计算机组成原理实验三

合集下载

计算机组成原理-实验三进位与判零控制实验

计算机组成原理-实验三进位与判零控制实验

实验三进位与判零控制实验一、实验目的(1)掌握运算器标志位产生的方法。

(2)通过实验从实际电路中观察标志位产生的过程。

二、实验原理1.标志概念进位与判零实验是算数逻辑运算实验的继续和扩充,实验二没有涉及到标志位,而实际的算术逻辑运算部件(CPU的主要构成部分)标志位是很重要的,它与输出值F7-F0一样是一种运算结果。

如经典的8086CPU有进位标志CF、奇偶校验标志PF、结果为零标志ZF、符号标志SF、数据溢出标志OF等9种标志。

32位的奔腾CPU有多达18中标志。

本实验将验证进位、结果判零两种标志的产生机理。

进位标志CY有许多用途,例如当计算机的数据大于算数逻辑运算部件数据位时,需把数据分成多端进而从低到高逐段进行处理,低段的进位标志CY 作为运算结果需要保存,并作为高段的输入数据参与运算。

利用进位标志CY可比较两个数据大小,把第一个数据减去第二个数据,若第一个数据大于第二个数据,不会产生借位,进位标志CY为“0”;若第一个数据小于第二个数据,则会产生借位,进位标志CY为“1”.同样,判零标志ZI也有特定的用途,例如判断两个数据是否相等,可对两个数进行减法操作,若结果为零,意味着两个数相等,判零标志ZI=“1”;若结果不为零,意味着两个数不等,判零标志Z1 = “0”。

比较两个数,对其进行减法操作,综合判断进位标志CY和判零标志ZI,可确定两个数之间的关系是大于、小于还是等于。

表2 - 3是加法操作时产生典型进位标志和判零标志的一组数据。

表2-3典型进位标志和判零标志的生产事例2.用于标志产生的信号说明本实验所用的实验电路逻辑与实验二相同,见图2-4,在图的左上角有4个方框,它们分别是算术运算时进位判别电路、判零电路、进位标志CY显示电路和判零标志ZI显示电路。

进位标志仅仅在算术运算操作时产生;判零标志除了在算术运算操作时产生外,在逻辑运算操作时也会产生。

在进行进位与判零实验时使用的信号含义说明如下:(1)T4:判断CY、ZI标志的时序脉冲,这个信号在微指令控制区。

计算机组成原理 实验三 移位器

计算机组成原理 实验三 移位器

实验报告成绩课程名称计算机组成原理指导教师实验日期院(系) 计算机科学与技术学院专业班级实验地点学生姓名学号同组人实验项目名称实验三移位器一、实验目的和要求实验目的:1.掌握移位器的结构及工作原理;2.掌握层次化设计方法。

实验要求:1.使用层次化设计方法(见1.3),将移位器生成部件。

2.生成部件时,注意引脚不要锁定,直接编译,引脚命名不要重名。

3.注意保存好该实验生成的移位器部件,实验五将调用它。

4.完成详细的实验报告。

二、实验原理设计一个4位二进制数的移位电路,可以实现左移1位、右移1位和直接传送功能。

在LM(左移)的控制下可实现左移1位,空位补0。

在RM(右移)的控制下可实现右移1位,空位补0。

在DM(直送)的控制下可实现直接传送。

三、主要仪器设备1. 操作系统为WINDOWS的计算机一台;2. 数字逻辑与计算机组成原理实验系统一台;3. 两输入与门7408、三输入或门74hc32。

四、实验方法与步骤1.用图形输入法完成移位器逻辑电路输入。

2.管脚锁定:将四位二进制数a3-a0定义在K3-K0上;将4位输出q3-q0定义在LD3-LD0上;将LM定义在K8上,高电位有效;将DM定义在K9上,高电位有效;将RM定义在K10上,高电位有效,完毕后下载。

3.设置K3-K0为任意4位数,在LM、DM、RM的作用下分别观察LD3-LD0的显示,并分析其正确性。

4.生成元件符号。

五、实验结果分析六、实验心得通过本次实验,掌握了移位器的结构以及工作原理;掌握了层次化设计方法。

对后续实验打下坚实的基础。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。

实验一,逻辑门电路实验。

在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。

逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。

在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。

实验二,寄存器和计数器实验。

在本次实验中,我们学习了寄存器和计数器的原理和应用。

寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。

通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。

实验三,存储器实验。

在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。

通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。

实验四,指令系统实验。

在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。

通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。

实验五,CPU实验。

在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。

通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。

实验六,总线实验。

在本次实验中,我们学习了计算机的总线结构和工作原理。

通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。

结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。

通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。

希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。

计算机组成原理实验三运算器

计算机组成原理实验三运算器

实验三:八位运算器组成实验一:实验目的:1:掌握运算器的组成原理、工作原理;2:了解总线数据传输结构;3:熟悉简单的运算器的数据通路与控制信号的关系;4:完成给定数据的算术操作、逻辑操作;二:实验条件:1:PC机一台;2:MAX+PLUSⅡ软件;三:实验内容(一)1:所用到的芯片74181:四位算术逻辑运算单元;74244:收发器(双向的三态缓冲器)74273:八位D触发器;74374:八位D锁存器;74163:八进制计数器;7449:七段译码器2:实验电路图(1)运算器电路图(A)数据输入电路由两个十六进制计数器连接成16*16=256进制的计数器,可以实现八位的输入。

