电力电子技术——第五章

合集下载

电力电子技术第五章直流-直流变流电路PPT课件

电力电子技术第五章直流-直流变流电路PPT课件

(5-37) O
i
t
o
当tx<t0ff时,电路为电流断续工作状态, tx<t0ff是电流断续的条件,即
m
1 e 1 e
(5-38)
i
i
1
2
I
20
O
t
tt
t
t
on
1
x
2
t
off
T
c)
图5-3 用于直流电动机回馈能 量的升压斩波电路及其波形
c)电流断续时
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
◆斩波电路有三种控制方式
☞脉冲宽度调制(PWM):T不变,改变ton。 ☞频率调制:ton不变,改变T。 ☞混合型:ton和T都可调,改变占空比
5/44
5.1.1 降压斩波电路
■对降压斩波电路进行解析
◆基于分时段线性电路这一思想,按V处于通态和处于断态两个过程 来分析,初始条件分电流连续和断续。
◆电流连续时得出
3/44
5.1.1 降压斩波电路
■降压斩波电路(Buck Chopper)
◆电路分析
☞使用一个全控型器件V,若采用晶闸
管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD,在V关断时
给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也
可拖动直流电动机或带蓄电池负载等。
◆工作原理
☞ t=0时刻驱动V导通,电源E向负载
☞输出电流的平均值Io为
EI1 U o I o
Io
Uo R
1
E R
(5-24) (5-25)
☞电源电流I1为
I1
Uo E
Io

《电力电子技术》第五章AC-AC变换技术应用

《电力电子技术》第五章AC-AC变换技术应用
《电力电子技术》
第五章 AC-AC变换技术应用
第5章 AC-AC变换技术
概述 5.1 交流调压电路
5.1.1 单相交流调压电路 5.1.2 三相交流调压电路 5.2 其他交流电力控制电路 4.2.1 交流调功电路 4.2.2 交流电力电子开关 5.3 交交变频电路 5.3.1 单相交交变频电路 5.3.2 三相交交变频电路 5.4 矩阵式变频电路 本章小结
VT1提前通,L被过充电,放电时间延长, VT1的导 通角超过π

5.1 交流调压电路
交流调压电路的应用:
灯光控制(如调光台灯和舞台灯光控制) 异步电动机软起动 异步电动机调速 供用电系统对无功功率的连续调节 在高压小电流或低压大电流直流电源中,用于
调节变压器一次电压

5.1.1 单相交流调压电路
1.电阻负载
工作原理:
在VT1u和1的VT正2半的周开和通负角半a进周行,控分制别就对可
Io = 2IT
Z I TN = I T 2U1
IVTN
j = 90°
7650°° 45°
0.5 0.4 j = 0 0.3 0.2 0.1
0
40
80
120
160 180
a /(°)
图4-4
图4-4 单相交流调压电路a为参变量时
a IVTN和 关系曲线(显示放大图)

5.1.1 单相交流调压电路
a < j 时的工作情况

晶闸管电流有效值
IVT =
1
2
a
a
2U1 Z

s in( t


j
)

电力电子技术_交流-交流变换技术

电力电子技术_交流-交流变换技术

单窄脉冲控制运行示意
宽脉冲或脉冲列控制运行示意
5.2
单相交流调压电路
参数分析( π)
负载电压有效值:
Uorms 1 sin2 sin2( ) 2 ( 2 U sin t ) d t U rms rms π π
2
负载电流有效值:
5.2
单相交流调压电路
U orms mT Urms Tc
晶闸管交流调功器
输出电压: 输出功率: Po mT P1
Tc
两种工作模式示意
5.2
单相交流调压电路
晶闸管交流无触点开关
5.3
三相交流调压电路
三相交流调压电路常见结构
5.3
三相交流调压电路
Y型联接三相交流调压电路结构
其中:
D ton Tc
n nπD
c 2π / Tc
5.2
单相交流调压电路
常用交流开关电路结构
5.2
单相交流调压电路
常用控制模式
互补控制
uip和uin分别为交流正、负半周对应的同步信号,控制 交流开关导通的参考方向。
当uip有效时,VT1和VT3交替施加驱动信号,当uin有
负载电流等于交流电源电流
5.2
单相交流调压电路
2U rms sint 2 U rms 1 ( ) d ( t ) 2π R R
π
(3)流过晶闸管的电流平均值和有效值:
I VTrms sin2 π 1 I orms 4π 2π 2
(4)电路的功率因数:

