古典概型与几何概型(基础 复习 模拟题 练习)

古典概型与几何概型(基础 复习 模拟题 练习)
古典概型与几何概型(基础 复习 模拟题 练习)

课题:古典概型与几何概率

考纲要求:

① 理解古典概型及其概率计算公式;② 会计算一些随机事件所含的基本事件数及事件 发生的概率;③了解随机数的意义,能运用模拟方法估计概率;④了解几何概型的意义. 教材复习

1.古典概型:把同时具有:“()1每一次试验中所有可能出现的结果都是有限的,每次试验只出现其中一个结果;()2每一个结果出现的可能性相同”的两个特征的随机试验的数学模型称为古典概型:

基本步骤:①计算一次试验中基本事件的总数n ;②事件A 包含的基本事件的个数m ; ③由公式n

m A P =)(计算. 注:必须在解题过程中指出等可能的..

2.几何概型:如果每个事件发生的概率只与构成事件的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.

特性:每一次试验中所有可能出现的结果都是无限的,每一个结果出现的可能性都是相等的.

基本步骤:(1)构设变量(2)集合表示(3)作出区域(4)计算求解.

几何概型的计算:()P A = 积)的区域长度(面积或体试验的全部结果所构成积)

的区域长度(面积或体构成事件A

3.随机数:是在一定范围内随机产生的数,并且在这个范围内得到每一个数的机会相等. 随机数的一个重要应用就是用计算机产生随机数来模拟设计实验.

模拟是利用模型来研究某些现象的性质的一种有效方法,可以节约大量的人力、物力. 典例分析:

考点一 古典概型的概念

问题1.判断下列命题正确与否:

()1 掷两枚硬币,可能出现“两个正面”

,“两个反面”,“一正一反”3种结果;()2某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能行相同;()3从4,3,2,1,0,1,2----中任取一数,取到的数小于0和不小于0的可能性相同;

()4分别从3名男同学,4名女同学中各选一名做代表,那么每个同学当选的可能性相同;

()55人抽签,甲先抽,乙后抽,那么乙与甲抽到某中奖签的可能性肯定不同.

考点二 古典概型的概率

问题2.一个口袋中装有大小相同的1个白球和已经编有不同号码的3个黑球,从中摸出2个球,求:()1 基本事件总数;()2事件:“摸出2个黑球”包含的基本事件是多少个?()3“摸出2个黑球”的概率是多少?;

问题3.同时掷两个骰子,计算:()1一共有多少种不同的结果?()2其中向上的点数之和是5的结果又多少种?()3“向上的点数之和是5”的概率是多少?

问题4.将一个骰子先后抛掷三次,求向上点数之和不是6的倍数的概率. 问题5.(08山东文)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.()1求1A 被选中的概率;()2求1B 和1C 不全被选中的概率.

考点三 与长度有关的几何概型

问题6.()1(2013福建) 利用计算机产生01之间的均匀随机数a ,

则时间“310a ->”发生的概率为

()2在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 不大于AC 的概率. A B

C M

考点四 与面积有关的几何概型

问题7.()1(2013陕西) 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.

信号的概率是 .A 14π

- .B 12π

- .C 22π

- .D 4

π ()2(2013四川)节日里某家前的树上挂了两串彩灯,这两

串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一

时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那

么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不

超过2秒的概率是 .A 14 .B 12 .C 34 .D 78

问题8.(08枣庄三中模拟)甲乙两人约定上午7:00到8:00之间到某个汽车站乘车,在这段时间内有3班公共汽车,他们开车的时刻分别为7:20、7:40、8:00,如果他们约定,见车就乘,则甲乙两人同乘一班车的概率为 .A 21 .B 14 .C 31 .D 16 考点五 与体积有关的几何概型

问题9.已知正方体1111ABCD A B C D -内有一个内切球

O ,则在正方体ABCD - 1111A B C D 内任取一点M ,点M 在球O 内的概率是.A 4π .B 6π .C 8

π .D 12π 考点六 与角度有关的几何概型

问题10:()1(2011湖南文) 已知圆C :2212x y +=,直线l :4325x y +=. ①圆C 的圆心到直线l 的距离为

②圆C 上任意一点A 到直线l 的距离小于2的概率为 ()2在Rt ABC △中,30A =?,过直角顶点C 作射线CM 交线段AB 于M , 求使AM AC >的概率. 课后作业:

1.在长度为10

的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.