(B)运算功能选择电路由一个十六进制计数器组成,可以实现16种不同运算的选择。

再加上逻辑运算器上的M位和Cn位的选择,一共可以实现16*3=48种运算功能。

内部由一个74163构成。

内部结构:(C)数码管扫描显示电路由一个扫描电路scan和一个七段译码器7449组成,scan 内部是一个二选一的多路复用器。

scan内部结构:(D)运算器电路图(2)波形仿真图(A)输入两个数A=05H,B=0AH,O5H DR1,0AH DR2,并通过经由74181在总线上显示。

(B )对两个数进行各种数学运算和逻辑运算。

加法运算:输出控制:s4s3s2s1=0001,M=0,CN=0 输出使能:ALU_BUS=0 计算结果:05H+0AH=10H四:实验内容(二)给定A,B两个数,设A=05H,B=0AH,完成几种常见的算术运算和逻辑运算画出运算的波形和仿真图(1)逻辑运算:A and B,A or B,取反/A,A⊙B,A⊕B;(2)算术运算:A加B,A加B(带进位),A减B;(3)复合运算:A加B 减((/A)〃B)加B;(/(A⊙B)减(A⊕B)))加1计算(A加B)减((/A)〃B)后需要重新送入数据B,存入R5并且装载到LDDR2中。

《计算机组成原理》实验报告3

《计算机组成原理》实验报告3

《计算机组成》实验报告实验名称:数据通路组成实验一、实验目的1、掌握时序产生器的组成原理。

2、掌握微程序控制器的组词原理。

3、掌握微指令格式的化简和归并。

二、实验内容(1)按实验要求,连接实验台的数码开关K0—K15 、控制开关、按钮开关、时钟信号源和微程序控制器。

注意:本次实验只做微程序控制器本身的实验,故微程序控制器输出的微命令信号与执行部件(数据通路)的连线暂不连接。

连线完成后应仔细检查一遍,然后才可加上电源。

(2)观察时序信号用双踪示波器观测时序产生器的输入输出信号:MF,W1—W4,T1—T4。

比较相位关系,画出其波形,并标注测量所得的脉冲宽度。

观察时须将TJ1 接低电平,DB,DZ,DP开关均置0状态,然后按QD按钮,则连续产生T1,T2,T3,T4,W1,W2,W3,W4。

了解启停控制信号的功能,并熟练地使用连接这些控制信号的按钮或开关。

(3)熟习微指令格式的定义,按此定义将控制台指令微程序地8条微指令按十六进制编码,SWA A三个二进制开关地状态来指列于下表。

三种控制台指令地功能由SWC,SWB,SW定(KRD=001B,KWE=010B,PR=010B)。

此表必须在预习时完成。

微指令地址微指令编码微指令地址微指令编码00H 3CH 07H 17H 27H 3FH 3DH 3EH 单拍(DP)方式执行控制台微程序,读出上述八条微指令,用P字段和微地址指示灯跟踪微指令执行情况,并与上表数据对照。

用连续方式执行KWE和KRD(将TJ1接地),画出uA0(28C64的地址A0)信号波形,作出解释。

SWA A的状态组合,观察验证三种控制台指令KWE和KRD,PD (4)用P3 和SWC,SWB,SW微地址转移逻辑功能地实现。

(5)熟习05H,10H两条微指令的功能和P2测试的状态(IR4—IR7),用二进制开关设置IR7—IR4的不同状态,观察ADD至STP九条机器指令微地址转移逻辑功能的实现。

计算机组成原理 实验报告

计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。

本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。

实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。

通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。

通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。

实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。

在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。

通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。

实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。

在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。

通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。

实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。

在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。

通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。

实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。

在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。

通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。

实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。

计算机组成原理实验三报告

计算机组成原理实验三报告

管理学院信息管理与信息系统专业 3 班______组、学号姓名协作者教师评定_____________实验题目_微程序控制器实验__________________1.实验目的与要求:实验目的:(1).理解时序产生器的原理,了解时钟和时序信号的波形。