P I orms U orms U orms sin2 π S I inrms U inrms U rms 2π π

电力电子技术5 逆变电路

电力电子技术5 逆变电路
通过分析,实现有源逆变的条件有两个,应同时满足。 (1)外部条件:要有一个能提供逆变能量的直流电源,且极性必须与
晶闸管的导通电流方向一致,其电压只要稍大于变流器直流侧的平均电 压Ud。 (的2极)性内与部整条流件状:态变时流相电反路,必才须能工把作直在流β功小率于逆9变00区为域交,流使功直率流反端送电电压网U。d 这两个条件缺一不可。 (3)串接大电感
电力电子技术
第五章 逆变电路
第五章 逆变电路
5.1 5.2 5.3 5.4 5.5 5.6 5.7
电力器件的换流方式 有源逆变电路 无源逆变电路 电压型逆变电路 电流型逆变电路 负载换流式逆变电路 脉冲宽度调制型逆变电路
第五章 逆变电路
在实际应用中,有些场合需要将交流电转变为大小 可调的直流电——即前面讲过的整流。有时还需要 将直流电转变为交流电——即为逆变。它是整流电 路的逆过程。在一定条件下,一套晶闸管电路既可 用于整流又可用于逆变,这种装置称为变流器。
亦增大,导致
5.2 有源逆变电路
2、重物下放,变流器工作于逆变状 反送电网,这就是有源逆变的工

作原理。
在整流状态,电流Id由直流电压Ud产 生,整流电压Ud的波形必须使正面积 大于负面积。当重物下放时,电动
机转速方向相反,产生的电动势E亦
反向,为了防止两电源顺向串接形
成短路,此时Ud方向也要反向,即控 制角大于900,Ud波形出现负面积大 于正面积变成负值,但由于E的作用,
如果将逆变电路的交流侧接到交流电网上,把直流 电逆变成同频率的交流电反送到电网去,称为有源 逆变。它用于直流电机的可逆调速、绕线型异步电 动机的串级调速、高压直流输电和太阳能发电等方 面。如果逆变器的交流侧不与电网连接,而是直接 接到负载,即将直流电逆变成为某一频率或可变频 率的交流电供给负载,称为无源逆变。它用于交流 电机变频调速、感应加热、不间断电源等方面。

电力电子技术(第二版)第5章答案

电力电子技术(第二版)第5章答案
5.三相桥式电压型逆变器,导电方式, ,试求输出线电压的基波幅值 和有效值 、线电压的5次谐波有效值 、输出相电压的基波幅值 和有效值 。
解:输出线电压的基波幅值
输出线电压的有效值
输出线电压中五次谐波 的表达式为:
其有效值为:
输出相电压的基波幅值
输出相电压的有效值
6.SPWM逆变器有哪些优点?其开关频率的高低有什么利弊?
4.电压型逆变器中反馈二极管的作用是什么?
答:在电压型逆变器中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。
12.什么是自然采样法和规则采样法?
答:按照SPWM控制的基本原理,可在正弦波和三角波的自然交点时刻控制功率开关管的通断,这种生成SPWM波形的方法称为自然采样法。规则采样法是一种应用较广的工程使用方法,它的效果非常接近自然采样法。
13.逆变器多重化的目的是什么?如何实现?
答:逆变电路多重化的目的:一是使总体上装置的功率等级提高;二是可以改善输出电压的波形。因为无论是电压型逆变电路输出的矩形电压波,还是电流型逆变电路输出的矩形电流波,都含有较多谐波,对负载有不利影响;采用多重逆变电路,可以把几个矩形波组合起来获得接近正弦波的波形。
第五章
1.换流方式有哪几种?各有什么特点?
答:换流方式有4种:
1器件换流。利用全控型器件的自关断能力进行换流称为器件换流。
2电网换流。由电网提供换流电压称为电网换流。这种换流方式应用于由交流电网供电的电路中,它是利用电网电压自动过零并变负的性能来实现换流的。

