∴12326x x x -=,解得:x =3,∴BF =3,EF =32,∴DE.(3)解设AD =x ,则CD,BD =8-x ,∵△B 1CD 是等腰三角形,①当B 1D =B 1C 时则∠B 1DC =∠B 1CD ,∴DB 1=BD =8-x ,如图2过B 1作B 1F ⊥CD ,则DF =CF =12CD=2,∵∠ADC =∠B 1DC ,∠B 1FD =∠A =90°,∴△CDA ∽△B 1DC ,∴1B D DF CD AD =,2x =,∴3x 2-16x +36=0,此方程无实数根.∴B 1D ≠BC .②B 1D =CD 时,∴B 1D =CD =BD =8-x .∴(8-x )2=x 2+6,∴x =74,∴AD =74.③当CD =BC 时如图2过C 作CH ⊥DB ,则DH =B 1H =12DB 1=12BD =12(8-x )在△ACD 和△CHD 中,90ADC CDH A CHD CD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ∴△ACD ≌△CHD ,∴AD =DH =x∴x =12(8-x ),∴x =83,∴AD =83,综上所述:当△B 1CD 是等腰三角形时AD 的长为74或83.【巩固训练】1.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出不同的等腰三角形的个数最多为()A.4B.5C.6D.72.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,使得△BPC是一个等腰三角形.(1)用尺规作图画出符合要求的点P.(保留作图痕迹,不要求写做法)(2)求出PA的长.3.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)4.如图,一长度为10的线段AC的两个端点A、C分别在y轴和x轴的正半轴上滑动,以A为直角顶点,AC为直角边在第一象限内作等腰直角△ABC,连接BO.(1)求OB的最大值;(2)在AC滑动过程中,△OBC能否恰好为等腰三角形?若能,求出此时点A的坐标;若不能,请说明理由.5、如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-2x+3与y轴交于点C,与x轴交于点D,点P是x轴上方的抛物线上一动点,过点P作PF⊥x.轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)若△PCE为等腰三角形,求m的值.6.如图,在平面直角坐标系中,点A的坐标为(12,-8),点B、C在x轴上,tan∠ABC=43,AB=AC,AH⊥BC 于H,D为AC的中点,BD交AH于点M.(1)求过B、C、D三点的抛物线的解析式,并求出抛物线顶点E的坐标;(2)过点E且平行于AB的直线l交y轴于点G,若将(2)中的抛物线沿直线1平移,平移后的抛物线交y轴于点F,顶点为E'(点E'在y轴右侧).是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时顶点E'的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中点B坐标为(6,0),点A在第一象限,△AOB为等边三角形,OH⊥AB于点H,动点P、Q分别从B、O两点同时出发,分别沿BO、OA方向匀速移动,它们的速度都是1cm/s,当点P到达点O时,P、Q两点停止运动,设点P的运动时间为t(s),PQ交OH于点M,设四边形AQPB的面积为y.(1)求y与t之间的函数关系式;(2)设PQ的长为x(cm)试确定y与x之间的函数关系式;(3)当t为何值时,△OPM为等腰三角形;(4)线段OM有最大值吗?如果有,请求出来;如果没有,请说明理由.8.已知:如图,在矩形ABCD中,AB=5,AD=20.E为矩形外一点,且△EBA∽△ABD.3(1)求AE和BE的长;(2)将△ABE绕点B顺时针旋转一个角a(0°<α<180°),记旋转中的△ABE为△A'BE',在旋转过程中,设A'E'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.9.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处。

八年级下证明二等腰三角形 - 培优

八年级下证明二等腰三角形 - 培优

等腰三角形知识点等腰三角形⑴定义:有两条边相等的三角形叫做等腰三角形。

⑵性质:①等腰三角形的两个底角相等(简称“等边对等角”);②等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”)。

③等腰三角形是轴对称图形。

⑶判定方法:①等腰三角形的定义;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边” )。

等边三角形(也叫正三角形)(1)定义:三条边都相等的三角形叫做等边三角形。

⑵性质:①等边三角形的各角相等,并且每一个角都等于60°;②等边三角形是轴对称图形。

⑶判定方法:①等边三角形的定义;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形。

典型例题等腰三角形例1.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线变式练习:性质“等腰三角形的三线合一”,其中所指的“线”之一是()A.等腰三角形底角的平分线B.等腰三角形腰上的高C.等腰三角形腰上的中线D.等腰三角形顶角的平分线变式练习.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形例2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm变式练习.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()A.40°B.50°C.60°D.30°变式练习.等腰三角形的一个外角是80°,则其底角是()A.100°B.100°或40°C.40°D.80°变式练习.如图所示,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°ECA F G例3:如图,在等腰△ABC 中,AB=AC ,一腰上中线BD 将这个三角形的周长分为16和8的两部分,求这个等腰三角形的腰长与底边长.变式练习:如图,若P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P1P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长是变式练习:如图,在△ABC 中,AB=AC=10,ABC=∠ACB=15°,CD 是腰AB 上的高;求:△ABC 的面积.变式练习:如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .例4:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.(1)写出点D 到DABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论NMDBA C变式练习:在△ABC 中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P 旋转,观察线段PD 与PE 之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P 旋转,△PBE 是否能成为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE 的长);若不能,请说明理由.培优例5:(1)等腰三角形的内角的度数之比为1:2,这个等腰三角形底角的度数为________(2)已知等腰三角形ABC 的三边长a,b,c 均为整数,且满足a+bc+b+ac=24,则这样的三角形共有__________个.例6.如图,若AB=AC ,BG=BH ,AK=KG ,则BAC ∠的度数是_______例7.如图,在△ABC 中,AC=BC ,90ACB ∠= ,D 是AC 上一点,AE BD ⊥交BD 的延长线于E ,且12AE BD =,求证:BD 是∠ABC 的角平分线例8.如图1,三角形ABC 的边BC 在直线l 上,AC BC ⊥,且AC=BC ,三角形EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP 。