(2).掌握微程序控制器的功能、组成知识。

(3).掌握微指令格式和各字段功能。

(4).掌握微程序的编制、写入、观察微程序的运行,学习基本指令的执行流程。

实验要求:(1).按练习一要求完成测量波形的操作,画出TS1、TS2、TS3、TS4的波形,并测出所用的脉冲Φ的周期。

(2).按练习二的要求输入微指令的二进制代码表,并单步运行五条机器指令。

(3).实验时,结合读、写微指令流程图,选择存储器地址和数据不断对RAM写入数据,执行时为循环重复执行微指令,直到有P2(CLR)清零信号作用时才停止。

(4)结合实验内容,将数据00H-002H存入存储器6116的00H-002H 单元,,写出实验步骤,并在实验中加以验证。

2.实验方案:(1)按要求在实验仪上接好线,仔细检查正确与否,无误后才接通电源,每次实验都要接一些线,先接线,后打开电源,养成不带电接线的习惯,这样可以避免烧坏实验仪器。

(2)编程写入E2PROM28161)将编程开关(MJ20)置为PROM(编程)状态;2)将STATE UNIT中的STEP置为“STEP”状态,STOP置为“RUN”状态;3)在UA5-UA0开关上置要写的某个微地址(八进制);4)在MK24-MK1开关上置要写的微地址相应的24位微代码,24位开关对应24位显示灯,开关量为“1”灯亮,为“0”灯灭;5)启动时序电路(按动启动按钮START),即将微代码写入到E2PROM2816的相应地址对应的单元中;6)重复(3)~(5)步骤将每一条微指令写入E2PROM2816。

(3)校验1)将编程开关置为READ状态;2)将STEP开关置为“STEP”状态,STOP开关置为“RUN”状态;3)在开关UA5~UA0上置好要读的某个微地址;4)按动START键,启动时序电路,观察显示灯MD24-MD1的状态,检查读出的微代码是否已写入的相同。

计算机组成原理 实验报告

计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程,通过学习该课程,我们可以深入了解计算机的工作原理和内部结构。

本次实验旨在通过实际操作,加深对计算机组成原理的理解,并掌握一些基本的计算机硬件知识。

实验目的:1. 理解计算机的基本组成部分,包括中央处理器(CPU)、存储器、输入输出设备等;2. 掌握计算机的运行原理,了解指令的执行过程;3. 学习使用计算机组成原理实验箱,进行实际的硬件连接和操作。

实验过程:1. 实验一:组装计算机本次实验中,我们需要从零开始组装一台计算机。

首先,我们按照实验指导书的要求,选择合适的硬件组件,包括主板、CPU、内存、硬盘等。

然后,我们将这些硬件组件逐一安装到计算机箱中,并连接好电源线、数据线等。

最后,我们将显示器、键盘、鼠标等外设连接到计算机上。

2. 实验二:安装操作系统在计算机组装完成后,我们需要安装操作系统。

本次实验中,我们选择了Windows 10作为操作系统。

首先,我们将Windows 10安装盘插入计算机的光驱中,并重启计算机。

然后,按照安装向导的指引,选择安装语言、时区等相关设置。

最后,我们根据自己的需求选择安装方式,并等待操作系统安装完成。

3. 实验三:编写并执行简单的汇编程序在计算机组装和操作系统安装完成后,我们需要进行一些简单的编程实验。

本次实验中,我们选择了汇编语言作为编程工具。

首先,我们编写了一个简单的汇编程序,实现两个数相加的功能。

然后,我们使用汇编器将程序翻译成机器码,并将其加载到计算机的内存中。

最后,我们通过调试器来执行这个程序,并观察程序的执行结果。

实验结果与分析:通过本次实验,我们成功地组装了一台计算机,并安装了操作系统。

在编写并执行汇编程序的实验中,我们也成功地实现了两个数相加的功能。

通过观察程序的执行结果,我们发现计算机能够按照指令的顺序逐条执行,并得到正确的结果。

这进一步加深了我们对计算机的工作原理的理解。

计算机组成原理实验报告精品9篇

计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。

2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。

3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。

实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。

4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。

5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。

计算机组成原理实验总报告

计算机组成原理实验总报告

计算机组成原理实验报告班级:0411202学号:2012211xxx姓名: kelory_lee2014年12月7日目录1.实验一Hamming码2.实验二乘法器3.实验三时序部件4.实验四CPU_算术逻辑单元5.实验五CPU_指令译码器6.实验六CPU_微程序控制器7.实验七-八CPU_无流水无cache实验1 Hamming码一.实验目的(1)对容错技术有初步了解,理解掌握海明码的原理(2)掌握海明码的编码以及校验方法二.实验内容(1)先连接JTAG线和USB线(CPU实验时才用接此线),然后接实验箱电源线,最后才可以打开电源。

(切记:不能带电插拔Jtag口,否则会损坏实验设备)(2)安装ByteBlaster:Quartus→tools→>programmer→HardwareSetup(在打开programmer窗口的左上角或从Edit菜单—> HardwareSetup 亦可打开)→选Hardware Settings→点击Add Hardware→Hardware type →Altera ByteBlaster→ok即可;Mode选Jtag。