电力电子技术-第五章习题解析

电力电子技术-第五章习题解析

交流-直流变换器(14)
3.题图5-2为具有变压器中心抽头的单相全波可控整流电路,问该变压器 还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2
②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同 。
答:该变压器不存在直流磁化问题。
①在正半周时,VTl工作,变压器二次绕组上 半部分流过电流。变压器二次电压通过VTl加 在 VT2 两 端 , 且 是 反 向 电 压 , 其 最 大 值 是 。2 2U2
解:
Ud
=
2.34U2[1+ cos(α
+ π )] =
3
2.34× 400× (1+ cos 5 π )
6
= 125.4V
Id
= Ud Rd
= 12.54A
交流-直流变换器(14)
2.在三相半波整流电路中,如果a相的触发脉冲消失,试绘出在电阻性负载 和电感性负载下整流电压ud的波形。
ud
ua
ub
交流-直流变换器(14)
第5章 习题(1)
第1部分:简答题 1. 如题图5-1所示的单相桥式半控整流电路中可能发生失控现象,何为失 控,怎样抑制失控?
答:当 α 突然增大至 180o 或触发脉冲丢失时,由于电感储能不经变压 器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管持续导通而两 个二极管轮流导通的情况,这使 ud 成为正弦半波,即半周期 ud 为正弦,另 外半周期 ud 为零,其平均值保持恒定,相当于单相半波不可控整流电路时 的波形,称为失控。
6.PWM整流电路可分为 电压型 和电流型两大类,目前研究和应用较多的是 电压型 PWM整流电路。
7.PWM整流电路的控制方法有间接电流控制和直接电流控制 ,基于系统的 静态模型设计、动态性能较差的是间接电流控制,电流响应速度快、系统鲁棒

电力电子技术 第五章直流斩波 优质课件

电力电子技术 第五章直流斩波 优质课件

二、连续导电模式
1、波形分析
稳态时,Vo基本恒定, IC=0,UL=0, I0=ID , Id=IL
VG
(a)
t
TS vL
Vd
(Vd )
(b)
t
iL
TS
(Vd Vo )
忽略电路损耗,Pd=Po,即: (c) 0
(IL Id )
t
UdId=UoIo
i d ton
toff
(d) 0
t
iD
第 5章
直流变换器(DC-DC变换器 )
概述
1、直流电压的调节方式
(1)线性调节方式 通过与负载相串联的线
性元件来调节电压
损耗大、效率低
(2)开关调节方式
通过电子开关的闭 合/断开来调节电压
+
Vd
-
voi
Vo R(负载) (a)
Vd
0
Vo
t
ton
toff
TS

1 fs
(b)
图5.1 纯电阻负载的降压变换器电路图
+
UC1 UL2 C
S
-
R Uo
+
+ + L1 - +
UC1 -
Ud
UL1
S
-
- L2 + UL2 C
-
R Uo
+
(a)T导通
(b)T截止
图5.17 连续导电模式下丘克变换器等效电路图
二、连续导电模式
1、波形分析
稳态时, UC1 、Uo基本恒定,IC1=0, IC2=0, UL1=0, UL2=0
U o ton D U d Ts

电力电子技术 王兆安第五版 第5章

电力电子技术 王兆安第五版 第5章

平均值分析
ton——V通的时间 toff——V断的时间 导通占空比
(2)电流断续 瞬态分析
I10=0,且t=ton+tx时, i2=0代入上
tx<toff
电流断续的条件:
平均值分析
典型例题
在降压斩波电路中,E=110V,L=1MH,R=0.25Ω, Em=11V,T=2500us, ton=1000us, 计算:负载电 流平均值Io, 负载平均电压Uo, 计算负载电流的 最大值,最小值。 解题步骤: ①根据式 判断电流是否连 续。 ②由判断决定Uo,Io 的计算方法。 ③根据瞬时分析公式计算电流的最大值,最小值
续流二极管
(二) 工作原理
①电流连续
②电流断续
动态演示
(三)数量关系分析- 从电路理论角度推导 (1)电流连续 瞬态分析
① V为通态期间, 设负载电流为i1,有 :
设此阶段电流初值为I10, =L/R,解上式得
② V为断态期间,设 负载电流为i2,有:
设此阶段电流初值为I20, 解上式得:
<1>
<2> 且:I10=i2(t2),I20=i1(t1),代入<1>,<2>
et1 / 1 E EM I10 T / e 1 R R
1 et1 / E EM I 20 T / 1 e R R
稳态时,一个周期T中L积蓄能量与释放能量相等: EI1ton=(U0-E)I1toff
ton toff T Uo E E toff toff
ton toff T Uo E E toff toff
升压比的倒数记作 ,即
和的关系:

