预处理系统

合集下载

膜法水处理-预处理篇

膜法水处理-预处理篇

膜法水处理-预处理篇预处理的作用及目标1.预处理系统的重要性反渗透系统包括原水的预处理、反渗透装置、后处理三部分。

RO系统对原水的预处理有它特定的要求。

由于原水的种类繁多,其成分也非常复杂,针对原水水质情况及RO系统回收率等主要工艺设计参数的要求,选择合适的预处理工艺系统,减少对RO膜的污堵、结垢,防止RO膜脱盐率、产水率的降低,尤其是针对目前水源日趋匮乏、水质日趋恶化,选择一个正确的预处理系统,将直接影响整个水处理系统的功能。

众所周知,RO系统运行失败,多数情况是由于预处理系统功能不完善造成的。

为了确保反渗透过程的正常进行,必须对原水进行严格的预处理。

2.反渗透系统的水源反渗透原水的种类很多,有各种天然水、市政水和工业废水等。

天然水包括地表水和地下水两种。

地表水的范围很广,包括江河、湖泊、水库、海洋等。

地下水则存在于土壤和岩石内,由雨水和地表水经过地层的渗流而形成。

市政二级污水、电厂冷却排污水等工业水源将成新的途径。

水源的选择将直接影响到水处理工艺的确定和水处理成本。

3.预处理的目的使反渗透膜性能降低的主要因素有:(1)膜发生化学降解,如芳香族聚酰胺受氯等氧化剂及强酸强碱的破坏;(2)膜表面难溶盐结垢;(3)膜受进水悬浮物、胶体污堵;(4)膜受微生物、菌藻等黏附、侵蚀后造成污堵与膜降解;(5)大分子有机物对膜污堵以及小分子有机物被膜吸附。

反渗透效率与寿命与原水预处理效果密切相关,预处理的目的就是要把进水对膜的污染、结垢、损伤等降到最低,从而使系统产水量、脱盐率、回收率及运行成本最优化。

因此,良好的预处理对RO装置长期安全运行是十分重要的。

其目的细分为:(1)除去悬浮固体,降低浊度;(2)控制微生物的生长;(3)抑制与控制微溶盐的沉积;(4)进水温度和pH的调整;(5)有机物的去除;(6)金属氧化物和硅的沉淀控制。