最新人教版八年级数学上册培优辅导资料(最新全13-15章)

最新人教版八年级数学上册培优辅导资料(最新全13-15章)

2017年下学期八年级数学上册辅导讲义第1讲等腰三角形性质及判定【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【典型例题】类型一、等腰三角形中有关度数的计算题1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.EACF 举一反三:【变式】已知:如图,D 、E 分别为AB 、AC 上的点,AC =BC =BD ,AD =AE ,DE =CE ,求∠B 的度数.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.3、已知等腰三角形的周长为13,一边长为3,求其余各边.举一反三:【变式】已知等腰三角形的底边BC =8cm ,且|AC -BC|=2cm ,那么腰AC 的长为( ). A .10cm 或6cm B .10cm C .6cm D .8cm 或6cm类型三、等腰三角形性质和判定综合应用4、已知:如图,△ABC 中,∠ACB =45°,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.举一反三:【变式】如图所示,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:BE =AD ;(2)求证:AC 是线段ED 的垂直平分线;(3)△DBC 是等腰三角形吗?并说明理由.【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个4. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的有( )①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF. A .1个 B .2个 C .3个 D .4个 5. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( ) A .60° B.70° C.80° D.不确定6. 如图,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( ) A .4个 B .5个 C .6个 D .7个二.填空题7.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .9. 如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12. 如图,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.21N MFE D B CA EP QDCA B第2讲 等边三角形考点 方法 破译1.等边三角形及其性质:三边都相等的三角形叫做等边三角形,等边三角形的三个内角都相等,并且每一个角都等于60.等边三角形是轴对称图形,对称轴是顶角平分线或底边上的高、中线所在直线;2.等边三角形的判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角为60°的等腰三角形是等边三角形;3.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,反之也成立.经典 考题 赏析【例1】如图,△DAC 和△EBC 均是等边三角形,A 、C 、B 三点在一条直线上.AE 、BD 分别与CD 、CE 交于点M 、N .(1)求证:△ACE ≌△DCB ; (2)求∠AFD 的度数; (3)判断△CMN 的形状。

13.3等腰三角形培优讲义华东师大版数学八年级上册

13.3等腰三角形培优讲义华东师大版数学八年级上册

华师培优第10课等腰三角形知识点一、等腰三角形的性质性质:等腰三角形的两个底角相等(简称:等边对等角)推论:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称:三线合一)。

【例1】一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11【变式】在等腰ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11 D.7或10【例2】如图,在△ABC中,D,E分别是AB,AC边上的点,且∠1=∠2,CD=BE.CD 与BE相交于点O.求证:(1)AB=AC;(2)OB=OC.【变式】(1)如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC 于E,求证:△DBE是等腰三角形.(2)已知,如图,△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AD和BE交于H,且BE=AE.求证:AH=2BD.知识点二、等腰三角形的判定判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

【例3】已知:如图,BE 和CF 是ABC 的高线,BE=CF ,H 是CF 、BE 的交点. 求证:HB=HC【例4】如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC 于点D ,求证:BC=3AD.【变式】(1)如图,△ABC 中,∠C=2∠B ,∠1=∠2,试说明:AB=AC+CD .(2)已知:如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。

北师大版新版等腰三角形培优

北师大版新版等腰三角形培优

北师大版新版等腰三角形培优在数学的世界里,等腰三角形是一个非常重要的几何图形。

对于北师大版新版教材中关于等腰三角形的知识,我们一起来深入探究,进行培优拓展。

等腰三角形,顾名思义,至少有两边相等的三角形。

相等的这两条边被称为腰,另一边则称为底边。

两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形具有许多独特的性质。

首先,等腰三角形的两底角相等。

这一性质在解决很多角度计算问题时非常有用。

例如,已知一个等腰三角形的顶角为 80 度,那么根据两底角相等的性质,很容易算出每个底角的度数为(180 80)÷ 2 = 50 度。

其次,等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。

这一性质在证明线段相等、角相等以及线段垂直等问题中经常被用到。

比如,已知一个等腰三角形,顶角平分线与底边相交于点 D,那么我们可以直接得出 AD 既是顶角的平分线,又是底边上的中线和高。

在实际解题中,我们常常需要灵活运用这些性质。

比如,有这样一道题:在等腰三角形 ABC 中,AB = AC,BD 是 AC 边上的中线,且BD 将三角形 ABC 的周长分为 15 和 6 两部分,求三角形 ABC 的各边长。