电力电子技术课件05直流-交流(DC-AC)变换

电力电子技术课件05直流-交流(DC-AC)变换

第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。

VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。

(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。

《电力电子技术》电子课件(高职高专第5版) 5.3 交流电力电子开关

《电力电子技术》电子课件(高职高专第5版)  5.3 交流电力电子开关
电力电子技术(第5版) 第5章 交流变换电路
5.3 交流电力电子开关
作用
5.3 交流电力电子开关
将晶闸管反并联后串入交流电路代替机械开关, 起接通和断开电路的作用;
优点
◆响应速度快、无触点寿命长、可频繁控制通断;
◆控制晶闸管总是在电流过零时关断,在关断时不会 因负载或线路电感存储能量而造成过电压和电磁干扰;
图5.3.2 TSC理想投切时刻原理说明
5.3 交流电力电子开关
2、晶闸管投切时间的选择
3)电路特点:
◆由于二极管的作用,在电路不导通时uC总会维持在电源
电压峰值; ◆二极管不可控,响应速度要慢一些,投切电容器的最大
时间滞后为一个周波。图5. Nhomakorabea.3 晶闸管和二极管反并联方式的TSC
4)为避免电容器组投切造成较大 电流冲击,一般把电容器分成几组,如 图5.3.1(b)所示,可根据电网对无功的 需求而改变投入电容器的容量。
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
2、晶闸管投切时间的选择
1)选择原则:投入时刻交流电源电压和电容器预充电 电压相等,防止冲击电流。
2)理想选择:理想情况下,希望电容器预充电电压为 电源电压峰值,这时电源电压的变化率为零,电容投入过 程不但没有冲击电流,电流也没有阶跃变化。
◆提高功率因数、稳定电网电 压、改善用电质量
◆是一种很好的无功补偿方式
图5.3.1 TSC基本原理图
5.3 交流电力电子开关
1、电路结构和工作原理(晶闸管反并联)
1)实际常用三相TSC,可三角形联 结,也可星形联结。
2)反并联的晶闸管控制C并入电网 或从电网断开,如图5.3.1(a)。
3)串联电感很小,用来抑制电容 器投入电网时的冲击电流。

电力电子技术试卷及答案-第五章

电力电子技术试卷及答案-第五章

电力电子技术试题(第五章)一、填空题1、整流是把电变换为电的过程;逆变是把电变换为电的过程。

1、交流、直流;直流、交流。

2、逆变电路分为逆变电路和逆变电路两种。

2、有源、无源。

3、逆变角β与控制角α之间的关系为。

3、α=π-β4、逆变角β的起算点为对应相邻相的交点往度量。

4、负半周、左。

5、当电源电压发生瞬时与直流侧电源联,电路中会出现很大的短路电流流过晶闸管与负载,这称为或。

5、顺极性串、逆变失败、逆变颠覆。

6、为了保证逆变器能正常工作,最小逆变角应为。

6、30°~35°7、由两套晶闸管组成的变流可逆装置中,每组晶闸管都有四种工作状态,分别是状态、状态、状态和状态。

7、待整流、整流、待逆变、逆变。

8、将直流电源的恒定电压,通过电子器件的开关控制,变换为可调的直流电压的装置称为器。

8、斩波。

9、反并联可逆电路常用的工作方式为,以及三种。

在工业上得到广泛应用的是方式。

9、逻辑无环流、有环流、错位无环流、逻辑无环流。

10、采用接触器的可逆电路适用于对要求不高、不大的场合。

10、快速性,容量。

11、某半导体器件的型号为KN 100 / 50 —7,其中KN表示该器件的名称为100表示,50表示,7表示。

11、逆导晶闸管,晶闸管额定电流为100A,二极管额定电流为50A,额定电压100V。

12、晶闸管整流装置的功率因数定义为侧与之比。

12、交流、有功功率、视在功率13、晶闸管装置的容量愈大,则高次谐波,对电网的影响。

13、愈大,愈大。

14、在装置容量大的场合,为了保证电网电压稳定,需要有补偿,最常用的方法是在负载侧。

14、无功功率;并联电容。

15、变频电路从变频过程可分为变频和变频两大类。

15、交流—交流,交流—直流—交流。

16、脉宽调制变频电路的基本原理是:控制逆变器开关元件的和时间比,即调节来控制逆变电压的大小和频率。

16、导通,关断,脉冲宽度。

二、判断题对的用√表示、错的用×表示(每小题1分、共10分)1、把交流电变成直流电的过程称为逆变。

电力电子技术第五章

电力电子技术第五章



I
II
III
IV
V
VI
共阴极组中导通的二极 管 共阳极组中导通的二极 管 整流输出电压u 整流输出电压 d 整流电压平均值Ud 整流电压平均值
VD1 VD1 VD3 VD3 VD5 VD5 VD6 VD2 VD2 VD4 VD4 VD6 uab
1 π 3
uac
ubc
uba
uca
ucb

