第一章 大气运动的基本特征

合集下载

第1章 大气运动的基本特征

第1章 大气运动的基本特征

ur
对不可压缩大气有
即 V 0

大气的水平辐散减弱了大气的上升运动 大气的水平辐合增强了大气的上升运动
38
3. “P”坐标系的连续方程
“P系”完整的连续方程比“z系”连续方程简单,无 密度项
39
三、热力学能量方程 1. 热力学能量方程普遍形式
——单位质量加热率
40
2,大尺度系统的简化热力学能量方程 一级简化:
11
四、重力
地心引力与惯性离心力的合力,称为重力。
12
讨论: 1、 的方向除赤道和极地外,均不指向地心。
由于地球为椭圆,地球上重力垂直于当地水平面,向下 2、重力的大小随纬度变化,极地最大,赤道最小,一般
用45纬度海平面重力值= 9.806m/s2
13
五、地转偏向力(科力奥利力)
方向:垂直于 与 组成的平面,指向运动方向右侧 大小:
(水平范围所占有的空间)
104 km
大尺度
103 km
中尺度
102 km
小尺度
10 km
时间尺度
周 几天 1天 几小时
不同尺度对应不同的天气系统。
23
2.大尺度系统的简化方程
一级简化方程(最大项,次大项) f 2sin
du

dt


1

p x

fv

dv

dt

地转风:是水平地转偏向力和水平地转 梯度力平衡条件下,空气沿着平行等压 线的水平直线运动。
43
“Z”坐标系的地转风:
——地转风分量形式
——地转风矢量形式
44
“P”坐标系的地转风:

天气学原理和方法 第一章 大气运动的基本特征

天气学原理和方法  第一章 大气运动的基本特征

局地直角坐标系中的分量方程
du 1 p 2(v sin w cos ) Fx dt x dv 1 p 2u sin Fy dt y dw 1 p 2u cos g Fz dt z
连续方程:表示大气质量守恒 定律的数学表达式
1 p 0 g z
即静力方程
连续方程的零级简化
u v w ln w 0 x y z z u v 1 ( w) 0 x y z
热力学能量方程的零级简化
T T T 1 u v Q t x y cp T T T 1 (u v ) Q t x y cp
影响大气运动的作用力为: 真实力:气压梯度力、 地心引力、摩擦力 虚拟力:惯性离心力、地转偏向力
气压梯度力:作用于单位质量气块上的净压 力,由于气压分布不均匀而产生 性质:大小与气压梯度成正比,与空气密度 成反比,方向指向气压梯度方向,即由高 压指向低压
1 G p

气压梯度是由于气压分布不均匀而产生的,而气压 分布不均匀反映在天气图上就是等压线的分布有疏 有密,这种等压线的疏密程度表示了单位距离内气 压差的大小,等压线愈密集,表示气压梯度愈大。
第四节 P坐标系中的基本方程组
一、位势和位势高度
位势(重力位势):单位质量的物体从 海平面上升到高度z克服重力所作的功
gdz
0
z
(m / s )
2
2
(焦耳/千克)
当物体在等位势面上移动时,位能不发生变化,不需要 克服重力作功,等位势面处处与重力方向垂直,等位势 面是水平面,用位势度量等压面上各处距海平面的高度, 在水平运动方程中不存在重力的分量,比较方便,但位 势的单位是焦耳/千克,不是高度单位,为了应用的方便, 定义位势米为位势高度单位。

哈德莱环流

哈德莱环流

第一章大气运动的基本特征牛顿第二定律:说明单位质量空气快相对于空间固定坐标系的运动加速度等于所有作用力之和。

真实力(绝对坐标系):气压梯度力、地心引力、摩擦力非真实力(旋转坐标系):惯性离心力、地转偏向力气压梯度力:当气压分布不均匀时,气块就会受到一种净压力的作用,作用于单位质量气块上的净压力称为气压梯度力。

摩擦力:单位质量所受到的净粘滞力称为摩擦力。

惯性离心力:在转动坐标系中引进一个力,其大小与向心力相等而方向相反。

由于这个力与向心力平衡,因而球静止。

这个力就叫做惯性离心力。

地转偏向力:当空气块相对于旋转坐标系运动时,除了需要引入惯性离心力,还需要引入另一种视示力,即科里奥利力(地转偏向力),才能应用运用牛顿第二定律描述旋转坐标系中的相对运动。

旋转坐标系中的大气运动方程:连续方程:大尺度系统的运动方程:零级简化方程:一级简化方程:大尺度系统的连续方程:大尺度系统的热流量方程:位势:单位质量的物体从海平面上升到高度z克服重力所做的功:位势米:为了使以能量为单位的高度与以米为单位的位势高度在数值上一致起见,定义:等压面图比等高面图方便:在等高面上的水平气压梯度力,可用等压面上的位势梯度来表示。

而位势梯度就是等压面的坡度。

所以水平气压梯度力的大小也就表示了等压面坡度的大小。

因为在等高面上计算水平气压梯度力时,只知道气压梯度还不够,还必须知道该处的空气密度才能计算,而在等压面上计算时,只要根据等位势线计算位势梯度即可,不必考虑密度的大小,所以用高空各层等压面上的位势梯度就可以比较各层上的水平气压梯度力的大小。

而用等高面时,各层的水平气压梯度力的大小不能做简单的比较。

P坐标系中大气运动基本方程组:地转风:地转风是在不考虑摩擦力、加速度以及垂直速度的条件下,水平方向上气压梯度力与地转偏向力相平衡(地转平衡)时的大气运动(即自由大气水平匀速直线运动)性质:1、地转风的大小与水平气压梯度力大小成正比,即与水平气压梯度大小成正比。

天气学原理和方法(1-5)

天气学原理和方法(1-5)

天气学原理和方法第一章大气运动的基本特征地球大气的各种天气现象和天气变化都与大气运动有关。

大气运动在空间和时间上具有很宽的尺度谱,天气学研究的是那些与天气和气候有关的大气运动。

大气运动受质量守恒、动量守恒和能量守恒等基本物理定律所支配。

为了应用这些物理定律讨论在气象上有意义的相对于自转地球的大气运动,本章首先讨论影响大气运动的基本作用力,和在旋转坐标系中所呈现的视示力,然后导出控制大气运动的基本方程组,并在此基础上分析大尺度运动系统的风压场和气压场的关系,并引出天气图分析中应遵循的一向基本指导原则。