我们可以设 AB = AC = 2x,BC = y。

因为 BD 是中线,所以 AD = CD = x。

根据题意,我们可以得到两个方程:2x + x = 15 且 x +y = 6,或者 2x + x = 6 且 x + y = 15。

通过解这两个方程组,我们可以求出三角形的各边长。

除了这些基本性质,等腰三角形还有很多重要的定理。

比如,等边对等角定理,即如果一个三角形的两条边相等,那么它们所对的角也相等。

反之,等角对等边定理,即如果一个三角形的两个角相等,那么它们所对的边也相等。

再来看一个稍难一点的题目:在三角形 ABC 中,AB = AC,点 D 在 BC 上,且 AD = BD,AC = CD,求角 B 的度数。

著名机构数学讲义春季13-七年级培优版-等腰三角形-学生版

著名机构数学讲义春季13-七年级培优版-等腰三角形-学生版

教师姓名学生姓名年级初一上课时间学科数学课题名称等腰三角形等腰三角形知识模块Ⅰ:等腰三角形D BACEG【例8】如图所示,在△ABC 中,AB =AC ,在AB 边上取点D ,在AC 延长线上取点E ,使BD =CE ,联结DE 交BC 于G ,试说明DG =DE 的理由.知识模块Ⅱ:等边三角形定 义示例剖析等边三角形的定义:三条边都相等的三角形叫做等边三角形.如图△ABC 中,AB AC BC ==,则△ABC 是等边三角形.等边三角形的性质:三边都相等,三个内角都相等,并且每一个角都等于60︒.如图,ABC △是等边三角形,则60AB AC BC A B C ==∠=∠=∠=,°BCABCAFD A【习题1】等腰三角形底边长为7cm ,它的周长不大于25cm ,则它的腰长x 的取值范围是____________. 【习题2】(1)等腰三角形一腰上的高与另一腰的夹角为50°,则顶角的度数是_______;(2) 等腰三角形一腰上的高与底边的夹角为50°,则顶角的度数是___________. 【习题3】(1)等腰三角形的一个外角等于120°,则它是 三角形; (2)等边三角形是轴对称图形,它有______条对称轴,分别是_______________.【习题4】在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE //AB ,EF //BD ,则图中有等腰三角形 个.ABC 图1 NM ABC 图2MN ABCN 图3MEBACD【习题11】如图,点D 、E 在△ABC 的边BC 上,AD =AE ,BD =EC ,试说明AB =AC 的理由.【习题12】如图,在等边三角形ABC 中,点D 、E 、F 分别是边AB 、BC 、CA 上的动点,且AD =BE =CF ,说明△DEF 是等边三角形的理由.ABCDE F。