(3)打开Quartus→tools→programmer→AddFile,将hamming.sof(在C盘的相应目录下)下载到FPGA中。

注意进行programmer时,应在program/configure下的方框中打勾,然后下载。

(4)在实验台上通过模式开关选择FPGA独立调试模式010。

首先输入的8位操作数对应开关SD15~SD8,编码后的hamming码在灯A0~A12上体现。

其次开关SA0是控制位,待校验的13位数据对应SD7~SD0与SA5~SA1。

最后比较的结果在灯R4~R0上体现。

观察实验现象并记录相应数据如对8位数据10101100进行hamming编码和校验。

第一,先手工计算校验位P5~P1=_10111__,编码后的hamming码为__1101001101011。

(计算机组成原理)实验三 微控器实验

(计算机组成原理)实验三 微控器实验
(计算机组成原理)实验三 微控器实验
实验三 微控器实验
❖教材上实验6、7,内容有变动 ❖一、实验目的 ❖二、实验原理 ❖三、实验内容及要求 ❖四、实验步骤
一、实验目的
❖ 掌握时序产生器、微控制器的工作原 理。
❖ 掌握联机方式下,编写、装入、执行 微程序的方法。
❖ 掌握联机方式下,编写、装入、执行 程序的方法。
② 控存地址寄存器CMAR
❖ CMAR功能是:由输入信号SE6#~SE0#控制修改 当前微指令的下址字段M6~M0(即MA6~MA0), 以产生即后继微地址。
❖ CMAR由四片74LS74(2位带清零预置端的寄存器) 和一片74LS245(8位三态缓冲器)连接而成,四 片74LS74的清零端均接CLR开关,预置端则分别 接自输入信号SE6#~SE0#,因为预置端低电平有 效,所以当SEi#=0时,相应的Mi即MAi被置1。
寄存器译码电路
❖ 功能:依据指令的DR和SR字段,将微控器发出的统 一的寄存器控制信号,翻译为具体的不同的寄存器控 制信号。
❖ 输入信号有:
B-DR、DR-B#、SR-B#、SI-B#、SP-B#:来自微 控器单元MAIN CONTROL UNIT。
指令码I3-I0:来自指令寄存器(即SR、DR字段) ❖ 输出信号为:(送至寄存器单元REG UNIT)
D4
D3
D2
D1
③μIR74LS273
D8
D7
D1
D2
D3
D4
D5
D6
74LS74
2D
2Q
A 1CLK 1CD
2CLK 2CD
2SD
1SD
SE3
SE2
D8
T2
74LS74

计算机组成原理实验三

计算机组成原理实验三

上海大学计算机学院《计算机组成原理实验》报告三姓名:学号:教师:时间:机位:报告成绩:实验名称:微指令系统实验一、实验目的:1. 读出系统已有的微指令,并理解其含义。

2. 设计并实现微指令系统。

二、实验原理:系统用了8条地址线,故最多可以放256条微指令。

这个计算机实际上只有36条微指令。

3个6116的“写使能”端由两种控制方式,在手动方式下,它们都接Vcc,所以不能写入,这意味着不能在手动方式下编写微指令;在程序(自动)方式下,由程序控制,可以写入数据——编制微指令。

三、实验内容:1. 观察微指令寄存器地址为11H单元的内容;分析其控制功能;验证该功能是否实现。

2. 编制一条微指令实现“A非”运算后左移一位的值送OUT;把这条微指令放入微程序寄存器的12H单元;验证它的功能是否实现。

(假设A=11H,W=22H)四、实验步骤:1. 观察微指令寄存器地址为11H单元的内容;分析其控制功能;验证该功能是否实现。

①初始化系统(Reset),进入微程序存储器模式(μEM状态),用NX键观察10H和11H地址中原有的微指令。

②因为这条指令要放入11单元,为避免10地址中的指令影响验证11中的指令,把这三个地址都送入FF FF FF指令。

用LS键返回10H地址。

给10H地址打入FF FF FFH。

③按NX进入11H,上面显示FF FE 90,表示A+W直通在输入到A。

④在μpc模式下验证功能,赋初值:μpc (11) pc(00) A(11) W(22) 。

按STEP观察微指令执行的过程。

2. 编制一条微指令实现“A非”运算后左移一位的值送OUT;把这条微指令放入微程序寄存器的12H单元;验证它的功能是否实现。

①该操作对应的微指令编码:由原理图知:“A非”运算对应的控制总线编码为:c2 c1 c0=110;“右移一位的值送数据总线”对应的控制总线编码为:c7 c6 c5=110;“数据总线值打入送OUT寄存器”对应的控制总线编码为:c13=0。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程之一,通过实验可以更好地理解和掌握计算机的组成原理。