第一节旋转坐标系中运动方程及作用力分析一、旋转坐标系中运动方程1.(绝对速度)与(相对速度)假设t时刻一空气质点位于P点,经t 时间,质块移到Pa点,地球上的固定点P移到了Pe位置位移0为R,质块相对固定地点的位移为R,图1.1 旋转坐标系显然当 0位移很小时单位时间内的位移为由此得此关系式表明:绝对速度等于相对速度与牵连速度之和2.与的关系地球自转角速度为则于是由此可得微分算子将微分算子用于则有再将代入上式右端得(*)式中为地转偏向力加速度,即柯氏加速度为向心力加速度3.牛顿第二定律单位质量的空气块所受到的力在绝对坐标系中单位质量空气块受到的力有+:地心引力F:摩擦力将此式代入(*)式:二、作用力分析1.气压梯度力①定义:单位质量空气块所受的净空气的压力②表达式G=-(1.1)③推导:图1.1.2 作用于气块上的气压梯度力的X分量x方向:B面 PA面:-(P+净压力:-同理y方向:z方向:净空气总压力④讨论:大小:气压梯度力的大小与气压梯度成正比,与空气密度成反比方向:气压梯度力的方向指向的方向,即由高压指向低压的方向2.地心引力① 定义:地球对单位质量的空气块所施加的万有引力② 表达式(1.2)K:万有引力常量M:地球质量a:到地心的距离③ 推导:图1.1.3 地心引力受力分析图④ 讨论:大小:不变,常数方向:指向地球心3.惯性离心力① 定义:观测者站在旋转地球外观测单位质量空气块所受到一个向心力的作用,但站在转动地球上(观测它的运动,发现它是静止的,这必然引入一个与向心力大小相同,方向相反的力,此力称为惯性离心力。

大气运动的基本特征

大气运动的基本特征

第一章 大气运动的基本特征
大气科学学院 苗春生
1.1 影响大气运动的作用力
➢ 气压梯度力的数学表达式:G p x y z / x y z
➢ 气压梯度力的推导:
设气块为一个六面体,取局地直角坐标系,其体 积为 V x y z(图1.1)。
设周围大气作用于B 面上的压力为p y z ,
则作用于A面上的压 力应为 ( p p x) y z
一个沿x方向的作用力f zx,下部
流体必施于 z面0 上部流体层一个
反作用力- f , zx
f zx
A u
z
摩擦力与作用面积,垂直切变成正比
第一章 大气运动的基本特征
大气科学学院 苗春生
1.1 影响大气运动的作用力
定义 为动力粘滞系数, 为 z作x 用于单位面积的粘滞
力,称为切应力或雷诺应力。
上部大气作用的X方向切应力
(p i p j p k) x y z p x y z 全矢量形式 x y z
第一章 大气运动的基本特征
大气科学学院 苗春生
体积元上的总净压力 (p i p j p k) x y z p x y z x y z
1.1 影响大气运动的作用力
按气压梯度,气压梯度力的定义
由于气压分布不均匀而造成的单位体积气块上
一、基本作用力-----气压梯度力
➢ 气压梯度的定义:当气压分布不均匀,气块就会受 到一个净压力的作用,作用于单位体积气块上的净 压力称为气压梯度。
➢ 气压梯度力的定义:当气压分布不均匀,气块就会 受到一个净压力的作用,作用于单位质量气块上的 净压力称为气压梯度力。
G p x y z / x y z 1 p ??
用绳子牵引转动单位质量的球

第一节 大气环流基本特征

第一节 大气环流基本特征

24
大气环流的基本特征
1. 大气运动的基本状态是以极地为中心的 纬向运动为主,东西风带共存
2. 纬向运动是不均匀的,有槽脊(冬三夏 四)、急流存在,急流是纬向运动南北 不均匀的反映,长波槽脊扰动是东西运动 不均匀的反映
3. 低层涡旋运动为主,平均有三风四带 4. 径向三圈环流
2021/3/21
synoptic meteorology
2021/3/21
synoptic meteorology
by: Xieqian
33
2021/3/21
谢谢各位!
synoptic meteorology
by: Xieqian
34
synoptic meteorology
by: Xieqian
12
1月近地层平均风场
(a) 1月
2021/3/21
synoptic meteorology
by: Xieqian
13
7月近地层平均风场
(b)7月
2021/3/21
synoptic meteorology
by: Xieqian
14
do
synoptLeabharlann c meteorologyby: Xieqian
5
大气环流因子在天气气候形成中 起着重要的作用
它不仅通过环流的纬向分布影响气候的纬 度地带性,而且还通过热量和水分的输送, 扩大海陆和地形等因子的影响范围,破坏 气候的纬度地带性。 当环流形势趋向于长期的平均状况时,气 候也是正常的;当环流形势在个别年份或 个别季节内出现异常时,就会直接影响该 时期的天气和气候,使之出现异常。
洋面上永久性活动中心的强度、位置随季 节变化。副热带高压冬季弱,南退,夏季 强,北进。

第一章 大气运动的基本特征

第一章 大气运动的基本特征

第一章 大气运动的基本特征1、大气运动受什么定律支配? P10质量守恒、动量守恒和能量守恒定律2、影响大气运动的真实力有哪几种?气压梯度力、地心引力、摩擦力。

3、影响大气运动的视示力(外观力)有哪几种?惯性离心力、地转偏向力。

4、气压梯度力的方向?气压梯度力的大小与气压梯度和空气密度有什么关系? 方向指向—▽P 的方向,即由高压指向低压的方向;气压梯度力的大小与气压梯度成正比,与空气密度成反比。

5、地转偏向力的向量表达式?V 2 ⨯Ω-=A6、地转偏向力的几个重要特点?P9(1) 地转偏向力A 与Ω相垂直,而Ω与赤道平面垂直,所以A 在纬圈平面内;(2)地转偏向力A 与V 相垂直,因而地转偏向力对运动气块不作功,它只能改变气块的运动方向,而不能改变其速度大小。