4.预处理的目标为了保证反渗透系统的水回收率、透过水质量、透过水流量的稳定、运行费用的最低化、膜使用寿命的最佳化等,必须进行完善的预处理。

污水处理系统及处理污水的工艺流程

污水处理系统及处理污水的工艺流程

污水处理系统及处理污水的工艺流程一、引言污水处理系统是为了保护环境、维护公共卫生以及可持续发展而设计的一种设施。

本文将详细介绍污水处理系统的标准格式以及处理污水的工艺流程。

二、污水处理系统的标准格式1. 系统概述污水处理系统由污水收集系统、预处理系统、主处理系统和后处理系统组成。

2. 污水收集系统污水收集系统包括污水收集管网、污水泵站以及相关的控制设备。

污水通过管网输送到预处理系统。

3. 预处理系统预处理系统主要用于去除大颗粒物、固体废物和沉淀物。

常见的预处理设备包括格栅、沉砂池和沉淀池。

4. 主处理系统主处理系统是对污水中的有机物、氮、磷等进行处理的关键部分。

常见的主处理工艺包括生物处理工艺、物理化学处理工艺和高级氧化工艺。

- 生物处理工艺:包括活性污泥法、固定床生物反应器和厌氧处理等。

通过微生物的作用,将有机物降解为无害物质。

- 物理化学处理工艺:包括沉淀、过滤、吸附和气浮等。

利用物理化学方法去除悬浮物、溶解物和胶体物质。

- 高级氧化工艺:利用高能量的氧化剂如臭氧、紫外线和高压电解等,对污水中的有机物进行氧化降解。

5. 后处理系统后处理系统主要用于进一步去除残余的污染物,提高出水水质。

常见的后处理工艺包括深度过滤、活性炭吸附和消毒等。

三、处理污水的工艺流程1. 污水收集污水从不同的来源(如家庭、工业和商业)收集起来,通过管网输送到污水处理厂。

2. 预处理污水进入预处理系统,经过格栅去除大颗粒物和固体废物。

然后进入沉砂池和沉淀池,使悬浮物和沉淀物沉淀下来。

3. 主处理预处理后的污水进入主处理系统,根据实际情况选择合适的处理工艺。

常见的工艺包括活性污泥法、固定床生物反应器和厌氧处理。

这些工艺利用微生物的作用将有机物降解为无害物质。

4. 后处理主处理后的污水进入后处理系统,通过深度过滤、活性炭吸附和消毒等工艺,进一步去除残余的污染物,提高出水水质。

最终得到符合排放标准的处理水。

四、总结污水处理系统是保护环境和维护公共卫生的重要设施。

浅谈预处理系统在分析仪表应用中的关键性

浅谈预处理系统在分析仪表应用中的关键性

《装备维修技术》2021年第2期—347—浅谈预处理系统在分析仪表应用中的关键性杨高元 刘 彦 杜修成 刘 飒(中国石油兰州石化公司,兰州市 730060)当在线分析仪表的传感元件不直接安装在工艺管道或者设备中时,都需要配备样品处理系统。

样品处理系统是将一台或多台在线分析仪器与样品气、排放点连接起来的系统,其作用是保证分析仪表在最短的滞后时间内得到有代表性的样品,样品的状态(温度、压力、流量和洁净程度)适合分析仪器所需要的操作条件。

分析仪器能否用好,除了分析仪器自身,更关键的是取决于样品预处理系统的完善程度和可靠性。

因为分析仪无论如何先进和精密,分析精度也要受到样品的代表性、实时性、和物理状态的限制。

事实上,样品预处理系统使用中遇到的问题往往比分析仪还要多,样品预处理系统的维护量也往往超过分析仪本身,可见,预处理系统的关键性应该与分析仪等同。

一:预处理系统的基本要求:(一)、使分析仪得到的样品与工艺管线或设备中物料的组成和含量一致;(二)、工艺样品的消耗量最少; (三)、易于操作和维护; (四)、能长期可靠工作; (五)、系统构成尽可能可靠简单; (六)、采用快速回路以减少样品传递滞后时间;二:特殊预处理系统列举:(一)、乙烯裂解气预处理系统; (二)、丁二烯抽提装置预处理系统; (三)、催化裂解再生烟气预处理系统; (四)、高温含水含尘烟道气预处理系统; (五)、合成氨装置转换、变换高温高含水预处理系统;三、全密度聚乙烯装置反应器气相色谱预处理系统现状:全密度聚乙烯装置由两台气相色谱仪4AT4001A 和4AT4001B 同时对K4003循环气压缩机出口的H2、CH4、C4H8-1、C2H4、C2H6、N2、ICA、C6H12-1、C4inerts、C6inerts 十种组分的含量分析,其中七种组分参与工艺过程的先进控制和优化控制。