2.(2013黄冈模拟)在区间[]0,1上任意取两个实数,a b ,则函数31()f x x ax b =+- 在区间[]1,1-上有且仅有一个零点的概率为 .A 18 .B 14 .C 34 .D 78

12C A B M

走向高考:

1.(07广东文)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的 数字外完全相同。现从中随机地取出2个小球,则取出的小球标注的数字之和为3或6的概率是 .A 310 .B 15 .C 110 .D 112

2.(09安徽文)从长度分别为2345,,,的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是

3.(09江苏文)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为

4. (09山东文)在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到2

1之间的概率为 .A 31 .B π

2 .C 21 .D 32 5.(09辽宁文)ABCD 为长方形,2AB =,1BC =,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为

.A 4π .B 14π- .C 8π .D 18

π- 6.(09福建文)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为

7.(2012辽宁)在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线

段,AC CB 的长,则该矩形面积小于232cm 的概率为 .A 16 .B 13 .C 23 .D 45

8.(2012湖北)如图,在圆心角为直角的扇形OAB 中,

分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随

机取一点,则此点取自阴影部分的概率是

.A 2

1π- .B 112π- .C 2π .D 1π

9.(07海南文)设有关于x 的一元二次方程2220x ax b ++=.

()1若a 是从0,1,2,3四个数中任取的一个数,若b 是从0,1,2三个数中任取的一个数,求

上述方程有实根的概率;()2若a 是从区间[]0,3任取的一个数,若b 是从区间[]0,2三个数中任取的一个数,求上述方程有实根的概率.

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

几何概型经典练习题

几何概型题目选讲 1?在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段 AC , CB 的长,则该矩形面积 4 — 0+ 12— 8 2 解析:设AC = x ,由题意知x(12 — x)v 32? 0v x v 4或8v x v 12,所求事件的概率 P =―0+—— =-. 12 3 小于32 cm 2 的概率为( ) A.1 6 C.f D'4 2 .已知圆 C : x 2 y 2 =12,l : 4x 3y =25在圆上任取一点 P,设点P 到直线l 的距离小于2的事件为A 求P(A) 的值。 解:P(A)= 3 ?设不等式组 ° 仝x < 2 表示的平面区域为 D.在区域D 内随机取一个点,则此点到坐标原点的距离大于 0< y w 2 2的概 率是 解析:坐标系中到原点距离不大于 2的点在以原点为圆心,2为半径的圆内及圆上, * 0W x < 2 , 表示的区域D 0W y < 2 nX 4 4 — 4 4— n 为边长为2的正方形及其内部,所以所求的概率为 —= 4 4 4 ?在区间[0,9]上随机取一实数x ,则该实数x 满足不等式 K log z x w 2的概率为 2 解析:由1W Iog 2x w 2,得2W x w 4,根据区间长度关系,得所求概率为 -. 5.在[—6,9]内任取一个实数 m ,设f(x) =— x 2 + mx + m,则函数f(x)的图像与x 轴有公共点的概率等于 ______________ . 解析:函数f(x)的图像与x 轴有公共点应满足 △= m 2 + 4m > 0,解得m W — 4或m 》0,又m € [ — 6,9],故—6< m W 2 + 9 44 —4 或 W m w 9,因此所求概率P =石 6 ?甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的. (1)如果甲船和乙船的停泊时间都是 4 停泊时间为4小时,乙船的停泊时间为 小时,求它们中的任何一条船不需要等待码头空出的概率; ⑵如果甲船的 2小时,求它们中的任何一条船不需要等待码头空出的概率. 解析:(1)设甲、乙两船到达时间分别为 x 、y ,贝U 0< x v 24,0< y v 24 且 y — x > 4 或 y — x < — 4. 0< x v 24, 作出区域 0W y v 24, y — x > 4或 y — x v — “两船无需等待码头空出”为事件 1 2 X-X 20 X 20 2 _______ _ 25 24 X 24 — 36. ⑵当甲船的停泊时间为 4小时,乙船的停泊时间为 2小时,两船不需等待码头空出,贝U 满足x — y >2或y — x >4. 设在上 述条件时“两船不需等待码头空出”为事件 B ,画出区域 A ,贝U P(A)=