本篇实验报告将介绍我们在计算机组成原理实验中所进行的实验内容和实验结果。

实验一:逻辑门电路设计在这个实验中,我们学习了逻辑门电路的设计和实现。

通过使用门电路,我们可以实现与门、或门、非门等基本逻辑运算。

我们首先学习了逻辑门电路的真值表和逻辑代数的基本运算规则,然后根据实验要求,使用逻辑门电路设计了一个简单的加法器电路,并通过仿真软件进行了验证。

实验结果表明,我们设计的加法器电路能够正确地进行二进制数的加法运算。

实验二:数字逻辑电路实现在这个实验中,我们进一步学习了数字逻辑电路的实现。

通过使用多路选择器、触发器等数字逻辑元件,我们可以实现更复杂的逻辑功能。

我们首先学习了多路选择器的原理和使用方法,然后根据实验要求,设计了一个4位二进制加法器电路,并通过数字逻辑实验板进行了搭建和测试。

实验结果表明,我们设计的4位二进制加法器能够正确地进行二进制数的加法运算。

实验三:存储器设计与实现在这个实验中,我们学习了存储器的设计和实现。

存储器是计算机中用于存储和读取数据的重要组成部分。

我们首先学习了存储器的基本原理和组成结构,然后根据实验要求,设计了一个简单的8位存储器电路,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的8位存储器能够正确地存储和读取数据。

实验四:计算机硬件系统设计与实现在这个实验中,我们学习了计算机硬件系统的设计和实现。

计算机硬件系统是计算机的核心部分,包括中央处理器、存储器、输入输出设备等。

我们首先学习了计算机硬件系统的基本原理和组成结构,然后根据实验要求,设计了一个简单的计算机硬件系统,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的计算机硬件系统能够正确地进行指令的执行和数据的处理。

结论:通过这些实验,我们深入学习了计算机组成原理的相关知识,并通过实践掌握了计算机组成原理的基本原理和实现方法。

计算机组成原理实验报告三

计算机组成原理实验报告三

实验三总线控制实验一、实验目的熟悉和了解地址总线的组成结构、地址来源及集合原理。

掌握程序段与数据段的寻址规则及地址部件的运用技巧。

二、实验原理地址总线的作用是传递地址信息,输出当前数据总线上发送信息的源地址或接收信息的目的地址。

如下图所示本系统设有内存与外设两条地址总线,通过PC计数器提供内存(程序存储器)地址,并由地址寄存器AR传递内存(数据存储器)地址与外设地址。

另外堆栈寄存器SP亦可视为地址寄存器,它的堆顶指向数据与程序指针存取地址。

图2-3-6地址总线组成通路1.11位程序地址本系统从提高信息存取效率的角度设计主内存地址通路,按现代计算机体系结构中最为典型的分段存取理念合成主存及外设地址总线addr,在指令操作“时段”(取操作码与取操作数),以当前程序指针PC为址,遇主存数据传递“时段”以当前数据指针AR为址。

addr 地址的合成通路见图2-3-6。

其寻址范围为0~7FFh。

2.16位数据地址本系统数据指针由地址锁存器AR直接提供,当LDAR=1时,在DRCK下降沿把数据总线打入AR。

其寻址范围为0~FFFFh,可达64KB。

三、实验内容表2.3.7PC程序计数器目标编码目标部件定义按钮功能说明E/M IP DRCK DRCK下降沿打图2-3-7所示的PC框由3片161构成按字方式寻址的11位PC计数器,计数器的输入端与总线相连构成置数通路,计数器的输出端途经三态门缓冲分离为两条通路,其一与总线相连构成可读通路,其二与地址寄存器(数据)集合组成主存EM地址总线。

它的清零端由中央外理器单元直控,上电时PC计数器自动淸零,实验中按复位钮亦可实现计数器的手动淸零。

手控状态,本实验由表2.6.1定义的目的编码控制PC计数器的预置与加1操作,并以准双向I/O部件的S10~S0为计数器预置源。

当IP=1时按单拍按钮,遇E/M=1在脉冲下降沿把S10~S0的内容装入PC计数器;遇E/M=0在脉冲下降沿PC计数器加1。

计算机组成原理实验报告3 微程序控制器实验

计算机组成原理实验报告3  微程序控制器实验

实验三微程序控制器实验一.实验目得与要求:实验目得:1.理解时序产生器得原理,了解时钟与时序信号得波形;2.掌握微程序控制器得功能,组成知识;3.掌握微指令格式与各字段功能;4.掌握微程序得编制,写入,观察微程序得运行,学习基本指令得执行流程.实验要求:1.实验前,要求做好实验预习,并复习已经学过得控制信号得作用;2.按练习一要求完成测量波形得操作,画出TS1,TS2,TS3,TS4得波形,并测出所用得脉冲Ф周期。