这两台色谱自装置开车运行以来,一直投运正常且能够为工艺生产提供实时准确的分析数据,指导工艺生产。

新风预处理概念、系统与应用

新风预处理概念、系统与应用

新风预处理概念、系统与应用摘要:新世纪下,伴随国民生活品质的日益提升,人们也变得越来越关心空气品质。

在室内环境当中,健康、优质的空气环境也逐步变成一大焦点内容。

为了充分发挥新风系统的优势,就应高度重视新风预处理的效果。

基于此,本文针对新风预处理,主要探讨了基本概念、各种系统及实践应用,希望能够促进生活环境的进一步改善。

关键词:预处理;新风系统;应用在新时代下,空气品质研究课题已经成为全球性的热点问题之一。

虽然室内环境空气品质往往涉及诸多方面,但是与空调系统有关的主要就是缺失新鲜空气、室内过湿等。

所以,我国有调整通风标准,而明显增大了空调冷、湿负荷,相应的新风预处理也备受关注,并且被应用得更加广泛。

一、新风预处理的基本概念针对空调房间而言,在众多干扰量当中,室外新风属于最大扰量。

在新风预处理的基础概念上,主要指的就是改变了原有控制参数或有了新要求,基于维持常规空气的条件,为彻底解除新风干扰,需要适当采取预处理措施。

所以,应从控制要求出发,创建新风预处理结构体系,以控制经过处理的新风可以维持原空气参数。

在过去往往针对舒适性空调,并没有太高的温、湿度要求,新风需求量也不大,所以,不必预处理新风。

但是,当前的有关标准却提出了提升空调新风量的要求,并且需要严格控制室内湿度。

这么一来,新风就会更加明显地干扰室内环境。

在空调系统,往往会大幅提升冷、湿负荷。

尤其是在热湿区域,急剧提升了普通空气处理体系的工作压力。

提出“新风预处理”这样的概念,主要旨在令普通空调可以达到新要求。

从节能、湿度控制上看,基于热回收、专业除湿技术等,提出的新风预处理结构,可以用于改造原空调系统或新开发空调新系统,来充分利用新风预处理。

二、新风预处理结构系统1、新风除湿式预处理系统(1)新风预冷除湿预处理系统如果室外新风为高温,为了高效运行除湿机,一般会先向预冷器输送新风,再通过冷水(天然冷源)进一步冷却,以减小显、潜热。

进入除湿器适当除湿后,干燥的高温新风混合回风后,再通过冷却盘管等适当冷却到适合的送风点,才被输送到室内,以便室内空气达到新标准。

二级反渗透纯化水系统培训课程

二级反渗透纯化水系统培训课程

• 砂卵石,沙砾石,(无烟煤),石英砂 • 流量 • 压力差值 • 污染密度指数SDI<4 连续监测,摸索砂滤器反洗的时间。最好是 反映在压差变化上。 反洗注意反洗的强度,小心把石英砂冲走。
纯化水测试SDI的操作过程及事项 测试仪器的组装 将测试装置连接到RO系统进水管路取样点上 在装入滤膜后将进水压力调节于210MPA(30psi)。在实际测试时,应使用新的滤膜。 测试步骤: 记录测试温度。 在测试开始至结束的测试世间内,系统温度变化不应超过1℃ 排除滤池中的空气压力。根据滤池的种类,在给水球阀开启的情况下,或打开滤池上方的 排气阀,或拧松滤池一夹套螺纹,充分排气后关闭排气阀或拧紧滤池夹套螺纹。 用带有刻度的500ml量筒取滤过水以测量透过滤膜的水量。 全开球阀,测量并记录从球阀全开到接满100ML和500ML水样需要的时间,接取500ML水 样所需要的时间大约为接取100ML水样所需时间的5倍。如果接取时间远大于5倍, 则在计算SDI时,应采用接取100ML所用的时间。 5MIN后,再次测量收集100ML和500ML水样所需的时间,10MIN及15MIN后再分别进行同 样的测量。 如果接取100ML水样所需的时间超过60S,则意味着约90%的滤膜面积被堵塞,此时已无 需再进行实验。 再次测量水温以确保与实验开始时的水温变化不超过1℃。 实验结束并打开滤池后,最好将实验后的滤膜保纯好,以备以后参考。 计算公式 SDI=100X(1-T1/TF)/TT T1 第一次取样所需的时间 SDI 污染密度指数 TT 总测试时间 但如果在15MIN内即有70%的滤膜被堵塞,测试时间就需缩短, TF 15MIN (或更短时间)以后取样所需时间
活性炭过滤器工作原理,监测参数,化验参数,反洗操作, 蒸汽消毒
• 砂卵石,活性炭 • 流量 • 压力差值 • 余氯 连续监测,摸索活性炭过滤器反洗的时间。 最好是反映在压差变化上。 反洗注意反洗的强度,小心把活性炭冲走。 活性炭更换周期