培优专题1等腰三角形

培优专题1等腰三角形

培优专题1 等腰三角形等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径.例1 如图1-1,△ABC 中,AB=BC ,M 、N 为BC 边上两点,且∠BAM=∠CAN ,MN=AN ,求∠MAC 的度数.分析 AB=AC ,MN=AN 可知△ABC 和△AMN 均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系. 练习11.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( ).A .7.5°B .10°C .12.5°D .18°2.如图,AA ′、BB ′分别是△ABC 的外角∠EAB 和∠CBD 的平分线,且AA ′=AB=B ′B ,A ′、B 、C 在一直线上,则∠ACB 的度数是多少?3.如图,等腰三角形ABC 中,AB=BC ,∠A=20°.D 是AB 边上的点,且AD=BC ,•连结CD ,则∠BDC=________.例2 如图1-5,D 是等边三角形ABC 的AB 边延长线上一点,BD•的垂直平分线HE•交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由.分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的.1-5练习21.已知如图1-6,在△ABC 中,AB=CD ,D 是AB 上一点,DE ⊥BC ,E 为垂足,ED•的延长线交CA 的延长线于点F ,判断AD 与AF相等吗?1-6 1-7 1-82.如图1-7,△ABC 是等腰直角三角形,∠BAC=90°,点D 是△ABC 内一点,且∠DAC=∠DCA=15°,则BD 与BA 的大小关系是( )A .BD>BAB .BD<BAC .BD=BAD .无法确定3.已知:如图1-8,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=•AC ,•延长BE 交AC 于F ,AF 与EF 相等吗?为什么?例3 已知:如图1-9,△ABD 和△BEC 均为等边三角形,M 、N 分别为AE 和DC•的中点,那么△BMN 是等边三角形吗?说明理由.分析 要说明一个三角形是等边三角形,•只要能够证明这个三角形满足“三条边相等或三个角相等或一个角是60°的等腰三角形”即可.本题只需利用三角形全等证得BM=BN ,且∠MBN=60°即可. 练习31.已知:如图1-10,在等边三角形ABC 中,BD=CE=AF ,AD 与BE 交于G ,BE 与CF•交于H ,CF 与AD 交于K ,试判断△GHK的形状.1-101-92.已知:如图1-11,△ABC 是等边三角形,E 是AC 延长线上的任意一点,选择一点D ,•使△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,那么△CMN•是等边三角形吗?为什么?1-113.已知:如图1-12,等边三角形ABC ,在AB 上取点D ,在AC 上取点E ,使AD=AE ,作等边三角形PCD 、QAE 和RAB ,则以P 、Q 、R为顶点的三角形是等边三角形,请说明理由.例4 已知:如图1-13,等腰△ABC 中,AB=AC ,∠A=100°,∠ABC 的平分线交AC 于E ,试比较AE+BE 与BC 的大小?分析 说明一条线段的长是否等于其他两条线段长的和,•常常采用截取等长线段的方法,将那些本来没有关系的线段放在条线段上,这样可迎刃而解. 解:在BC 上截取BF=BE ,BD=BA ,连结FE 、DE ,练习41.如图1-14,在△ABC 中,AB=AC ,P 为底边BC 上的一点,PD ⊥AB 于D ,PE ⊥AC 于E ,•CF ⊥AB 于F ,那么PD+PE 与CF 相等吗?2.已知:如图1-15,△ABC 和△ADE 都是等边三角形.B 、C 、D 在一条直线上,•说明CE 与AC+CD 相等的理由.1-133.已知:如图1-16,△ABC 是等边三角形,延长AC 到D ,•以BD•为一边作等边三角形BDE ,连结AE ,则AD_______AE+AB .(填“>”或“=”或“<”)1-16例5 已知:如图1-17,△ABC 中,AB=AC ,CE 是AB 边上的中线,延长AB 到D ,使BD=AB,那么CE 是CD 的几分之几?分析 延长线段到倍长,再证明三角形全等,往往是说明线段倍分关系的重要途径和必要手段.解:延长CE 到F ,使EF=CE ,连结BF ,CE 是AB 的中线,∴AE=EB . 练习51.如图1-18,D 、E 分别是等边三角形ABC 两边BC 、AC 上的点,且AE=CD ,连结BE 、•AD 交于点P .过B 作BQ ⊥AD 于Q ,请说明BP 是PQ 的2倍.1-182.如图1-19,在△ABC 中,∠BAC=90°,AB=AC ,BE 平分∠ABC ,CE ⊥BE ,那么CE•是BD 的几分之几?1-193.已知:如图1-20,在△ABC 中,AB=AC ,AD 和BE 是高,它们相交于H ,且AE=BE ,•那么AH 是BD 的________倍.1-201-17答案:练习11.解:设∠DEC=x,∵AD=AE,∴∠ADE=∠AED.∴x=∠AEC-∠ADE=(∠B+30°)-∠ADE=(∠B+30°)-(∠C+x)∵AB=AC,∴∠B=∠C∴2x=30°,x=15°,故选C.2.解:∵AB=BB′,∴∠BAB′=∠BB′A,∠B′BD=∠BAB′+∠BB′A=2∠BAB′.又∠CBB′=∠DBB′,∴∠ACB=∠CBB′+∠CB′B=3∠CAB.设∠CAB=x,∴∠ACB=3x,∠CBD=4x,又AA′=AB,∴∠A′=∠ABA′=∠CBD=4x.∵AA′平分∠EAB.∴∠A′AB=12(180°-x).又∠A′AB=180°-(∠A′+∠ABA′)=180°-8x∴12(180°-x)=180°-8x.∴x=12°,故∠ACB=36°.3.解:如图,作△AED≌△BAC,连结EC.则∠AED=∠BAC=20°,∠DAE=∠ADE=∠B=∠ACB=80°.∴∠CAE=∠DAE-∠BAC=80°-20°=60°.又∵AB=AE=AC,∴△ACE是正三角形,AE=EC=ED.∴∠DEC=∠AEC-∠AED=40°.∴∠EDC=12(180°-∠DEC)=70°.∴∠BDC=180°-(∠ADE+∠EDC)=30°.练习21.解:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠FEC=90°.在Rt△DEB与Rt△FEC中,∵∠B=∠C,∴∠BDE=∠F.∵∠FDA=∠BDE,∴∠FDA=∠F,故AD=AF.2.解:以AD为边在△ADB内作等边△ADE,连结BE.则∠1=∠2=∠3=60°.∴AE=ED=AD.∵∠DAC=15°,∴∠EAB=90°-∠1-∠DAC=15°.∴∠DAC=∠EAB.又∵DA=AE,AB=AC,∴△EAB≌△DAC.∴∠EBA=∠DCA=15°.∴∠BEA=180°-∠EBA-∠EAB=150°.∵∠BED=360°-∠BEA-∠AED=150°.∴∠BEA=∠BED.又∵EB=EB,AE=ED.∴△BEA≌△BED,∴BD=BA.故选择C.3.解:延长AD到G,使DG=AD,连结BG,∵BD=DC,∠BDG=∠CDA,AD=DG,∴△ADC≌△BDE.∴AC=BG,∠G=∠EAF,又∵BE=AC,∴BE=BG.∴∠G=∠BED,而∠BED=∠AEF,∴∠AEF=∠AFE,故FA=FE.练习31.解:∵△ABC是等边三角形,∴AB=BC=CA∠ABC=∠ACB=∠BAC=60°.又∵BD=AF=CE,∴△ABD≌△BCE≌△CAF.∴∠1=∠2=∠3.∴∠BAC-∠1=∠ABC-∠2=∠ACB-∠3.即∠CAK=∠ABG=∠BCH.又∵AB=BC=CA,∴△ABG≌△BCH≌△CAK.∴∠AGB=∠BHC=∠CKA.即∠KGH=∠GHK=∠GKH.故△GKH是等边三角形.2.解:由于△ABC与△CDE均为等边三角形,A、C、E三点共线,得知:CA=CB,CD=CE,∠ACD=∠BCE,故△ACD≌△BCE.∴∠ADC=∠BEC,AD=BE.又DM=12AD,EN=12BE,∴△DCM≌△ECN.∴∠DCM=∠ECN,CM=CN.又∠ECN+∠NCD=∠ECD=60°,∴∠NCM=∠MCD+∠NCD=60°.∴△CMN是等边三角形.3.解:连结BP.∵△ABC与△CDP均为等边三角形,∴AC=BC,CD=CP,∠ACB=∠DCP=60°.∴∠1=∠2,∴△ADC≌△BPC.∴∠CBP=∠DAC=60°.∵∠RBP=∠RBA+∠ABC+∠CBP=60°+60°+60°=180°,∴R、B、P三点共线.又∵∠RAQ=∠RAB+∠BAC+∠CAQ=60°+60°+60°=180°,∴R、A、Q三点共线.而AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP.又∠R=60°,∴△PQR是等边三角形.故以P、Q、R为顶点的三角形是等边三角形.练习41.解:∵S△ACB =S△APB+S△APC,即12AB·CF=12AB·PD+12AB·PE.∴CF=PD+PE.2.解:∵AC=AB,∠CAE=∠BAD,AE=AD,∴△AEC≌△ADB.∴CE=BD.又∵BD=BC+CD=AC+CD.∴CE=AC+CD.3.解:∵△ABC和△BDE均为等边三角形.∴∠ABE=60°-∠EBC=∠CBD,AB=BC,BE=BD.∴△ABE≌△CBD.∴AE=CD.又∵AB=AC,∴AD=AC+CD=AB+AE.练习51.解:∵∠CAB=∠C=60°,AE=CD,AB=AC,∴△ADC≌△BEA,∴∠CAD=∠EBA.又∠BPQ=∠PAB+∠PBA=∠PAB+∠CAD=60°,∴在Rt△PQB中,∠PBQ=30°,∴BP=2PQ.2.解:延长CE交BA的延长线于F,∵∠1=∠2,∠BEC=∠BEF=90°,BE=BE,∴△BEC≌△BEF.∴BC=BF,CE=EF,∴CE=12CF.又∵∠2+∠3=90°,∠4+∠5=90°,∠3=∠4,∴∠2=∠5,且AB=AC.∴Rt△AFC≌Rt△ADB.∴CF=BD.故CE=12BD.3.解:∵AB=AC,AD⊥BC,∴BD=DC,∠DAC+∠C=90°.又∵BE⊥AC,∴∠EBC+∠C=90°.∴∠DAC=∠EBC.在△AEH和△BEC中,∵∠DAC=∠EBC,AE=BE.∠AEH=∠BEC=90°,∴△AEH≌△BEC,∴AH=BC.又BC=2BD,故AH=2BD.。