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。 一 基本知识剖析 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式: P (A )= 积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A ; 3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 二 常见题型梳理 1.长度之比类型 例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面 积介于36cm 2 与81cm 2 之间的概率. 2.面积、体积之比类型 例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

几何概型的常见题型

几 何 概 型 的 常 见 题 型 李凌奇2017-06-26 1.与长度有关的几何概型 例1.在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π2 C.21 D.3 2 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于0到 2 1 之间, 需使2 23x π ππ - ≤ ≤- 或 322x π ππ ≤ ≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 2.与面积有关的几何概型 例2.ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A . 4 π B.14 π - C. 8 π D.18π - 分析:由于是随机的取点,点落在长方形内每一个点的机会是等可能的,基本事件是无限多个,所以符合几何概型. 解:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 2 π 因此取到的点到O 的距离大于1的面积为2 2π -, 则取到的点到O 的距离大于1的概率为 A O D C B 1 图

古典概型与几何概型-高中数学同步典型例题及训练解析版

古典概型与几何概型 高考频度:★★★★☆难易程度:★★★☆☆ 典例在线 (1)甲盒子装有分别标有数字1,2,3,4的4张卡片,乙盒子装有分别标有数字2,5的2张卡片,若从两个盒子中各随机地摸取出1张卡片,则2张卡片上的数字为相邻数字的概率为 A.B. C.D. (2)某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是 A.B. C.D. (3)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是 A.B.

C.D. 【参考答案】(1)B;(2)A;(3)C. (2)由题意得第二节课上课的时间为8:40~9:20,该同学到达教室的时间总长度为40,其中在8:50~9:10进入教室时,听第二节课的时间不少于10分钟,其时间长度为20,故所求概率为,故选A.(3)记“蜜蜂能够安全飞行”为事件A,则它在与正方体玻璃容器六个表面的距离均大于10的区域d内飞行时是安全的,故区域d为棱长为10的正方体,所以,故选C. 【解题必备】(1)求解古典概型的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件.基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.求古典概型的基本步骤:①算出所有基本事件的个数; ②求出事件包含的所有基本事件数;③代入公式,求出 . (2)对于求较复杂事件的古典概型的概率问题,可以将所求事件转化成彼此互斥的事件的和,或者先求对立事件的概率,再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事

几何概型的常见题型及典例分析

几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域 的长度(面积或体积)成比例,则称这样的概率模型为几 何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基 本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3 .计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P 说明:用几何概率公式计算概率时,关键是构造出随 机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型 的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型

(一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2cos x π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件. 所取的数是区间]1,1[-的任意一个数,基本事件是无限多 个,而且每一个基本事件的发生都是等可能的,因此事件 的发生的概率只与自变量x 的取值范围的区间长度有关, 符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2x π的值介于0到21之间,需使223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2, 由几何概型知使cos 2x π的值介于0到2 1之间的概率为 31232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图两盏路灯之间长度是30米,由于光线较暗, 想在其间再随意安装两盏路灯,问A 与与D 之间的距离都 不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基