(3)在北半球,地转偏向力A 在V 的右侧,南半球,地转偏向力A 在V 的左侧。

(4) 地转偏向力的大小与相对速度的大小成比例。

当V=0时,地转偏向力消失。

7、连续方程的表达式、定义:P200)(=∙∇+∂∂V tρρ 表示大气质量守恒定律的数学表达式称为连续方程。

其中)(V ρ∙∇称为质量散度。

8、尺度分析是针对某种类型的运动估计基本方程各项量级的一种简便方法。

通过尺度分析,保留大项,略去小项,可以使方程得到简化。

P239、气象学中的静力方程表达式?P27g z p -∂∂-=ρ1010、什么是重力位势?P29单位质量的物体从海平面上升到高度Z 克服重力所做的功。

位势的单位是焦耳/千克。

11、为什么应用等压面图比用等高面图要方便?P32(1)因为在等高面上计算水平气压梯度力时,只知道气压梯度还不够,还必须知道该处的空气密度才能计算,而在等压面上计算时,只要根据等位势线计算位势梯度即可,不必考虑密度的大小,所以用高空各层等压面上的位势梯度就可以比较各层上的水平气压梯度力的大小,而用等高面时,则各层的水平气压梯度力就不能作简单的比较。

因此,应用等压面图比用等高面图要方便得多。

805天气学

805天气学

南京信息工程大学硕士研究生招生入学考试《天气学》考试大纲科目代码:805科目名称:天气学第一部分目标与基本要求一、目标:天气学原理与方法(天气学)主要内容是以天气动力学原理揭示大气运动的基本特征和用此原理论述天气系统及天气过程生、消演变规律的天气学原理及中国天气,为进一步学习动力气象学、低纬度天气动力学、中尺度天气学、大气环流及中长期预报,也为将来天气预报业务及研究工作打下基础。

二、基本要求:要求学生掌握有关内容基本概念、基本理论和基本方法,以便提高综合分析及解决问题的能力。

第二部分内容与考核目标第一章大气运动的基本特征1.了解大气运动各作用力含义、表达式及理解它的物理意义2.了解个别变化、局地变化、平流变化含义3. 会推导连续方程,了解质量散度、速度散度含义、表达式及其物理意义,4.了解尺度分析含义、掌握在自由大气中大尺度系统运动,可以作为准地转、准静力处理5.理解热力学能量方程中引起固定点温度变化的因子6.了解实际工作中高空分析等压面图而不分析等高面图(P坐标系的优越性)7.了解位势、位势高度、位势米、几何米概念8.理解等高面上水平气压梯度力可以用等压面上位势梯度或等压面坡度表示9.理解地转风、梯度风、热成风、地转偏差含义、表达式及掌握它的讨论10.了解正压大气、斜压大气概念;掌握热成风发生在斜压大气中11.了解地转风、梯度风及热成风实用意义12.掌握低压中心附近及其边缘,还有高压边缘等压线可以分析密大风经常出现,而高压中心附近不能有上述现象13.理解变压风及切向、法向地转偏差含义,要求会画图解释第二章气团与锋1.了解锋、锋面、锋线、锋区含义及锋倾斜原因2.了解冷性锢囚锋、暖性锢囚锋含义,要求会画出剖面图中锋位置及等温线分布3.了解以密度零级不连续面模拟锋时,锋面坡度公式物理意义4.理解锋附近温度分布特征及锋面附近气压、变压分布特征5.掌握锋面分析中,高空测风资料应用图2.27(a)(b)(c)6.了解锋生带(线)、锋生函数、锋生条件概念7.掌握锋生、锋消公式讨论第三章 气旋与反气旋1. 了解大气作水平运动、绝对涡度概念及理解 2h H ∇含义2. 理解大尺度系统运动中,固定点相对涡度变化可以用此点位势高度变化表示3. 掌握涡度方程、位势倾向方程及ω方程等式右端各项名称及画出有关图,用相关因子进行讨论4. 掌握在温带气旋发展中,动力因子(涡度因子)及热力因子对500hpa 高空槽及温带气旋变化,要求会画图解释5. 了解气旋族含义6. 了解北方、南方气旋活动范围及包括哪些气旋7. 掌握“倒槽锋生型”、“静止锋波动型”,要求画图解释江淮气旋生成过程第四章 大气环流1. 了解控制大气环流基本因子、了解三圈环流的形成2. 了解三圈径向环流、极锋锋区与副热带锋区及其对应急流概念3. 了解信风与季风概念4. 了解沃克环流含义5. 了解我国各季环流概况及主要天气天气过程特点第五章 天气形势及天气要素预报1. 理解运动学公式中t δδ及t∂∂含义,掌握用运动学公式推导锋面移速公式并会讨论冷锋、暖锋移速情况与变压分布特征2. 掌握用运动学公式讨论非闭合系统及闭合系统移动及强度3. 高空形势预报方程中,由于各层等温线平行,因此各层热成风方向相同,这样任意层风速 P p T V V AV =+注意理解A 的系数确定4. 掌握相对涡度平流在自然坐标系中展开分成三项,其中曲率项及散合项在实际天气图中会应用5. 掌握用高空形势预报方程有关项,结合等高线等温线分布解释500hpa 槽、脊变化6. 熟悉地面形势预报方程由哪几项组成,要求会讨论应用7. 掌握地形对低值系统(槽、低压)移动及强度影响8. 了解数值预报产品的“释用”第六章 寒潮天气过程1.了解极涡及上下游游效应含义2.了解长波波速公式的推导,会对该公式进行讨论3.会运用形势预报原理解释“小槽发展型”、“横槽转竖型”的寒潮短、中期过程第七章 大型降水天气过程1.理解水汽通量、水汽通量散度概念、表达式及物理意义2.了解中国及其各地暴雨有何天气系统影响3.熟悉我国东部雨带活动概况4.理解行星尺度、天气尺度系统对暴雨作用第八章对流天气过程1.了解飑中系统含义及飑线与冷锋区别2.理解对流性不稳定与条件性不稳定概念3.理解强雷暴发生发展有利条件第九章低纬度与高原环流系统1.熟悉西太平洋副热带高压变动与我国天气关系2.掌握南亚高压与西太平洋副热带高压区别3.掌握台风结构4.掌握台风发生发展第十章东亚季风环流1.了解季风的概念,了解东亚冬、夏季风环流系统的组成2.了解东亚季风形成的原因第三部分有关说明与实施要求1.考试目标的能力层次的表述本课程对各考核点的能力要求一般分为三个层次用相关词语描述: 较低要求——了解一般要求——理解、熟悉、会较高要求——掌握、应用一般来说,对概念、原理、理论知识等,可用“了解”、“理解”、“掌握”等词表述;对应用方面,可用“会”、“应用”、“掌握”等词。