按练习二得要求输入微指令得二进制代码表,并单步运行五条机器指令. 二.实验方案:按实验图在实验仪上接好线后,仔细检查无误后可接通电源.1.练习一:用联机软件得逻辑示波器观测时序信号,测量Ф,TS1,TS2,TS3,TS4信号得方法如下:(1)TATEUNIT 中STOP开关置为“RUN”状态(向上拨),STEP开关置为“EX EC”状态(向上拨)。

(2) 将SWITCH UNIT中右下角CLR开关置为“1”(向上拨)。

(3)按动“START"按钮,即可产生连续脉冲。

(4)调试"菜单下得“显示逻辑示波器窗口,即可出现测量波形得画面。

(5)探头一端接实验仪左上角得CH1,另一端接STATE UNIT中得Ф插座,即可测出时钟Ф得波形。

(6)探头一端接实验仪左上角得CH2,另一端接STATE UNIT中得TS1插座,即可测出TS1得波形;(7)探头一端接实验仪左上角得CH1,另一端接STA TE UNIT中得TS2插座,即可测出TS2得波形.(8)将红色探头一端接实验仪左上角得CH1,另一端接STATE UNIT中得TS3插座,即可测出TS3得波形。

(9)将红色探头一端接实验仪左上角得CH1,另一端接STATE UNIT中得TS4插座,即可测出TS4得波形。

2.观察微程序控制器得工作原理:①关掉实验仪电源,拔掉前面测时序信号得接线;②编程写入E2PROM 2816A.将编程开关(MJ20)置为PROM(编程)状态;B.将实验板上STA TE UNIT 中得STEP置为STEP状态,STOP置为RUN状态,SWITCHUNIT中CLR开关置为1状态;C.在右上角得SWITCHUNIT中UA5—UA0开关上置表3、2中某个要写得微地址;D.在MK24-MK1开关上置表3、2中要写得微地址后面得24位微代码,24位开关对应24位显示灯,开关置为1时灯亮,为0时灯灭;E.启动时序电路,即将微代码写入到E2PROM 2816得相应地址对应得单元中;F.重复C—E步骤,将表3、2得每一行写入E2PROM 2816。

中山大学计算机组成原理实验单周期CPU设计

中山大学计算机组成原理实验单周期CPU设计

中⼭⼤学计算机组成原理实验单周期CPU设计《计算机组成原理实验》实验报告(实验三)学院名称:数据科学与计算机学院专业(班级):学⽣姓名:学号:时间:2019 年11 ⽉8 ⽇成绩:实验三:单周期CPU设计与实现⼀.实验⽬的(1) 掌握单周期CPU数据通路图的构成、原理及其设计⽅法;(2) 掌握单周期CPU的实现⽅法,代码实现⽅法;(3) 认识和掌握指令与CPU的关系;(4) 掌握测试单周期CPU的⽅法。

⼆.实验内容设计⼀个单周期CPU,该CPU⾄少能实现以下指令功能操作。

指令与格式如下:==> 算术运算指令加“加”运算。

加“加”运算。

==> 逻辑运算指令加“与”运算。

功能:GPR[rt] ←GPR[rs] or zero_extend(immediate)。

==>移位指令==>⽐较指令==> 存储器读/写指令==> 分⽀指令else pc ←pc + 4特别说明:offset是从PC+4地址开始和转移到的指令之间指令条数。

offset符号扩展之后左移2位再相加。

为什么要左移2位?由于跳转到的指令地址肯定是4的倍数(每条指令占4个字节),最低两位是“00”,因此将offset放进指令码中的时候,是右移了2位的,也就是以上说的“指令之间指令条数”。

else pc ←pc + 4(16)bltz rs, offsetelse pc ←pc + 4。

==>跳转指令(17)j addr说明:由于MIPS32的指令代码长度占4个字节,所以指令地址⼆进制数最低2位均为0,将指令地址放进指令代码中时,可省掉!这样,除了最⾼6位操作码外,还有26位可⽤于存放地址,事实上,可存放28位地址,剩下最⾼4位由pc+4最⾼4位拼接上。