反渗透和纳滤系统的预处理

反渗透和纳滤系统的预处理

回收率 气浮、吸附 活性炭,过滤,吸附树脂 活性炭,过滤,吸附树脂 活性炭,过滤,吸附树脂
允许值
去除方法
3 – 10 5 – 45 ℃
加入酸或碱调节 换热器
< 0.1 mg/L 0
还原剂,活性炭吸附
0 选择阳离子或两性表面活性剂时要注意
< 10%
N/A
1. 结垢的防止
1.1 结垢的原因
起垢是难溶性的盐类在膜表面析出固体沉淀,防止结垢的方法是保证难溶解
握原水的特性,设计并选择合适的预处理工艺是非常重要的。
预处理系统的目的不外乎以下几点:
保证 SDI15 最大不超过 5.0,争取低于 3.0; 保证浊度低于 1.0 NTU,争取小于 0.2 NTU;
保证没有余氯或类似氧化物,如:臭氧等;
保证没有其它可能导致膜污染或劣化的化学物质。
预处理一般可以分为传统预处理方法和膜法预处理。所谓传统预处理是对膜
解:浓缩倍率 = 100 % ÷(100 % – Rec.)= 100 % ÷(100 % - 70 %)=
3.33
A = [Log10(500 × 3.33)– 1] ÷ 10 = 0.32 B = -13.12 × Log10(18 + 273.15)+ 34.55 = 2.22 C = Log10(35 × 3.33)– 0.4 = 1.67 D = Log10(140 × 3.33)= 2.67 pHs =(9.3 + 0.32 + 2.22)-(1.67 + 2.67)= 7.50 为了算出浓缩水中的 pH 值,需要知道原水中的 CO2 浓度,把公式(3)变 换一下,可算出原水中的 CO2 的浓度。
结垢现象。

水质监测系统组成以及功能介绍

水质监测系统组成以及功能介绍

监测系统运用自动控制技术、计算机技术并配以专业软件,组成一个从取样、预处理、分析到数据处理及存贮的完整系统,从而实现对样品的在线自动监测。

系统适用于:水源地监测、环保监测站,市政水处理过程,市政管网水质监督,农村自来水监控;循环冷却水、泳池水运行管理、工业水源循环利用、工厂化水产养殖等领域。

系统组成包括取样系统、预处理系统、数据采集与控制系统、在线监测分析仪表、数据处理与传输系统及远程数据管理中心,这些分系统既各成体系,又相互协作,以完成整个在线自动监测系统的连续可靠地运行。

1. 水质在线分析仪器:水质在线分析仪器按测量方式通常分为电极法和光度法两种,根据测量参数需求、使用环境的不同作相应的选择。

2. 取水系统:系统的主要组成部分有:取水头、取水泵、水样输送管道和流速流量调节几个部分组成。

按照取水方式的划分主要分为直取式和浮筒式两种。

3. 预处理系统:预处理的手段通常有自然沉降、物理过滤及渗透等。

通常是根据水样的纯度来决定预处理的级别。

4.数据采集控制系统:数据采集控制系统主要由PLC、现场工作站、中心站计算机以及变送器、执行机构等组成。

系统功能1、整合软、硬件设备资源,对监测水质实现全天候远程自动监测,完整记录各监测点水质数据的动态变化过程。

2、远程控制潜水泵的开启、关闭,用于取水分析。

3、实时监控水质参数变化。

4、水质超限之后进行软件和短信报警。

5、GIS地图直观显示各水质监测点的分布情况,以及监测点监测的水质数据。

6、查询历史数据生成曲线功能,便于工作人员进行直观的数据分析。

7、历史数据统计功能,并导入到Excel表格中。

8、多用户多权限分配,可根据用户进行权限分配。

钛能科技股份有限公司·智能电网与新能源事业部专心致力于电力自动化和电能质量两大产品的设计、开发、生产以及系统运行维护。

事业部以优质的产品、丰富的集成和服务经验为发电厂、变电站综合自动化系统、光伏电站等新能源发电电气自动化系统、高压电气设备温度保护系统和电能质量监测与治理系统提供一体化的解决方案。