航空气象学习题答案

航空气象学习题答案

第一章大气的状态及其运动3.大气分层的主要依据是什么,大气可分为那几层?(1)气层气温的垂直分布特点(2)对流层、中间层、暖层、散逸层。

4.对流层和平流层有那些基本特征,他们对飞行有什么影响?(1)对流层:气温随高度的增高而降低。

气温、湿度分布很不均匀。

空气具有强烈的垂直混合。

(2)平流层:气温随温度的增高而增高。

气温、温度分布有规律。

空气几乎没有垂直运动,气流平稳、空气稀薄、水汽和杂质含量极少。

(3)对流层:空气运动受地表摩擦作用和地形扰动,飞机主要在这层飞行。

平流层:空气运动几乎不受地形阻碍及扰动,飞行气象条件良好,现代大型喷气式运输机可达到平流层低层。

11.基本气象要素如何影响飞机性能和仪表指示?(1)气温、气压、空气湿度对大气密度产生影响故而间接影响飞机性能。

(2)气压的变化会对高度表指示产生影响,同(1)会简介影响空速表指示。

15.地面气温力18C—空气块于绝热上升到2000m高度时,其温度是多少?在下降到800m高度,其温度又是多少?设2000m高度温度为T2,800m高度温度为T3。

=T^000•i c/100m=-2°C21100T=T厂^00•1C/100m=10C3210016.飞机按气压式高度表指示的一定高度飞行,在飞向高压区时,其实际高度如何变化?飞向低气压时情况又是如何?飞向高气压区,实际高度下降;飞向低气压区,实际高度上升。

23.自由大气和摩擦层中的风压定理时如何表述的,区别在那里?(1)自由大气:风沿着等压线吹,在北半球背风而立,高压在右,低压在左,等压线越密,风速越大,南半球风的运动方向于北半球相反。

(2)摩擦层:风斜穿等压线吹,在北半球背风而立,高压在右后方,低压在左前方,等压线越密,风速越大。

南半球风的运动方向于北半球相反。

(3)自由大气和摩擦层中的空气的水平运动都要受到气压梯度力。

自由大气还受到科氏力,摩擦层受到摩擦力。

26.山谷风和海陆风时如何形成的?山谷风是由山区的特殊地理条件造成的,白天山坡气温高于山谷上同高度气温,形成热力环流,低层风从谷地吹向山坡,形成谷风,晚上则形成山风。

第一章 大气的状态及其运动

第一章 大气的状态及其运动

递)
平均气温垂直递减率 ≈0.65℃/100m
n 2. 几乎所有天气均发生在此层,如:云、雾、 降水等,气温、湿度的水平分布很不均匀
n 3. 空气具有强烈的垂直混合
等温层和逆温层
= 0时称为等温层, <0时称为逆温层。
2、平流层
1.定义:从对流层顶上(厚度为几百到一两公里。) 到大约55Km高度的气层 。
• 当气块作垂直运动时,绝热变化 是主要的。
(三)局地气温的变化
由于太阳辐射强度的年变化和日变化特点,使得局地气温
具有日变化和年变化,一日之中具有周期变化,有个最高 值和最低值,早晨日出最低值,正午后2小时最高值。 1.局地气温的周期变化
日较差---一日中气温最高值与最低值之差 年较差---最热月的平均温度与最冷月的平均温度之差 。 日较差的大小与纬度、季节、地表性质和天气状况等因素 有关。一般低纬度大于高纬度,夏季大于冬季、陆地大于 海洋、晴天大于阴天。年较差最低值在大寒前后,最高值 在大暑前后,它的大小与纬度和海陆分布有关,一般高纬 大于低纬,陆地大于海洋。
三种温标的关系
摄氏度与华氏度的换算:
F 9 C 32 5
C 5 ( F 32 ) 9
(二)气温变化的基本方式
• 1.气温的非绝热变化 • 2.气温的绝热变化
1.气温的非绝热变化
非绝热变化: 指空气块通过与外界的热量交换 而产生的温度变化 ,交换方式主要有
辐射、乱流、传导和水相变四种。
不同温度、气压下的γm值(℃/100m)
t
γm -20 -10
0 10 20
p
1000 0.86 0.76 0.63 0.54 0.44
700 0.81 0.69 0.56 0.47 0.38

天气学原理问答题汇编1

天气学原理问答题汇编1

天气学原理问答题汇编徐文金(南京信息工程大学大气科学学院,210044)本汇编是结合朱乾根等人编著的“天气学原理与方法”(第三版)一书而编,故应结合该书来复习本内容。

第一章 大气运动的基本特征§1.1影响大气运动的作用力问题:大气运动遵守那些定律?大气运动遵守流体力学定律。

它包含有牛顿力学定律,热力学定律,质量守恒定律。

水汽守恒定律,气体实验定律等。

问题:大气运动受到那些力的作用?那些力属于基本力(牛顿力)?那些属于惯性力?受到气压梯度力、地心引力、摩擦力、惯性离心力和地转偏向力等作用。

其中气压梯度力、地心引力、摩擦力是基本力,或称牛顿力。

而惯性离心力和地转偏向力是惯性力,也称为‘视示力’。

问题:气压梯度力的定义及其数学表达式?当气压分布不均匀时,气块就会受到净压力的作用。

我们定义:作用于单位质量气块上的净压力称为气压梯度力。

用符号G 表示之,其数学表达式为:p 1G ∇-=ρ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=k z p j y p i x p 1 ρ (1.1)式中表示气压梯度力是由气压在空间分布不均匀而产生的,与气压梯度成正比,并指向低压方向。

问题:何谓地心引力?根据牛顿万有引力定律,任何两个物体之间都有引力,其大小与两物体的质量乘积成正比,并于两物体之间的距离平方成反比。

地球对单位质量空气的引力称地心引力,它的方向指向地球中心。

地心引力是始终作用于大气的实在的力。

问题:何谓惯性离心力?我们都是站在地球上来观测大气运动,所以应选取随地球一起旋转的坐标系作为参考系。

旋转坐标系是一种非惯性参考系,在这个坐标系中观测到的静止或匀速运动的物体,相对于惯性(绝对)坐标系并不是静止或匀速运动,实际上是作加速运动。

因此只有计入坐标系的加速度才能应用牛顿运动定律。

对于一个匀角速转动的坐标系,只要引入惯性力就可以了。

设Ω为地球自转角速度(1-5107.29-⨯=秒),R 为空气块垂直于自传轴的距离,惯性离心力C 的数学表达式是R C 2 Ω= (1.5)地表上每一静止的物体都会受到这一惯性离心力的作用。

《天气学原理》复习重点(上)

《天气学原理》复习重点(上)