几何概型经典练习题

........ 最新资料推荐 ...... 几何概型题目选讲 1 ?在长为1 2 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段 AC , CB 的长,则该矩形面积 112 4 小于 32 cm 2 的概率为( )A.1 B.1 C.2 D.4 6 3 3 5 2.已知圆C : x 2 y 2 =12,丨:4x ?3y =25在圆上任取一点 P,设点P 到直线l 的距离小于2的事件为A 求P(A) 的值。 1 解:P(A)=- 6 0< x < 2 3 .设不等式组 表示的平面区域为 D.在区域D 内随机取一个点,则此点到坐标原点的距离大于 2的概 0< y w 2 率是 4 .在区间[0,9]上随机取一实数X ,则该实数x 满足不等式1W log 2x w 2的概率为 _______________ . 2 解析:由1 w log 2x w 2,得2w x w 4, 根据区间长度关系,得所求概率为 -. 5.在[—6,9]内任取一个实数 m ,设f(x) =— x 2 + mx + m,则函数f(x)的图像与x 轴有公共点的概率等于 _____________ . 解析:函数f(x)的图像与x 轴有公共点应满足 △= m 2 + 4m > 0,解得m w — 4或m 》0,又m € [ — 6,9],故—6w m w 2 + 9 11 -4 或0w m w 9,因此所求概率P = 荷 6 .甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的. (1)如果甲船和乙船的停泊时间都是 4小时,求它们中的任何一条船不需要等待码头空出的概率; ⑵如果甲船的 停泊时间为4小时,乙船的停泊时间为 2小时,求它们中的任何一条船不需要等待码头空出的概率. 解析:(1)设甲、乙两船到达时间分别为 x 、y ,贝U 0w x v 24,0w y v 24且y — x > 4或y — x w — 4. 0w x v 24, 作出区域 0w y v 24, y — x > 4或 y — x v — 4. 24 X 24 36' ⑵当甲船的停泊时间为 4小时,乙船的停泊时间为 2小时,两船不需等待码头空出,贝U 满足x — y >2或y — x >4. 设在上 述条件时“两船不需等待码头空出”为事件 B ,画出区域 解析:设AC = x ,由题意知x(12 — x)v 32? O v x v 4或8v x v 12,所求事件的概率 P = 4 — °+-12— 8 12 2 3. 解析:坐标系中到原点距离不大于 2的点在以原点为圆心, 2为半径的圆内及圆上, O w x < 2, O w y w 2 表示的区域D 为边长为2的正方形及其内部,所以所求的概率为 nX 4 4 — 4 _ 4— n 4_ 4 . 设“两船无需等待码头空出”为事件 2 X ^X 20 X 20 2 25 A ,贝U P(A)=

几何概型的经典题型及标准答案

几何概型的经典题型及答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 几何概型的常见题型及典例分析 一.几何概型的定义 1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点: (1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的. (2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的; ②两种概型的概率计算公式的含义不同. 二.常见题型 (一)、与长度有关的几何概型 例1、在区间]1,1[-上随机取一个数x ,2 cos x π的值介于0到 2 1 之间的概率为( ). A.31 B.π 2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的

4 区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2 x π的值介于 0到21之间,需使 223x πππ-≤≤-或322 x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为3 2 , 由几何概型知使cos 2x π的值介于0到2 1 之间的概率为 3 1232 ===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三 等分,由于中间长度为30×3 1 =10米, ∴3 1 3010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空 间(即直线)上的线段MN ,而有利场合所对 应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 [解法1].设EF 与E 1F 1是长度等于R 的两条弦, K K K1图1-2图1-1 O O M N E F M N E F E1F1

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

概率论例题

概率论例题 例1.设某班车起点站上车人数X 服从参数为λ(λ>0)的泊松分布,并且中途不再有人上车。而车上每位乘客在中途下车的概率为p )1p 0(<<,且中途下车与否相互独立,以Y 表示在中途下车的人数。试求(1)(X,Y )的联合概率分布律;(2)求Y 的分布律(列)。 解:X 可能的取值是0,1,2,…..,k ,…,n ,... P{X =k }= ! k e k λ λ- Y 可能的取值是0,1,2,…,r ,…,k P{x =k, y =r }=P{x=k}P{y=r/x=k}= ! k e k λ λ-r k r r k q p C - r=0,1,2,…,k 当r>k 时,P{x=k, y=r}=0, Y 的边缘分布 P{Y = r }=∑+∞ ===0 },{k r y k x P =∑+∞ ====0 }/{}{k k x r y P k x P =∑ +∞ =--r k r k r r k k q p C e k λλ! =∑+∞ =--+--r k r k r q r r k k k k p e )(!) 1()1(! 1) (λλλ =∑+∞=---r k r k r rq r k r p e )()! (1!1)(λλ =rq r e r p e --!1)(λλ=rp r e r p -!)(λ r = 0, 1, 2, … , 验证Y 的分布律 ∑+∞ ==0 }{r r y P = 1 ? 例2. 解 因为η只取非负值,所以当0y ≤时, 2()() () F y P y P y ηηξ=<=< = 当 0y >时