milli-q超纯水仪工作原理

milli-q超纯水仪工作原理

milli-q超纯水仪工作原理一、引言milli-q超纯水仪是一种用于制备高纯度水的设备,广泛应用于实验室、医药、生物技术等领域。

本文将介绍milli-q超纯水仪的工作原理。

二、工作原理milli-q超纯水仪的工作原理主要包括预处理系统、反渗透膜系统、离子交换树脂系统和纯化柱系统。

1. 预处理系统进水经过预处理系统,去除悬浮物、胶体物质、有机物和微生物等杂质。

预处理系统包括粗颗粒过滤器、活性炭过滤器和微孔过滤器。

粗颗粒过滤器能够去除大颗粒的悬浮物,活性炭过滤器则能吸附有机物和余氯,微孔过滤器则能去除微生物和细菌。

2. 反渗透膜系统经过预处理后的水进入反渗透膜系统。

反渗透膜是一种过滤水的膜,具有微孔结构,能够有效去除水中的溶解物质、离子和微生物。

水在反渗透膜上形成一定压力,通过膜的微孔进入膜内,而溶解物质、离子和微生物则被滞留在膜外形成浓缩液。

经过反渗透膜系统的处理,水质得到明显改善。

3. 离子交换树脂系统反渗透膜系统处理后的水进入离子交换树脂系统。

离子交换树脂是一种能够选择性吸附或释放离子的材料。

水中的离子通过树脂床层时,与树脂上的离子发生交换作用,使水中的离子得到进一步去除或净化。

4. 纯化柱系统离子交换树脂系统处理后的水进入纯化柱系统,通过特殊的吸附剂进一步去除残余的有机物和微量离子。

纯化柱系统的吸附剂能够高效地吸附有机物和微量离子,使水质达到超纯水的要求。

三、总结milli-q超纯水仪通过预处理系统去除水中的悬浮物、胶体物质、有机物和微生物,然后通过反渗透膜系统去除溶解物质、离子和微生物,接着经过离子交换树脂系统去除离子,最后通过纯化柱系统去除残余的有机物和微量离子,从而制备出高纯度的水。