天气学原理Char1 大气运动的基本特征1、真实力:气压梯度力、地心引力、摩擦力(1)气压梯度力:作用于单位质量气块上的净压力,由于气压分布不均匀而产生(2)地心引力:地球对单位质量空气的万有引力(3)摩擦力:单位质量空气受到的净粘滞力2、视示力:惯性离心力、地转偏向力惯性离心力:地球受到了向心力的作用却不作加速运动,违背牛顿第二定律,为了解释这种现象引入惯性离心力,其大小与向心力相等而方向相反。

C=Ω2R地转偏向力:由于坐标系的旋转导致物体没有受力却出现加速度,违背牛顿第二定律,从而引入,以使牛顿运动定律在旋转参考系中成立。

地转偏向力的特点:A= -2Ω×V(1)地转偏向力A与Ω相垂直,在纬圈平面内(2)地转偏向力A与风速V垂直,只改变气块运动方向,不改变其速度大小(3)在北半球A在水平速度的右侧,在南半球A在水平速度的左侧(4)地转偏向力的大小与相对速度成正比,V=0时,A=0;只有在做相对运动时A才存在重力:地心引力与惯性离心力的合力。

重力垂直于水平面,赤道最小,极地最大。

3、地转偏向力与水平地转偏向力有何相同与不同?水平地转偏向力:大气中垂直运动一般比较小,气块的运动主要受x方向和y方向的影响。

通常情况下w很小,因而近似有Ax=2Ωv和Ay= -2Ωu。

对水平运动而言,北半球Ax、Ay 使运动向左偏,南半球右偏。

地转偏向力:包括垂直运动。

4、控制大气运动的基本规律:能量守恒、质量守恒、动量守恒牛顿第二运动定律——运动方程质量守恒定律——连续方程能量守恒定律——热力学能量方程气体实验定律——气体状态方程5、温度平流变化-V·▽h T是气块在温度水平分布不均匀的区域内保持原有的温度作水平运动而对局地温度变化所提供的贡献,称为温度平流变化。

-▽T温度梯度由高温指向低温。

当-V·▽h T<0时,有冷平流,夹角为钝角,风从冷区吹向暖区,使局地温度降低。

当-V·▽h T>0时,有暖平流,夹角为锐角,风从暖区吹向冷区,使局地温度升高。

动力气象复习资料(名词解释和简答)

动力气象复习资料(名词解释和简答)

一、各章节重点内容第一章:地球大气的基本特征?第二章:描述大气运动的基本方程组包括哪些?根据P23(2.52)推导位温公式。

根据球坐标运动方程组P28(2.78),证明绝对角动量守恒P29(2.82)式。

绝对坐标系、旋转坐标系、球坐标系和局地直角坐标系的区别,作图说明。

第三章:掌握尺度分析的方法,能对简单的方程进行尺度分析。

第四章:z坐标转化到p坐标所需要的数学物理条件,P坐标的优缺点?第五章:自由大气中根据力的平衡存在哪几种平衡?平衡的关系式是什么?正压大气与斜压大气的概念。

推导热成风方程(p94-p95),并利用热成风判断冷暖平流。

第六章:自然坐标系中,推导涡度的表达式,并分析各项的意义P111。

根据z坐标系中的水平动量方程推导涡度方程,并简要解释各项的意义。

根据位涡守恒原理解释形成过山槽的原因。

第七章:有效位能的概念。

内能、重力位能、动能、潜热能的表达式。

第八章:大气中行星边界层的主要特征,公式推导及解释埃克曼抽吸?公式推导及解释旋转衰减作用?第九章:利用微扰动法和标准波型法分析大气波动特征,如重力外波、重力惯性外波?或者,根据布西内斯克近似方程组分析,重力内波或惯性内波?第十章:描述地转演变过程?地转适应过程和演变过程在哪些方面体现了区分?第十一章:通过无量纲化方程组,利用摄动法推导第一类正压大气零级和一级方程组(P255-P257)。

利用P260(11.45)推导位势倾向方程并说明位势倾向方程中各项物理意义,或推导ω方程及解释各项物理意义。

第十二章:几个概念:惯性不稳定、正压不稳定、斜压不稳定、对称不稳定第十四章:CISK,热带大气动力学的基本特征名词解释(20分左右)简述题(20分左右)简单计算(10分左右)简单推导(10分左右)复杂推导、证明、解释等题(40分左右)二、名词解释要求(1)冷暖平流,(2)罗斯贝数,(3)梯度风,(4)地转风,(5) 平面近似,(6)Ekman抽吸,(7)旋转减弱,(8)惯性不稳定,(9)斜压不稳定,(10)CISK,(11)正压不稳定,(13)尺度,(14)基别尔数,(15)里查森数,(16)热成风,(17)地转偏差,(18)速度环流,(19)涡度,(20)有效位能,(21)摄动法,(22)惯性稳定,(23)中尺度对称不稳定,(24)条件不稳定,(25)气压梯度力,(26)重力,(27)平衡流场,(28)Q矢量,(29)位势倾向,(30)质量守恒数学表达三、理解物理过程要求1.地转偏差及其作用?2.有效位能及其性质?3.尺度,尺度分析法,尺度分析法的不确定性?4.为什么说等压面图上等高线愈密集的地区水平气压梯度力愈大?5.p坐标建立的条件是什么?p坐标的优缺点是什么?6.简述大气长波的形成机制?7.什么是微扰动法?8. 斜压不稳定波的结构有哪些特点?9.简述科里奥利力随纬度的变化?10.大气中考虑哪几种能量?简述净力平衡大气中全球能量平衡过程?11.薄层近似?12.局地直角坐标系?与一般直角坐标系的区别?13.热力学变量尺度及其特征?14.什么是σ坐标系?15.位势涡度守衡及其过山槽的形成?16.标准波形法?17.重力惯性外波生成的物理机制是什么?为什么说当地转平衡遭到破坏后,就会激发出重力惯性外波?而在地转平衡条件下,不存在或者说滤去了重力惯性外波?18.什么是Boussinesq近似?什么是滞(非)弹性近似?采用Boussinesq近似或滞弹性近似为什么可以滤去声波?从物理上说明静力平衡近似可以滤去沿垂直方向传播的声波,但不能滤去沿水平方向传播的Lamb波。