2()()()) F y P y P y y y ηηξξ=<=<=< 2 2 2 2 12()t t t dt dt dt ξ--=== 2 20 u u y y e - -= =? ? 所以 20 ,0()0,0u y y F y y η-?>?=??≤?? 1 y --?

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

2017年高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性 题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、二次不等式的关系 题型2-12 二次方程的实根分布及条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所在区间 题型2-25 利用函数的零点确定参数的取值范 围 题型2-26 方程根的个数与函数零点的存在性 问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关系判断图像 题型3-4 利用导数求函数的单调性和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或不单调,求 参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的交点和函数 零点个数问题 题型3-9 不等式恒成立与存在性问题 题型3-10 利用导数证明不等式 题型3-11 导数在实际问题中的应用 第三节定积分和微积分基本定理 题型3-12 定积分的计算 题型3-13 求曲边梯形的面积 第四章三角函数 第一节三角函数概念、同角三角函数关系式和 诱导公式 题型4-1 终边相同角的集合的表示与识别 题型4-2 α 2 是第几象限角 题型4-3 弧长与扇形面积公式的计算 题型4-4 三角函数定义 题型4-5 三角函数线及其应用 题型4-6 象限符号与坐标轴角的三角函数值 题型4-7 同角求值——条件中出现的角和结论 中出现的角是相同的 题型4-8 诱导求值与变形 第二节三角函数的图象与性质 题型4-9 已知解析式确定函数性质 题型4-10 根据条件确定解析式 题型4-11 三角函数图象变换 第三节三角恒等变换 题型4-12 两角和与差公式的证明 题型4-13 化简求值 第四节解三角形 题型4-14 正弦定理的应用 题型4-15 余弦定理的应用 题型4-16 判断三角形的形状 题型4-17 正余弦定理与向量的综合 题型4-18 解三角形的实际应用 第五章平面向量 第一节向量的线性运算 题型5-1 平面向量的基本概念 题型5-2 共线向量基本定理及应用 题型5-3 平面向量的线性运算 题型5-4 平面向量基本定理及应用 题型5-5 向量与三角形的四心 题型5-6 利用向量法解平面几何问题 第二节向量的坐标运算与数量积 题型5-7 向量的坐标运算 题型5-8 向量平行(共线)、垂直充要条件的坐 标表示 题型5-9 平面向量的数量积 题型5-10 平面向量的应用 第六章数列 第一节等差数列与等比数列 题型6-1 等差、等比数列的通项及基本量的求 解 题型6-2 等差、等比数列的求和 题型6-3 等差、等比数列的性质应用 题型6-4 判断和证明数列是等差、等比数列 题型6-5 等差数列与等比数列的综合 第二节数列的通项公式与求和 题型6-6 数列的通项公式的求解 题型6-7 数列的求和 第三节数列的综合 题型6-8 数列与函数的综合 题型6-9 数列与不等式综合 第七章不等式 第一节不等式的概念和性质 题型7-1 不等式的性质 题型7-2 比较数(式)的大小与比较法证明不 等式 第二节均值不等式和不等式的应用 题型7-3 均值不等式及其应用 题型7-4 利用均值不等式求函数最值 题型7-5 利用均值不等式证明不等式 题型7-6 不等式的证明 第三节不等式的解法 题型7-7 有理不等式的解法 题型7-8 绝对值不等式的解法 第四节二元一次不等式(组)与简单的线性规 划问题 题型7-9 二元一次不等式组表示的平面区域 题型7-10 平面区域的面积 题型7-11 求解目标函数中参数的取值范围 题型7-12 简单线性规划问题的实际运用 第五节不等式综合 题型7-13 不等式恒成立问题中求参数的取值 范围