2π 3 π 3
负载电流i 负载电流 d u2/R 0
1 2π
负载电压 平均值U 平均值 d
∫0
π
2U 2 sin ωtd (ωt ) = 0.45U 2
电源变压器副边电压有效值为U 电源变压器副边电压有效值为 2






5.2.1 单相不控整流电路
VD 1 id
+
u2
ud
L R
eL
+
单相半波不控整流电路阻感负载 阻感负载时各区间 表5-2 单相半波不控整流电路阻感负载时各区间 各区间工作情况






5.2 不控整流电路
利用电力二极管的单相导电性可以十分简单地实现交流 —直流电力变换。 直流电力变换。 直流电力变换 由于二极管整流电路输出的直流电压只与交流输入电压 的大小有关,不能控制其数值,故称为不控整流电路。 的大小有关,不能控制其数值,故称为不控整流电路。






5.2.1 单相不控整流电路



5.2.1 单相不控整流电路
表5-5 单相桥式整流电路各区间工作情况
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V1
Ud + V2
VD1
V3
RL
uo
V4
VD2
VD3 VD4
– 不管哪种情况uo=Ud • 当ur<uc时,驱动V2、V3
信号波 ur 载波 uc
调制 电路
– 如io<0,V2和V3通
单相桥逆变电路
– 如io>0,VD2和VD3通
– 不管哪种情况uo=-Ud
可编辑ppt
13
5.2.1 计算法和调制法
可编辑ppt
7
5.2.1 计算法和调制法
• 单极性PWM控制方式
u
ur
– 调制信号ur为正弦
uc