《动力气象学》课程笔记

《动力气象学》课程笔记

《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。

19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。

这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。

- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。

- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。

1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。

科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。

数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。

1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。

科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。

此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。

2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。

这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。

2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。

涡旋运动包括环流、涡度和螺旋度等概念。

了解涡旋运动有助于我们预测天气变化和气候趋势。

2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。

在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。

准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。

2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。

这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。

《动力气象学》教学课件-第一章 大气运动的基本方程

《动力气象学》教学课件-第一章 大气运动的基本方程

O
= Ω(Ω ⋅ R) − R ⋅ Ω2
∑ daVa = dt
i
Fi

d aVa
=
dV
+
2Ω ×V

Ω2R
=
Fi
dt dt
i
相对加速度
=Q
其中,Cv是空气的定容比热。
(注:热流量方程有多种表达形式)
课后练习:推导热力学方程的几种表述形式
• 用气压、气温表示
Cp
dT dt
−α
dp dt
=

Q
• 用气压、密度表示

Cp d lnα + d ln p = Q
Cv dt
dt CvT
• 用位温表示

d lnθ = Q
dt CpT
对于理想气体,引入状态方程 p = ρ RT
ζ (z)

p
y
o
η
ξ
y x
x
惯性坐标系(下标a):ζ为地轴,ξ、η固定在赤道平面上,不随地球旋转 旋转坐标系:z与ζ 一致,x、y轴固定在赤道平面上,随地球旋转
(二)惯性坐标系中的运动方程组
运动方程:
牛顿运动第二定律
( dVa dt
)a
=
∑ ( dVa
dt
)a
=
i
Fi
gm

1
ρ
∇pa
+
Fa
地心 气压梯 分子粘
引力 度力
性力
gm
=

GM r3
r
F

γ∇2V
+
γ
∇(∇ ⋅V )
3
质量守恒

天气学原里常见问题

天气学原里常见问题
地面粗糙程度不同,近地面风速变化的快慢不同。地面越粗糙,能量损失多,风速变化越快,梯 度风高度将越高;反之,地面越平坦,能量损失少,风速变化将越慢,梯度风高度将越小。
2 关于曲率和曲率半径 在天气学原理第一章和第三章以及第五章的学习中,将多次提到曲率和曲率半径。实际上,曲率
的倒数就是曲率半径,曲率反映了轨迹的弯曲程度。北半球,自然坐标系中,逆时针转动的情况下, 其曲率半径指向法线的正方向,因此曲率和曲率半径都是正的,就具有气旋性曲率;在顺时针转动的 情况下,其曲率半径指向法线的反方向,因此曲率和曲率半径都是负的,就具有反气旋性曲率。
在气旋式环流中,曲率半径大于 0,同时利用在自然坐标系中速率永远大于零,就可以得到 梯度风速率的大小只能取正号,因为选择负号的话会导致 Vf 小于 0,这显然是不合理的。在反气旋 环流中,曲率半径小于 0。在取负号的时候,有气压梯度力越大,根号下的数值就越小,相当于风速 就越小。而我们知道,气压梯度力越大,对应气流速度越快,因此取负号的话,就与实际情况不符合, 是矛盾的。所以在反气旋中,也不能取负号,只能取正号。
1
第一单元 大气运动的基本特征
常见问题Biblioteka 1.1 影响大气运动的作用力
第一单元
§1.1 影响大气运动的作用力
1.为什么说 Az 一般比较小,水平地转偏向力中还有 w 的一项为什么可以忽略? Az 一般较小是相对于垂直方向上的重力和气压梯度力而言,而水平地转偏向力中还有 w 的一项
可以忽略,是因为与风水平分量 u 和 v 相比,w 要小两个量级,因此是比较小的,可以忽略。
但值得注意的是,地转风原理在赤道地区不适用,所以低纬度地区的天气分析和中纬度不一样。 3. 在地转风已知的情况下,比如地转风是西北风,如何分析气压场的分布和受力情况?

天气学原理

天气学原理

天气学原理基础一、大气运动的基本特征1、真实力:气压梯度力、地心引力、摩擦力(1)气压梯度力:作用于单位质量气块上的净压力,由于气压分布不均匀而产生(2)地心引力:地球对单位质量空气的万有引力 不变,指向地心。

(3)摩擦力:单位质量空气受到的净粘滞力 一般只在行星边界层(摩擦层)考虑摩擦作用,自由大气中则忽略摩擦作用。

2、视示力:惯性离心力、地转偏向力惯性离心力:地球受到了向心力的作用却不作加速运动,违背牛顿第二定律,为了解释这种现象引入惯性离心力,其大小与向心力相等而方向相反地转偏向力(科氏力):观测者站在旋转地球上观测单位质量空气块运动,发现在北半球有一个向右偏的力,在南半球向左偏的力。

称此力为地转偏向力,又名科氏力。

由于坐标系的旋转导致物体没有受力却出现加速度,违背牛顿第二定律,从而引入,以使牛顿运动定律在旋转参考系中成立地转偏向力的特点:在纬圈平面内;只改变气块运动方向,不改变其速度大小;在北半球,地转偏向力指向运动方向右侧,在南半球,地转偏向力指向运动方向左侧;地转偏向力的大小与相对速度成正比重力:地心引力与惯性离心力的合力。

重力垂直于水平面,赤道最小,极地最大重力是垂直方向上的,而大气运动是准水平的;科氏力始终垂直于速度方向,故只改变方向,不作功;所以,引起大气运动的最重要作用是:由于压力分布不均匀而产生的压力梯度力(热力作用引起的)。

3、控制大气运动的基本规律:能量守恒、质量守恒、动量守恒牛顿第二运动定律——运动方程质量守恒定律——连续方程能量守恒定律——热力学能量方程气体实验定律——气体状态方程4、地转风地转风是自由大气中水平气压梯度力和地转偏向力相平衡时的空气的水平运动。

风沿等压线(等高线、等位势线)吹,背风而立低压在左高压在右地转风性质:1)地转关系是在无摩擦,不考虑加速度和垂直方向的地转偏向力的情况下近似成立的赤道上(φ=0)水平地转偏向力为零,地转风不存在2)地转风的大小与水平气压梯度力成正比3)地转风与等压线平行,在北半球,背风而立,低压在左高压在右,南半球,背风而立,低压在右高压在左(风压定律)4)地转风速大小与纬度成反比,但在赤道上=0地转平衡不成立。