==> 停机指令功能:停机;不改变PC的值,PC保持不变。

三.实验原理单周期CPU指的是⼀条指令的执⾏在⼀个时钟周期内完成,然后开始下⼀条指令的执⾏,即⼀条指令⽤⼀个时钟周期完成。

计算机组成原理 实验三 硬布线控制器实验

计算机组成原理 实验三 硬布线控制器实验

实验三硬布线控制器实验一、实验目的1. 通过多种方式,查看教学计算机指令的执行步骤、运行结果、各组控制信号在每一个执行步骤中的状态、指令之间的衔接等有关内容。

2. 熟悉教学计算机的指令格式、指令编码、寻址方式和指令功能等内容。

3. 熟悉教学计算机的总体组成和各部件的运行原理,理解控制器部件在计算机整机中的关键作用。

4. 理解和熟悉指令执行步骤的划分方案。

5. 熟悉教学计算机的硬布线控制器各控制命令的控制功能。

二、实验要求1.实验之前要认真预习,写出预习报告,包括操作步骤,实验过程所用数据和运行结果等。

2.实验过程中,要仔细进行,防止损坏设备,分析可能的各种现象,判断结果是否正确,记录运行结果。

3. 实验之后,认真写出实验报告,包括对遇到的各种现象的分析,实验步骤和实验结果,实验心得体会与收获。

三、实验内容1. 将5个拨动开关置为11101(单节拍、指令来自开关、组合逻辑、16位、联机工作方式),按一下RESET。

在单节拍方式下,每按一次START键,执行一个节拍的功能。

此时教学机反复执行这一条指令,对照指令执行流程图,看节拍发生器的状态输出,能够最方便的查看不同类型的指令的执行步骤的变化与连接关系。

此时无须关心指令的执行功能,因为此时指令得不到正确的操作数据和地址。

2. 使用手拨开关SWH和SWL输入16位指令操作码。

注意:如果是双字指令,则只能拨入高16位,此时运算结果不正确,可忽略。

拍。

例如:使用手拨开关SWH和SWL输入MVRD指令的操作码88H(为B组指令),先按RESET键,再依次按START键,看到节拍发生器的状态输出为:0000-0010-0110-0100。

操作序列1:请把ADD、PUSH、LDRA、CALA指令通过开关送给控制器,利用教学机把各自节拍流程找出来,并写在下表中。

操作序列2:请自行从A、B、C、D四组中各选择若干条指令通过开关送给控制器,利用教学机把各自节拍流程找出来,并写在下表中,表格行数可自行增加。

计算机组成原理实验报告3

计算机组成原理实验报告3

计算机组成原理实验报告3上海⼤学计算机组成原理实验报告三姓名:学号:座位号:上课时间:教师:报告成绩:⼀.实验⽬的1. 读出系统已有的微指令,并理解其含义。

2. 设计并实现微指令系统。

⼆.实验原理1.微指令构造①译码器:前两次实验的每⼀项操作都是通过⼈⼯设置电键ki的位置——Ki编码,然后给出⼀个CK脉冲来完成。

如果有⼀个器件能给出对应与每个操作的ki编码,这个器件就可以代替我们来为操作译码——产⽣控制信号,这个器件就是指令译码器,也叫控制器。

常见的控制器有两种:⽤组合逻辑电路实现控制信号的逻辑电路结构和⽤存储器实现控制信号的微程序结构。

前者将在《在系统编程技术及应⽤》课程中学习。

这⾥学习后者。

②微指令:把⼀个操作的控制总线编码放在⼀个存储单元中,同时给出调⽤这个单元的⽅法(例如:这个单元的地址),则对使⽤者⽽⾔,这个调⽤⽅法等价于控制总线编码本⾝,⼆者都称为微指令(不同场合具体指向不同或没有区别)。

对于操作:“ACH送⼊寄存器A”有ki编码:1111 11110,假定将其存⼊⼀个地址为F3H的随意选取的存储器单元中,且可以⽤“读F3”的⽅式取出这个内容并送上控制总线,则“读F3”和1111 11110是这个操作的微指令,这两个表达形式等价。

③操作序列的形式化表述:同理:把操作“BDH送⼊寄存器W”的ki编码1111 11101存⼊随意选取的FDH地址单元;操作“A-W”的ki编码1111 00111存⼊随意选取的B2H地址单元;操作“直通门D的内容送OUT寄存器”的编码0100 111111存⼊DCH地址单元。

④实验箱的微指令系统:制造⼚的⼯程师根据这个实验箱的功能、部件数量、必须的基本操作等要求,给它安排了24条控制线——控制总线宽度为24。

相应地,每条微指令有24位、微程序存储器的每个地址也必须是24位的存储单元。

于是⼚家把3⽚8位存储器的对应地址并接在⼀起,构成⼀个24位的存储器。

具体连接见下图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理
实验报告
学院(系):软件学院
专业:软件工程
班级:13级java1班
学号:**********
*名:**
2015年11月17 日
实验3:MIPS指令系统和MIPS体系结构
一.实验目的
(1)了解和熟悉指令级模拟器
(2)熟悉掌握MIPSsim模拟器的操作和使用方法
(3)熟悉MIPS指令系统及其特点,加深对MIPS指令操作语义的理解
(4)熟悉MIPS体系结构
二. 实验内容和步骤
首先要阅读MIPSsim模拟器的使用方法,然后了解MIPSsim的指令系统。

(1)、启动MIPSsim。

(2)、选择“配置”->“流水方式”选项,使模拟器工作在非流水方式。

(3)、参照使用说明,熟悉MIPSsim模拟器的操作和使用方法。

(4)、选择“文件”->“载入程序”选项,加载样例程序 alltest.asm,然后查看“代码”窗口,查看程序所在的位置,截图如下
(5)、查看“寄存器”窗口PC寄存器的值:[PC]= 0x00000000 。