初二数学培优第5讲 等腰三角形

初二数学培优第5讲  等腰三角形

第5讲等腰三角形(初步)1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互莺合(简写成“三线合一”).2.等腰三角形的判定:(1)等腰三角形定义;(2)如果一个直角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).基础回顾例1 如图,△ABC中,AB>AC,AD平分∠BAC,EF⊥AD交BC延长线于M.(1)求证:∠BME=12(∠ACB-∠B);(2)若EM平分AD,求证:∠CAM=∠B.例2 等腰△ABC中,过其中一个顶点的直线把这个等腰三角形分成两个等腰三角形,求三内角的度数.分析:按直角、锐角、钝角三角形来分类讨论.图① 图② 图③ 图④练习1.若等腰三角形一腰上的高,等于腰长的一半,求这个等腰三角形的顶角.2.如图,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C 的内角平分线交于P点.(1)直接回答:当∠B与∠C满足什∠条件时,点P在△ABC内,在△ABC外,在△ABC的边上?(2)若P在△ABC内,过P作PQ ∥BC交AB、AC于Q、R.求证:QR=AQ+CR方法运用例3 如图,△ABC中,AB=7,AC=11,点M是BC中点,AD平分∠BAC,MF∥AD交AC于F.求FC的长.例4 如图,在凸五边形ABCDE中,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.练习3.如图,∠B=∠C,∠ADB= 90°-12∠BDC.求证:△ABC是等腰三角形.4.如图,直角梯形ABCD,CD∥AB,AB=AC,AE⊥AC,且AE=AD,连BE交AC于F.求证;BF=EF.问题探究例5如图,已知B(-1,O),D(O,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使AD=AE.(1)求证:AB=AC;(2)△ABC沿x轴方向平行移动时,AB交y轴于D,直线DF交AC延长线于F,交x轴于G且BD=CF,求证:OG长度不变.图①图②例6 如图,BD平分∠ABC,AD=DE,EF∥BC,求证:AB=EF.练习5.在△ABC中,AB=AC,∠A=100°,BD为∠B的平分线.求证:BC=BD+AD.6.如图,直角坐标系中,A(O,4),B(4,O),点M、N分别在y轴和x轴上,N点在B点右侧,且AM=BN.(1)求S△AOB;(2)如图①,若点M在AO上,求证:CM=CN;(3)如图②,若点M在y轴负半轴上,(2)中的结论是否成立,请说明理由.图①图②7.已知,如图①,在平面直角坐标系中,A(0,4),B(4,0).(1) BD平分∠ABO的外角,∠AD0=45°,求∠BAD的大小;(2)在①中,求AEOB的值;(3)如图②,点P在OB上,AP⊥PF,∠OBF=135°,问APPF是否变化?图①图②8.在△ABC中,AD为中线,BE为角平分线,BF=AC.(1)求证:AE=EF;(2)若EF=EG,点G在BC上.求证:∠ABG+∠AEG=180°;(3)在(2)的条件下,若∠FEG= ,求∠FAG的大小.。

第1讲 等腰三角形的性质与判定(培优)

第1讲  等腰三角形的性质与判定(培优)