天气学原理题库

天气学原理题库

E
自由大气中的地转偏差概念、表达式和意义
D
摩擦层中地转偏差的概念、表达式和意义
C
地转偏差的定义
B
中纬度系统的温压场结构特点
A
热成风与冷暖平流的关系
第二章 气团与锋
气团的定义,气团的变性,气 团形成的两个条件. 锋面坡度公式和讨论.
锋附近变压场的特征.
锋的概念. 锋附近温度场的特征.
锋的类型——冷锋,暖锋,准 静止锋,锢囚锋.
01 天 气 学 原 理 题 库
第一章 大气运动的基本特征
► 1.气压梯度力、地转偏向力、重力的定义、表达式 和意义
► 2.大尺度系统的运动方程的简化方程式(一级、零级 z系、p系)
► 3.关于静力学方程,连续反成,热力学方程的方程式 和意义;速度散度的表达式和意义
► 4.大气运动系统的分类与尺度 ► 5.地转风的定义、表达式、意义 ► 6.梯度风定义、表达式、意义 ► 7.热成风定义、表达式、意义
锋附近气压场的特征.
气压倾向方程的推导及物理 意义.
锋附近风场的特征.
01
02
03
锋生和锋消的定义.
04
锋生公式及各项的讨 论.
05
我国主要的锋生区.
我国有利锋生的天气 形势.
我国主要的静止锋和 锢囚锋.
第三章 气旋和反气旋
01
气旋和反气旋的定 义和分类
02
涡度定义
03
04
绝对涡度的表达式
自然坐标中涡度的 表达式及意义
西风带三类波动的概念
06
东亚冬夏环流概况
01
02
长波的波速公式
高空急流的定义,基本特 点,分类
05
04

天气学原理和方法

天气学原理和方法

R=2.87×102m2/(s2K) 10-2
δp/p~
Cp=1004m2s-2K-1
Δhρ=10 -2103gm-3 1hPa=102103gm-1s-2
R/Cp~0.29 ρ~103gm-3
二、基本方程的简化方法
1.零级简化方程 零级简化:保留方程中数量级最大的各
项,而其他项都略去不计。 2.一级简化方程 一级简化:除保留方程中数量级最大的
-----单位质量空气所受到的净粘滞力
粘滞力是由分子不规则运动引起的动量交换(传递)
粘滞力与风速垂直切变 成正比
单位面积粘滞力(切应 力,雷诺应力)

单位质量空气净粘滞力(X分量)
单位质量空气净粘滞力(Y分量)
单位质量空气净粘滞力(Z分量)
总摩擦力为:
FF xF yF z
近似地有
二、视示力
由旋转坐标系的加速作用而 假想的力(惯性离心力、 地转偏向力)
1. 惯性离心力
在旋转坐标系中引入的,与向心力相 平衡(大小相等,方向相反)的力,称为 惯性离心力。
它不是一种真实力,而是由于站在非 惯性坐标系中观察运动,而又企图用 牛顿第二定律解释它的结果
向心力与惯性离心力
C=Ω2R
赤道
( F)
z
( F )p
F p
p
两边同除以 x :
Z,-P
F x
z
F x
p
F p
p x
( xz ,y,z,t)
取 x 0
(x,y,p,t)
则y:
F x
z
F x
p
FpP= RxpT,
z
x
=P/RT
二. P坐标系与Z坐标系的转换关系

天气学原理和方法[1_5]

天气学原理和方法[1_5]

天气学原理和方法第一章大气运动的基本特征地球大气的各种天气现象和天气变化都与大气运动有关。

大气运动在空间和时间上具有很宽的尺度谱,天气学研究的是那些与天气和气候有关的大气运动。

大气运动受质量守恒、动量守恒和能量守恒等基本物理定律所支配。

为了应用这些物理定律讨论在气象上有意义的相对于自转地球的大气运动,本章首先讨论影响大气运动的基本作用力,和在旋转坐标系中所呈现的视示力,然后导出控制大气运动的基本方程组,并在此基础上分析大尺度运动系统的风压场和气压场的关系,并引出天气图分析中应遵循的一向基本指导原则。

第一节旋转坐标系中运动方程及作用力分析一、旋转坐标系中运动方程1. (绝对速度)与(相对速度)t时刻一空气质点位于P点,经t 时间,质块移到Pa点,地球上的固定点P移到了Pe位置位移假设为R,质块相对固定地点的位移为R,图1.1 旋转坐标系显然当 0位移很小时单位时间内的位移为由此得此关系式表明:绝对速度等于相对速度与牵连速度之和2.与的关系地球自转角速度为则于是由此可得微分算子将微分算子用于则有再将代入上式右端得(*)式中为地转偏向力加速度,即柯氏加速度为向心力加速度3.牛顿第二定律单位质量的空气块所受到的力在绝对坐标系中单位质量空气块受到的力有+:地心引力F:摩擦力将此式代入(*)式:二、作用力分析1.气压梯度力①定义:单位质量空气块所受的净空气的压力②表达式G=-(1.1)③推导:图1.1.2 作用于气块上的气压梯度力的X分量x方向:B面 PA面:-(P+净压力:-同理y方向:z方向:净空气总压力④讨论:大小:气压梯度力的大小与气压梯度成正比,与空气密度成反比方向:气压梯度力的方向指向的方向,即由高压指向低压的方向2.地心引力① 定义:地球对单位质量的空气块所施加的万有引力② 表达式(1.2)K:万有引力常量M:地球质量a:到地心的距离③ 推导:图1.1.3 地心引力受力分析图④ 讨论:大小:不变,常数方向:指向地球心3.惯性离心力① 定义:观测者站在旋转地球外观测单位质量空气块所受到一个向心力的作用,但站在转动地球上(观测它的运动,发现它是静止的,这必然引入一个与向心力大小相同,方向相反的力,此力称为惯性离心力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 大气运动的基本特征
1、大气运动受什么定律支配? P10
质量守恒、动量守恒和能量守恒定律
2、影响大气运动的真实力有哪几种?
气压梯度力、地心引力、摩擦力。

3、影响大气运动的视示力(外观力)有哪几种?
惯性离心力、地转偏向力。

4、气压梯度力的方向?气压梯度力的大小与气压梯度和空气密度有什么关系? 方向指向—▽P 的方向,即由高压指向低压的方向;
气压梯度力的大小与气压梯度成正比,与空气密度成反比。

5、地转偏向力的向量表达式?
V 2 ⨯Ω-=A
6、地转偏向力的几个重要特点?P9
(1) 地转偏向力A 与Ω相垂直,而Ω与赤道平面垂直,所以A 在纬圈
平面内;
(2)地转偏向力A 与V 相垂直,因而地转偏向力对运动气块不作功,
它只能改变气块的运动方向,而不能改变其速度大小。