概率论习题及答案

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率 . 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为 .. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11 ()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2 (),1,2,3,3 i P A i == 则123,,A A A 最多出现一个的概 率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) .()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A --=-?=??=? ?-=-?=若且则

几何概型的五类重要题型

剖析几何概型的五类重要题型 解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A 的概率计算公 式:积等) 的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件)(A A P = .其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 下面举几个常见的几何概型问题. 一.与长度有关的几何概型 例1 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30× 31=10米, ∴3 13010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 二.与面积有关的几何概型 例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 思路点拨 此为几何概型,只与面积有关.

概率经典例题及解析、近年高考题50道带答案之欧阳数创编

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1-2πB .12-1πC .2π D .1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2=π2(12)2-1 2×12×12=π-28.在扇形OAD 中S12为扇形面积减去三角形OAC 面积和S22,S12=18π×12-18-S22=π-216,S 1+S 2=π-24,扇 形OAB 面积S=π 4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=()

A.126125 B.65 C.168125 D.75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27 125,P(X =1) =54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65 ,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是() A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意?????0≤x≤4, 0≤y≤4, 满足条件的关 系式为-2≤x-y≤2. 根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=3 4 .

高中数学必修三所有知识点总结和常考题型练习精选

高中数学 必修3知识点 第一章 算法初步 一,算法与程序框图 1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。 2,算法的三个基本特征:明确性,有限性,有序性。 (1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。 (3)循环结构:直到型循环结构,当型循环结构。一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。 二,基本算法语句(一定要注意各种算法语句的正确格式) 1,输入语句 2,输出语句 3,赋值语句 注意:“=”的含义是赋值,将右边的值赋予左边的变量 4,条件语句 5,循环语句: 直到型 当型 注意:提示内容用双引号标明,并 与变量用分号隔开。

三,算法案例 1,辗转相除法: 例:求2146与1813的最大公约数 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0 ..............余数为0时计算终止。 为最大公约数 2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。 3,秦九韶算法:将1110()n n n n f x a x a x a x a --=++ ++改写成 1210()(()))n n n f x a x a x a x a x a --=+++ ++ 再由内及外逐层计算。 4,进位制:注意K 进制与十进制的互化。 1)例:将三进制数(3)10212化为十进制数 10212(3)=2+1×3+2×32+0×33+1×34=104 2)例:将十进制数104化为三进制数 104=3×34+2 ....... 最先出现的余数是三进制数的最右一位 34=3×11+1 11=3×3+2 3=3×1+0 1=3×0+1 ............ 商数为0时计算终止 104=(3)10212 第二章 统计 一,随机抽样 1,简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。(关键词)逐个,不放回,机会相等 2,随机数表法的步骤: 1)编号; 2)确定起始数字;3)按一定规则读数(所读数不能大于最大编号,不能重复)。 3,系统抽样的步骤: 1)编号; 2)分段(若样本容量为n ,则分为n 段);分段间隔N k n = ,若N n 不是整数,则剔除余数,再重新分段; 3)在第一段用简单随机抽样确定第一个个体编号; 4)按照 一定的规则在后面每段内各取一个编号,组成整个样本。 4,分层抽样的步骤: 1)确定抽样比; 2)根据个体差异分层,确定每层的抽样个体数(抽样比乘以各层的个体数,如果不是整数,则通过四舍五入取近似值);3)在每一层内抽取样本(个体数少就用简单随机抽样,个体数多则用系统抽样),组成整个样本。 5,三种抽样方法的异同点 直到型和当型循环可以相互演变,循环体相同,条件恰好互补。

几何概型题型讲解【典例及难题 精选】

几何概型 课题1:题型讲解 几何概型中事件A 的概率计算公式: 积等) 的区域长度(面积或体试验的全部结果所构成积等) 的区域长度(面积或体构成事件)(A A P = .其次 要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 6.几何概型与古典概型的比较: 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关,即试验结果具有无限性,另一方面,二者的试验结果都具有等可能性。

相关文档
最新文档