1.如图1,在ABC ∆中,点M ,N 为AC 边上的两点,AM NM =,BM AC ⊥,ND BC ⊥于点D ,且NM ND =,若70A ∠=︒,则(C ∠=)A .40︒B .50︒C .60︒D .70︒2.等腰ABC ∆的周长为m ,一腰上的中线将周长分成3:5两部分,则这个等腰三角形底边长为()A .6m B .2m C .6m 或2m D .35m3.如图2,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,4BC =.则BD 的长为()A .1B .32C .2D .524.如图3,在ABC ∆中,AB AC =,点M 在CA 的延长线上,MN BC ⊥于点N ,交AB 于点O ,若3AO =,4BO =,则MC 的长度为()A .12B .9C .10D .115.如图4,在ABC ∆中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG CE ⊥于点G ,CD AE =.若8BD =,5CD =,则DCG ∆的面积是()A .52B .54C .154D .1526.如图5,ABC ∠的平分线BD 与ACB ∠邻补角的平分线CD 相交于点D ,CE 平分ACB ∠于点E ,//CD BA ,5DE =,3CE =,则AB 的长度为().A .2825B .5625C .125D .527.如图6,在ABC ∆中,//ED BC ,ABC ∠和ACB ∠的平分线分别交ED 于点G ,F .若2FG =,4ED =,则EB DC +的值为.8.如图7,在ABC ∆中,AD ,BD 分别是BAC ∠,ABC ∠的平分线,过点D 作//EF AB ,分别交AC ,BC 于点E ,F .若4AE =,6BF =,则EF 的长为.9.如图8,在ABC ∆中,D 为边AC 上一点,且BD 平分ABC ∠,过A 作AE BD ⊥于点E .若64ABC ∠=︒,29C ∠=︒,4AB =,10BC =,则AE =.10.如图9,ABC ∆中,D 为AC 中点,E 为BC 上一点,连接DE ,且2ABC DEC ∠=∠,若7AB =,12CE =,则BC 的长度为.11.如图10,直线44y x =+与坐标轴交于A 、B 两点,点C 为x 轴负半轴上一点,45CAB ∠=︒.则点C 的坐标是.12.如图11,等腰ABC ∆中,AB AC =,CD AB ⊥于D ,点E 在AC 上,连接BE 交CD 于F ,2ABE DCB ∠=∠,10BF CE +=,22CD =,则ABE ∆的面积为.13.如图,在锐角ABC ∆中,点E 是AB 边上一点,BE CE =,AD BC ⊥于点D ,AD 与EC 交于点G .(1)求证:EA EG =;(2)若10BE =,3CD =,G 为CE 中点,求AG 的长.14.如图,已知ABC ∆中,BE 平分ABC ∠,且BE BA =,点F 是BE 延长线上一点,且BF BC =,过点F 作FD BC ⊥于点D .(1)求证:BEC BAF ∠=∠;(2)判断AFC ∆的形状并说明理由.(3)若2CD =,求EF 的长.15.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接CD 、DE ,已知EDB ACD ∠=∠.(1)求证:DEC ∆是等腰三角形.(2)当5BDC EDB ∠=∠,8EC =时,求EDC ∆的面积.16.如图,在四边形ABCD 中,AC 与BD 相交于点E ,AC AD =,BAC BDC α∠=∠=,CAD β∠=.(1)求证:ABD ADC ∠=∠;(2)当65AED ∠=︒时,求2βα-的度数;(3)2180αβ+=︒时,求证:BD CD =.17.经过三角形一个顶点及其对边上一点的直线,若能将此三角形分割成两个等腰三角形,称这个三角形为“钻石三角形”,这条直线称为这个三角形的“钻石分割线”.(1)如图1,ABC ∆中,AB AC =,36A ∠=︒,CD 平分ACB ∠,请说明ABC ∆是“钻石三角形”.(2)如图2,已知Rt ABC ∆中,90B ∠=︒,60C ∠=︒,则Rt ABC ∆“钻石三角形”(填“是”或者“不是”);若是,其“钻石分割线”必过顶点(填A 或B 或)C .若不是,请说明理由.(3)在ABC ∆中,20BAC ∠=︒,若存在过点C 的“钻石分割线”,使ABC ∆是“钻石三角形”,请直接写出满足条件的B ∠的度数.。