(3)在北半球,地转偏向力A 在V 的右侧,南半球,地转偏向力A 在
V 的左侧。

(4) 地转偏向力的大小与相对速度的大小成比例。

当V=0时,地转偏
向力消失。

7、连续方程的表达式、定义:P20
0)(=∙∇+∂∂V t
ρρ 表示大气质量守恒定律的数学表达式称为连续方程。

其中)(V ρ∙∇称为质量散度。

8、尺度分析是针对某种类型的运动估计基本方程各项量级的一种简便方法。

通过尺度分析,保留大项,略去小项,可以使方程得到简化。

P23
9、气象学中的静力方程表达式?P27
g z p -∂∂-=ρ10
10、什么是重力位势?P29
单位质量的物体从海平面上升到高度Z 克服重力所做的功。

位势的单位是焦
耳/千克。

11、为什么应用等压面图比用等高面图要方便?P32
(1)因为在等高面上计算水平气压梯度力时,只知道气压梯度还不够,还必须知道该处的空气密度才能计算,而在等压面上计算时,只要根据等位势线计算位势梯度即可,不必考虑密度的大小,所以用高空各层等压面上的位势梯度就可以比较各层上的水平气压梯度力的大小,而用等高面时,则各层的水平气压梯度力就不能作简单的比较。

因此,应用等压面图比用等高面图要方便得多。

(2)“P ”坐标系中的连续方程比”Z ”坐标系中的连续方程要简单的多(0=∙∇+V dt
d ρρ 0)()(=∂∂+∂∂+∂∂p p y v x u p ω)。

P34 12、什么是地转风?
在水平方向上满足地转偏向力和气压梯度力平衡的风称为地转风。

P37
13、严格地说,地转平衡只有在中纬度自由大气的大尺度系统中,当气流呈水平(无垂直)直线(无弯曲)运动时,且无摩擦时才能成立。

在低纬处地转风与实际风差别较大,地转风原理不能应用。

P38
14、地转风速大小与水平气压梯度力成正比,等压线密集的地区(即气压梯度大),则地转风大,因而实际风也大,地转风仅与位势梯度成正比,与密度无关。

P37-38
15、地转风与等压线平行,在北半球背风而立,高压在右,低压在左。

低压中风呈逆时针旋转,高压中,风呈顺时针旋转。

南半球相反。

P38
16、地转风速大小与纬度成反比,水平气压梯度力相同时,纬度越高地转风速愈
小。

分析天气图时,在相同纬度上,风速大的地方等高线应分析得密集一些,风速小的地方,应分析得稀疏一些。

如果风速相同,在低纬的等高线应比高纬的等高线分析得稀疏一些。

P38
17、梯度风的概念:在没有或不考虑摩擦力时,气压梯度力、地转偏向力和惯性离心力三力平衡时的风称为梯度风。

P41
18、在大尺度运动系统中,低压与气旋性环流相结合,低压中心就是气旋性环流中心。

反之,高压与反气旋性环流相结合,高压中心就是反气旋性环流中心。

P42
19、在反气旋中,在一定的纬度上,气压梯度和梯度风的大小受反气旋的曲率所限制。

曲率愈大(R T 愈小),则气压梯度愈小,梯度风风速也愈小。

所以越接近反气旋中心(R T 愈小),气压梯度和梯度风风速越小。

分析天气图时,低压中心等压线密,高压中心等压线稀疏。

P43
20、在气旋中气压梯度和风速可无极限,而在反气旋中则有极限。

P43
21、在气旋性环流中,地转风比梯度风大,而在反气旋性环流中,地转风比梯度风小。

在反气旋性环流中,最大梯度风为地转风的两倍。

P45 (梯度风与地转风的关系:T f f g
fR V V V +=1,2
)(max f R V T f -=) 22、流线是指某一固定时刻,处处与风向相切的一条空间曲线。

流线能表现在某一时刻的天气图上。

P45
23、轨迹是指在某一段时间内空气质块运动的路径。

轨迹不能表现在某一时刻的天气图上。

P45
24、热成风:由于两层等压面间温度分布不均匀,地转风随高度产生变化,形成热成风。

(地转风随高度的变化)P48
21、 热成风与平均温度线(或厚度线)平行,背风而立,高温在右,低温在左。

热成风大小与平均温度梯度(或厚度梯度)成正比,与纬度成反比。

P49 (注:h k f
g V T ∇⨯= )
22、 理解并会做图,图1.29地转风随高度变化与冷暖平流 P50
23、 热成风与冷、暖平流:当某层中地转风随高度逆转时有冷平流;地转风随高度顺转时有暖平流。

P49
24、 正压大气:当大气中密度的分布仅仅随气压变化即:ρ=ρ(P );没有热成风,地转风不随高度变化。

等压面=等密度面=等温面(重合)P52
25、 斜压大气:当大气中密度分布不仅随气压而且还随温度而变时,ρ=ρ(P ,T ),等压面与等密度面(或等温面)相交,等压面上存在温度梯度,有热成风,地转风随高度变化,大气的斜压性对于天气系统的发生发展有很重要的意义。

P52
26、 地转偏差:地转平衡只是相对而言,实际风与地转风之差为地转偏差D 。

g V V D -= P52
27、
理解并作图:摩擦层中力的平衡 图1.33 P53 28、 摩擦层中,地转偏差由摩擦力、气压梯度力、地转偏向力平衡引起,北半球低压中,沿逆时针流动,有内流分量;高压中沿顺时针流动,有外流的分量。

在低压中摩擦作用使空气水平辐合,并引起上升运动;在高压中,使空气水平辐散,并引起下沉运动。

P54
29、 变压风:地转偏向力和气压梯度力不平衡,由变高梯度或变压梯度表示的地转偏差。

P56
30、 地面图上,负变压中心区,变压风辐合,引起上升运动。

正变压中心区,变压风辐散,引起下沉运动。

P57
31、 当等高线辐合时,实际风偏向低气压一侧,出现地转偏差,当等高线辐散时,实际风穿越等压线吹向高压一侧。

P58
32、 在水平运动中,地转偏差可分解为三项来进行判断。

一项是变压风,用三小时变压判断;一项是横向地转偏差,用等压线(等高线)的辐散、辐合来判断;还有一项是纵向地转偏差,用等压线(等高线)的曲率来判断。

P59。

相关文档
最新文档