O
t
– 载波uc为三角波
uo uo
– 在ur和uc的交点时
Ud
刻控制IGBT的通断
O
t
-U d
可编辑ppt
8
5.2.1 计算法和调制法
u
uc ur
O
uo uo
Ud
uof
O
-Ud 图6-5
• Ur正半周
uCN'
Ud 2
O
可由uAN’-uBN’得出
u AB
Ud
– 逆变器输出线电压
O
- Ud
PWM波由±Ud和0三种 uAN
O
电平构成
可编辑ppt
u rA
u rB
uc
ur C
t
t
t
t
图6-8
t
2Ud
Ud
3
3
t
15
5.2.1 计算法和调制法
• 负载相电压uAN可由下式求得
uAN uA'N-uA'NuB 3'NuC'N
矩形脉冲代替,使矩
形脉冲和相应的正弦
波部分面积相等,可
得脉冲序列,即
t
SPWM波形。
可编辑ppt
5
5.2.1 计算法和调制法
• 计算法
– 根据正弦波频率、幅值和半周期脉冲数,准确计算 PWM波各脉冲宽度和间隔,据此控制逆变电路开关器 件的通断,就可得到所需PWM波形。
• 调制法 – 把希望输出的波形(正弦波)按比例缩小作为调制信 号,把接受调制的信号作为载波,通过载波的调制得 到所期望的PWM波形。
2
5.1 概述
• 冲量(面积)等效原理
– 大小、波形不相同的窄脉冲变量作用于惯性系 统时,只要它们的冲量即变量对时间的积分相 等,其作用效果基本相同。
– 可推广到阻感电路中。
可编辑ppt
3
5.1 概述
形状不同而冲量相同的各种窄脉冲
f (t)
f (t)
O
tO
t
a)
b)
f (t)
f (t)
d (t)
可编辑ppt
10
• 单极性PWM控制方式
u
uc ur
– V1和V2通断互补,V3和V4通
断也互补,纵向换流
O
t
– uo正半周时,V1导通,V2关
断,V3和V4交替通断uo可得
uo Ud
到Ud和零两种电平
uo uof
– uo负半周,让V2保持导通,
O
t
V1保持断开,V3和V4交替
-Ud
通断,uo可得-Ud和零两种
第5章 PWM控制技术
• PWM(Pulse Width Modulation)控制
– 对脉冲的宽度进行调制的技术,通过对一系列脉冲的 宽度进行调制,来等效地获得所需要的波形(含形状 和幅值)。
– 优点:功率因数高、有效地进行谐波抑制、动态响应 快。
– 缺点:高次谐波、du/dt、电磁干扰
可编辑ppt
– 当ur>uc时,uo=Ud
t
– 当 ur<uc时,uo=0
• Ur负半周
– 当ur>uc时,uo=0
t
– 当 ur<uc时,uo= -Ud
• 单极性PWM控制方式特点
– 输出电压三个电平1、0、-1
– 需要两个三角载波
可编辑ppt
9
5.2.1 计算法和调制法
• 单极性PWM控制方式
– V1和V2通断互补,V3和V4通
1
5.1 概述
UR
滤波
UI
M
• 1964年德国人A.Schonung和H.stemmler首先提出把 这项通讯技术应用到交流传动中,从此为交流传动的 推广应用开辟了新的局面。
• 通过改变脉冲的不同宽度可以控制逆变器输出交流基
波电压的幅值,通过改变调制周期可以控制其输出频
率,从而同时实现变压和可编变辑p频pt 。
• 图a、b、c分别为方波、 三角波、正弦半波窄 脉冲,图d单位冲击函 数δ(t) ,面积都等 于1。
• 分别加在具有惯性的 同一环节上时,其输 出响应基本相同。
O
t
O
t
c)
d)
可编辑ppt
4
u a)
O u
b) O
5.1 概述
• 将正弦波分成N个彼
此相连的脉冲序列所
组成的波形,用相同
t
数量的等幅不等宽的
• 双极性PWM控制方式
– 三相的PWM控制公V1 C A
VD 1 V3
VD 3 V5
VD 5
载波uc,三相的调制信号依次
N'
B
N
Ud 2
+ V4 C
VD4 V6
VD 6
V
C
2
VD 2
相差120°。
– 当urA>uc时,V4关断,V1或
uuuurrrUVWc
VD1导通,则uAN’=Ud/2
V1
VD1
V3
VD3
断也互补,纵向换流
Ud +
RL
V2
uo
V4
– uo正半周时,V1导通,V2关
VD2
VD4
断,V3和V4交替通断uo可得
信号波 载波
ur uc
调制 电路
到Ud和零两种电平
– uo负半周,让V2保持导通, V1保持断开,V3和V4交替
单相桥逆变桥阻感负载
通断,uo可得-Ud和零两种 电平
• 负载相电压PWM波由(±2/3)Ud、(±1/3)Ud和0共 5种电平组成
可编辑ppt
16
5.2.1 计算法和调制法
• 同一相上下两臂的驱动信号互补,为防止上下臂 直通而造成短路,在上下两臂切换时留一小段上 下臂都施加关断信号的死区时间。
图6-5
电平
可编辑ppt
11
5.2.1 计算法和调制法
• 双极性PWM控制方式
u
ur uc
– 在ur的一个周期内,输
O
出的PWM波只有±Ud两
t
种电平 uo Ud
– ur正负半周,对各开关
uof uo
器件的控制规律相同
O
t
-Ud
可编辑ppt
12
5.2.1 计算法和调制法
• 双极性PWM控制方式
• 当ur >uc时,驱动V1、V4 – 如io>0,则V1和V4通 – 如io<0,VD1和VD4通
可编辑ppt
6
5.2.1 计算法和调制法
• 调制波 – 把希望输出的波形作为调制信号,在SPWM中采用 正弦波作为调制波。
• 载波 – 把接受调制的信号作为载波,通过对载波的调制得 到所期望的PWM波形 – 载波:三角波或锯齿波 – 原因:等腰三角波上任一点的水平宽度和高度成线
性关系,且左右对称。
调制 电路
三相桥逆变电路
– 当urA<uc时, V1关断,V4或 VD4导通,则uUN’=-Ud/2
可编辑ppt
14
5.2.1 计算法和调制法
• 双极性PWM控制方式
u
O
– uAN’、uBN’和uCN’的
uA N'
Ud
2
PWM波形只有±Ud/2
O
-
Ud 2
uBN '
两种电平
Ud 2
O
-
Ud 2
– 线电压波形uAB的波形
相关文档
最新文档