八年级上册数学同步培优:第6讲等腰三角形--提高班

八年级上册数学同步培优:第6讲等腰三角形--提高班

第6讲等腰三角形知识点1 等腰三角形的相关概念---分类讨论求边角的值1.等腰三角形的两个腰相等,两个底角也相等.2.直角三角形30°的角所对的直角边等于斜边的一半.【典例】1.若等腰三角形一腰上的高等于腰长的一半,求此三角形的底角.【方法总结】本题考查了等腰三角形的性质,以及含特殊角的直角三角形,熟记三角形的高相对于三角形的三种位置关系(三角形内部,三角形的外部,三角形的边上),解题时注意需要分类讨论.2.如果一等腰三角形的周长为27,且两边的差为12,求这个等腰三角形的腰长.【方法总结】已知等腰三角形的周长和两边之差来求等腰三角形的底或腰时,我们需要分类讨论,分为两种情况:一种是“腰-底=某个值”,第二种是“底-腰=某个值”,可将底或腰设为未知数,再根据等腰三角形的周长列出方程,求出三边以后根据三角形的三边关系进行验证,选择合理的数值.【随堂练习】1.(2017秋•洛阳期末)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为_____.2.(2017秋•襄州区期末)在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为______.3.(2017秋•枣阳市期末)一个等腰三角形的周长为20,一条边的长为6,则其两腰之和为______.4.(2017秋•诸暨市期末)已知等腰三角形的周长为8,其中一边长为2,则该等腰三角形的腰长为_____.5.(2018春•李沧区期中)若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为_______°.6.(2018春•邗江区期中)已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是_____.知识点2 等腰三角形的性质---边角关系等腰三角形的两底角相等(简称“等边对等角”),即在△ABC,AB=AC,可得∠B=∠C.【典例】1.如图,在△ABC中,∠ACB=90°,AD=AC,BE=BC,求∠DCE的大小.【方法总结】本题考查了等腰三角形的性质,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.2.如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC 与△EBC的周长分别是40,24,求AB的长.【方法总结】本题考查了等腰三角形的性质和垂直平分线上的性质,根据垂直平分线上的点到线段两端点的距离相等,得出相等的线段,把三角形的周长表示出来,再利用相等的线段进行转化求解. 【随堂练习】1.(2017春•成华区期末)如图△ABC中,AB=AC,点E、D、F分别是边AB、BC、AC边上的点,且BE=CD,CF=BD.若∠EDF=50°,则∠A的度数为_____.2.(2017秋•浦东新区校级期末)如图所示,已知△ABC 中,AB=AC ,∠BAD=30°,AD=AE ,求∠EDC 的度数.知识点3 等腰三角形的性质---三线合一等腰三角形底边上的高线、中线及顶角平分线重合. 例:已知△ABC 是等腰三角形,AB=AC ,①AD ⊥BC ②BD=CD ③AD 平分∠BAC, 上述三个条件,任意满足一个,可得到另外两个. 即①②,③;②①,③;③①,②.【典例】1.如图,在△ABC 中,AB=AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE=⇒⇒⇒∠CAD.求证:BE⊥AC.【方法总结】本题主要是利用等腰三角形的三线合一,根据三线合一的性质可知,等腰三角形底边上的中线也是底边的高线.注:等腰三角形常作的辅助线是,过顶角的顶点向底边作垂线,再利用三线合一得到一些相等的关系式,当题目中给出等腰三角形底边上的中点时,常常将等腰三角形的顶角顶点和它直接相连.【随堂练习】1.(2017秋•莘县期末)如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.2.(2017秋•东城区期末)如图,在△ABC中,AB=AC,AD⊥于点D,AM是△ABC 的外角∠CAE的平分线.(1)求证:AM∥BC;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.知识点4 等腰三角形的判定与性质1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).2.等腰三角形的两个底角相等(简称“等边对等角”).3. 等腰三角形底边上的高线、中线及顶角平分线重合.【典例】1.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有_______ 个.【方法总结】本题考查的等腰三角形的判定,利用的是数形结合思想,当已知两个格点找寻第三个格点时,需要分类讨论,将这条边作为底和作为腰时可以构建的等腰三角形的个数之和,即为所求的点的个数.2.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____________s时,△POQ是等腰三角形.【方法总结】本题主要考查了等腰三角形的性质,由等腰三角形的两个腰相等得出方程是解决问题的关键,注意本题分类讨论时,由于∠POQ=60°,可得出△POQ是等边三角形,再根据PO=QO进行求解.3.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.【方法总结】本题主要考查的是“平行+角分线” 模型,在之后学习菱形证明题时也会用到,需记牢.模型如下:如图所示,①∠1=∠2;②AC∥BD;③AB=AC(△ABC是等腰三角形)上述条件任意两个成立则第三个也成立. 即①②③;①③②;②③①.【随堂练习】1.(2018•安徽模拟)如图,在△ABC 中,BC=4,BD 平分∠ABC ,过点A 作AD ⊥BD 于点D ,过点D 作DE ∥CB ,分別交AB 、AC 于点E 、F ,若EF=2DF ,则AB 的长为( )A .4B .6C .8D .102.(2018•河东区二模)如图,在△ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为_____.3.(2017春•平南县期中)如图,在Rt △ABC 中,∠C=90°,D 为AB 上的点,BD=CD=5,则AD=______.⇒⇒⇒综合运用1. 如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有________个.2.如图,C是△ABE的BE边上一点,F在AE上,D是BC的中点,且AB=AC=CE,下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE其中正确的结论有_________.3.如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.4.如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.5.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.6.如图,O是△ABC的∠ABC,∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC 交BC于E,若BC=16,求△ODE的周长.。