6)、执行load和store指令,步骤如下:
1)单步执行一条指令(F7)。

2)下一条指令地址为 0x00000004 ,是一条有 (有,无)符号载入__字节__(字节,半字,字)指令。

截图如下
3)单步执行一条指令(F7)。

4)查看R1的值,[R1]= -128 。

5)下一条指令地址为 0x00000008 ,是一条有 (有,无)符号载入字(字节,半字,字)指令。

截图如下
6)单步执行1条指令。

7)查看R1的值,[R1]= 128 。

8)下一条指令地址为 0x0000000C ,是一条无 (有,无)符号载入字节(字节,半字,字)指令。

截图如下
9)单步执行1条指令。

10)查看R1的值,[R1]= 128 。

截图如下
11)单步执行1条指令。

12)下一条指令地址为 0x00000014 ,是一条保存字 (字节,半字,字)指令。

截图如下
13)单步执行一条指令。

14)查看内存BUFFER处字的值,值为 0x00000080 。

截图如下
(7)、执行算术运算类指令。

步骤如下:
1)双击“寄存器”窗口中的R1,将其值修改为2。

2)双击“寄存器”窗口中的R2,将其值修改为3。

截图如下
3)单步执行一条指令。

4)下一条指令地址为 0x00000020 ,是一条加法指令。

截图如下
5)单步执行一条指令。

6)查看R3的值,[R3]= 5 。

7)下一条指令地址为 0x00000024 ,是一条乘法指令。

截图如下
8)单步执行一条指令。

9)查看LO、HI的值,[LO]= 0x0000000000000006 ,[HI]= 0x0000000000000000 。

截图如下
(8)、执行逻辑运算类指令。

步骤如下:
1)双击“寄存器”窗口中的R1,将其值修改为0XFFFF0000。

2)双击“寄存器”窗口中的R2,将其值修改为0XFF00FF00。

截图如下
3)单步执行一条指令。

4)下一条指令地址为 0x00000030 ,是一条逻辑与运算指令,第二个操作数寻址方式是寄存器直接寻址(寄存器直接寻址,立即数寻址)。

截图如下
5)单步执行一条指令。

6)查看R3的值,[R3]= 0x00000000FF000000 。

7)下一条指令地址为____0x00000034 ,是一条逻辑或指令,第二个操作数寻址方式是立即数寻址(寄存器直接寻址,立即数寻址)。

截图如下
8)单步执行一条指令。

9)查看R3的值,[R3]= 0x0000000000000000 。

截图如下
(9)、执行控制转移类指令。

步骤如下:
1)双击“寄存器”窗口中R1,将其值修改为2。

2)双击“寄存器”窗口中R2,将其值修改为2。

截图如下
3)单步执行一条指令。

4)下一条指令地址为 0x00000040 ,是一条BEQ指令,其测试条件是 r1=r2(相等转移) 。

5) 单步执行1条指令。

6) 查看PC的值,[PC]= 0X0000004C ,表明分支成功(成功,失败)。

7) 下一条指令是一条BGEZ指令,其测试条件是 r1>=0(大于等于0转移) ,目标地址为 0x00000058 。

截图如下
8) 单步执行1条指令。

9) 查看PC的值,[PC]= 0x00000058 ,表明分支成功 (成功,失败)。

10) 下一条指令是一条BGEZAL指令,其测试条件是 r1>=0 ,目标地址为 0x00000064 。

截图如下
11) 单步执行1条指令。

12) 查看PC的值,[PC]= 0x00000064 ,表明分支成功(成功,失败);查看R31的值,[R31]= 92 。

截图如下
13) 单步执行1条指令。

14)查看R1的值,[R1]= 116 。

15)下一条指令地址为 0x00000068 ,是一条JALR指令,保存目标地址的寄存器为R1 ,保存返回地址的目标寄存器为R3。

截图如下
16)单步执行1条指令。

17)查看PC和R3的值,[PC]= 0x00000074 ,[R3]= 108 。

截图如下
三、实验结果分析
初步掌握了MIPSsim模拟器的操作和使用方法,并且接触了MIPS指令系统,对MIPS指令操作语义有了大概的了解,例如load,store,add,and等指令,以及有无符号等。

对MIPS体系结构也有了初步认识,包括代码、寄存器、内存、断点等。

四、实验心得
通过本次实验我对MIPSsim模拟器有了一定的了解,初步掌握了MIPSsim模拟器的操作和使用方法,并且接触了MIPS指令系统,对MIPS指令操作语义有了大概的了解,例如load,store,add,and等指令,以及有无符号等。

对MIPS体系结构也有了初步认识,包括代码、寄存器、内存、断点等。

在今后的学习中我会更深入去熟悉MIPSsim模拟器。

相关文档
最新文档