等腰三角形培优专题

等腰三角形培优专题

等腰三角形培优专题
简介
等腰三角形是一种有趣且常见的几何图形,为了提高学生的几
何思维和解题能力,本专题将重点培养学生对等腰三角形的认识和
理解。

通过系统的研究和练,学生能够掌握等腰三角形的特征、性
质及其相关定理,进而在解决几何问题时能够灵活应用。

培优内容
1. 等腰三角形的定义和基本特征
- 通过图示解释等腰三角形的定义,并强调等腰三角形的两边
长相等的性质。

- 给出一些例题,让学生观察并找出等腰三角形的特征。

2. 等腰三角形的性质和定理
- 介绍等腰三角形的内角性质和外角性质,并给出证明过程。

- 阐述等腰三角形底角和顶角相等的定理,并给出例题进行练。

- 引入等腰三角形中位线线段相等的定理,让学生进行推理和
证明。

3. 等腰三角形的应用
- 通过一些应用题,让学生将所学的等腰三角形的性质应用于解决实际问题。

- 强调等腰三角形在建筑、工程等领域的实用价值,激发学生对几何学科的兴趣。

研究方法与建议
- 研究前要先了解等腰三角形的定义和特征,有助于更好地理解后续研究内容。

- 研究过程中要注重练,通过做题加深对等腰三角形性质和定理的理解。

- 可以与同学一起探讨等腰三角形的问题,相互讨论和解答疑惑。

- 遇到难题时,可以向老师请教或寻求同学的帮助。

总结
本专题旨在帮助学生全面掌握等腰三角形的性质和应用,提高他们的几何思维和解题能力。

通过深入学习和练习,相信学生们能够在等腰三角形的领域取得优异的成绩,并在几何学科中取得更好的发展。

八年级上册数学思维训练培训(培优)试题:等腰三角形

八年级上册数学思维训练培训(培优)试题:等腰三角形

八年级上册数学思维训练培训(培优)试题:等腰三角形【思维入门】例1:如图,BD是等腰△ABC底边AC上的高线,DE∥BC角AB于点E,求证:△BED是等腰三角形。

例1—1:如图,∠ABC的平分线BF与△ABC中∠ACB相邻的外角的平分线CF相交于点F,过点F作DF∥BC,交AB于点D,交AC于点E,(1)图中有哪几个等腰三角形?请说明理由。

(2)BD,CE,DE之间存在着什么关系?请证明。

【思维拓展】例2:等腰三角形一腰上的高线与另一腰的夹角为30°,则等腰三角形的顶角为。

例3:如图,在△ABC中,AB=AC,∠BAD=20°,且AD=AE,则∠CDE=。

例4:如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为。

【思维升华】例5:老师布置了一道思考题:如图1,点M,N分别在正三角形ABC的BC,AC边上,且BM=CN,AM,BN交于点Q,求证:∠BQM=60°。

(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别分别移动到BC,AC的延长线,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,AC边上”改为“点M,N分别在正方形ABCD的BC,CD边上” ,是否仍能得到∠BQM =60°?……请你作出判断,在下列横线上填写“是”或“否”:①;②;③。

对②,③的判断,选择一个给出证明。

【思维探究活动】例:小区内有一个三角形小花坛,现在小明想把它分割成两个等腰三角形,使之可以种上不同的花,但是一定可以分成两个等腰三角形吗?于是小明开始探索三角形可以被分割成两个等腰三角形的条件,小明把三角形花坛抽象成几何图形,如图1,△ABC中,设∠A=α,∠B=β,∠C=γ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
A
F
2
1
E
D
C
A B
等腰三角形培优专练
一、选择题
1、下列命题正确的是[ ]
A.等腰三角形只有一条对称轴
B.直线不是轴对称图形
C.直角三角形都不是轴对称图形
D.任何角都是轴对称图形 2、等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的
2
1
C.顶角的2倍 D 底角的21
3、 如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[ ] A.∠A =∠B B.∠A =∠ACD C.∠A =∠DCB D.∠A =2∠BCD
4、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足 [ ]
A.∠1=2∠2
B.2∠1+∠2=180°
C.∠1+3∠2=180°
D.3∠1-∠2=180°
第3题 第4题
5、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形; ③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④
6、如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )
A .等边三角形
B .腰
和底边不相等的等腰三角形
C .直角三角形
D .不等边三角形
第6题 第8题
7、Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm
8、如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )
A .等腰三角形
B .等边三角形
C .不等边三角形
D .不能确定形状
9、正△ABC 的两条角平分线BD 和CE 交于点I ,则 ∠BIC 等于( )
A .60°
B .90°
C .120°
D .150°
10、如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( )
A. 6个
B. 7个
C. 8个
D. 9个
A 36° E D
F
B
C
A 1
D
B
2 3
第10题 第12题
11、等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,
D C
A
B
则腰长为()
A. 2cm
B. 8cm
C. 2cm或8cm
D. 以上都不对
二、填空题
12、如图,ABC
∆是等边三角形,BC
BD
90
CBD=
=
∠,
,则1
∠的
度数是________。

13、在等腰△ABC中, AB=AC, AD⊥BC于D, 且AB+AC+BC
=50cm, 而AB+BD+AD=40cm, 则AD=___________cm.
14、如图, ∠P=25°, 又PA=AB=BC=CD, 则∠DCM=____
15、如图已知∠ACB=90°, BD=BC, AE=AC, 则∠DCE=__________度.
第14题第15题第16题
16、△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,∠
MAC=
17、如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于
18、如图,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且
AD=BC,•连结CD,则∠BDC=________.
第17题第18题第19题
19、如图,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,
且∠DAC=∠DCA=15°,则BD与BA的大小关系是
三、解答题
20、已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:HB=HC
21、如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的
中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.
22、如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.
23、.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD的夹角
是多少度?
24、如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC•于点D,求证:BC=3AD.
25、如图,已知点B、C、D在同一条直线上,
△ABC和△CDE•都是等边三角形.BE交AC于F,AD交CE于H,
①求证:△BCE≌△ACD;
E D
C
A
B
H F ②求证:CF=CH ;
③判断△CFH 的形状并说明理由.
26、如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且
CA DC DB AD ==,,求BAC ∠的度数。

A
B
C
D
27、求证:等腰三角形两腰中线的交点在底边的垂直平分线上.
A
E D
O B
C
1 2
28、ABC ∆中,
120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延
长线于E ,求证:BC 2
1
DE =。

29、(2006年扬州市)如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,•给出下列三个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD . (1)上述三个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形);
(2)选择第(1)小题中的一种情况,证明△ABC 是等腰三角形.。

相关文档
最新文档