这些系统的相互配合使得milli-q超纯水仪能够高效地制备出高质量的水,为实验室和各个行业提供了可靠的实验用水。

一种精确还原车辆实际通行轨迹的数据预处理方法和系统与流程

一种精确还原车辆实际通行轨迹的数据预处理方法和系统与流程

一种精确还原车辆实际通行轨迹的数据预处理方法和系统与流程在交通管理和数据分析领域,对于车辆的实际通行轨迹进行准确的还原和处理是非常重要和必要的。

准确的车辆通行轨迹数据可以用于交通规划、交通模型建立、交通拥堵分析等方面。

本文将介绍一种精确还原车辆实际通行轨迹的数据预处理方法和相应的系统与流程。

一、数据收集与处理1.1 数据收集首先,需要选择合适的数据源进行数据收集。

常见的数据来源包括交通监控摄像头、GPS设备、浮动车数据等。

1.2 数据清洗在数据收集后,需要对原始数据进行清洗和去噪处理,以提高数据的准确性。

清洗过程包括去除无效数据、纠正异常值等。

1.3 数据转换与整合接下来,将清洗后的数据进行转换与整合,以便后续的轨迹还原与分析。

常见的数据转换包括坐标系转换、道路网络匹配等。

二、车辆通行轨迹还原方法2.1 GPS轨迹插值对于使用GPS设备采集的车辆轨迹数据,可以使用插值方法进行还原。

常见的插值方法有线性插值、样条插值等。

2.2 道路网络匹配对于浮动车数据等通行轨迹较为稀疏的情况,可以利用道路网络匹配的方法进行还原。

道路网络匹配将车辆通行轨迹与现有的道路网络进行匹配,从而得到较为准确的车辆实际通行轨迹。

2.3 结合其他数据源除了GPS轨迹和道路网络匹配外,还可以结合其他数据源来进行通行轨迹还原。

例如,可以利用交通监控摄像头的视频数据进行车辆跟踪,从而得到车辆实际通行轨迹。

三、车辆通行轨迹数据预处理系统与流程3.1 数据预处理系统构建为了实现车辆通行轨迹的准确还原,需要构建一个数据预处理系统。

该系统包括数据采集模块、数据清洗模块、数据转换与整合模块、车辆通行轨迹还原模块等。

3.2 数据预处理流程数据预处理流程包括以下几个步骤:(1)数据采集:选择合适的数据源进行数据收集。

(2)数据清洗:对原始数据进行清洗和去噪处理。

(3)数据转换与整合:将清洗后的数据进行坐标系转换、道路网络匹配等处理。

(4)车辆通行轨迹还原:根据GPS插值、道路网络匹配等方法对车辆轨迹进行还原。

EDI超纯水系统操作说明书

EDI超纯水系统操作说明书

XX责任有限公司10T/H二级反渗透+EDI超纯水系统操作说明书目录一、概述1、产水用途:生产用超纯水;2、设备产水能力:反渗透系统:一级RO产水量≥15m3/h(原水在25℃时);二级RO产水量≥10m3/h(原水在25℃时);EDI系统:EDI产水量≥10m3/h(原水在25℃时);抛光混床系统:产水量≥10m3/h(原水在25℃时);3、设备产水水质指标:终端产水水质≥18.0MΩ.cm(水温25℃、95%时间)二、工艺流程示意图三、预处理系统(一)原水箱原水箱作为储水装置,调节系统进水量与原水泵抽送量之间的不平衡,避免原水泵启停过於频繁,箱内设置液位,原水进水阀根据液位高低进行自动补水,原水泵根据水池液位情况自动启停。

材质:PE材质数量:1台外形尺寸: 2050×H3050mm体积:10m3操作:原水箱顶部设置手动及自动电动进水阀,可进行手动及自动补水;手动补水时不受液位控制,只能手动控制。

自动补水阀补水时受液位控制,当水箱液位降到设定中液位时,自动阀开启自动补水;当水箱液位达到设定高液位时,自动阀关闭停止补水,从而达到自动的性能。

(二)原水泵型号:CHLF20-40流量:Q=20m3/h扬程:H=41.5米材质:不锈钢304功率:4.4Kw数量:1台供应商:杭州南方泵业作用:原水泵将原水增压後输送到下道工序,保证多介质筛检程式、活性炭过滤的操作压力及运行流量。

操作:原水泵可分手动和自动操作,自动运行时,原水泵将与原水箱液位联动,原水箱液位低时原水泵停止运行,中水位时重新启动;手动操作时除原水箱液位液位不与原水泵连锁外,其他和自动一样;其他有关说明及注意事项详见水泵说明书。

(三)多介质筛检程式数量: 1套型式:立式直径: 1500mm高度: 3300mm流量:≥20m3/h流速: 8-12m/h填料:石英砂粒径:0.5-16mm石英砂高度:1800mm石英砂体积:3600L作用:在水质预处理系统中,多介质筛检程式压力容器内不同粒径的石英砂按一定级配装填,经絮凝的原水在一定压力下自上而下通过滤料层,从而使水中的悬浮物得以截留去除,多介质筛检程式能够有效去除原水中悬浮物、细小颗粒、全价铁及胶体、菌藻类和有机物。

智能餐厨垃圾预处理

智能餐厨垃圾预处理

二维码功能大纲一、智能预处理系统简介1、概述餐厨垃圾预处理系统是青岛天人环境股份有限公司在引进国外先进同类设备的基础上,进行消化吸收,针对我国餐厨垃圾特性,通过大量小试、中试、大试试验研制而成的系统化预处理系统。

该系统工艺流程具有更简单、更可靠、低投资、低能耗、低有机质损失、高杂质去除率、高油脂回收率等特点,特别适合以BOT方式建设的餐厨垃圾处理项目。

2、系统组成餐厨垃圾预处理系统主要由以下几部分组成:卸料仓、水力洗浆机、破碎分选一体机、固液分离输送设备等。

系统图如下:图1:餐厨垃圾预处理系统图二、智能预处理系统功能1、卸料仓自动开启、关闭通过现场传感器设置,通过传感器工作自动感知垃圾收运车到场,自动开启与处理车间车库门,同步自动打开卸料仓顶盖,车辆卸料完成离开后,通过感应器自动罐体卸料仓顶盖。

2、后续设备联动、自检、自排除车辆卸料完成后/卸料仓物料达到一定量后后续预处理设备按照设定流程按顺序自动启动进行餐厨垃圾预处理作业。

过程中各单元设备通过自控和视频监控均处于监控状态,可以实现设备问题实时反馈并给与警告,问题属于自排除范围的设备根据预设操作进行自排除。

3、设备问题短信通知若运行过程中出现设备问题不能自动排除的,发送短信报警提醒人工干预。

三、智能预处理系统优点(比现有预处理系统)1、自动化程度更高,人工投入更节约;2、系统稳定性更高,运行费用更有利;3、问题反馈更及时,问题排查更准确。

四、应用范围城市餐厨垃圾资源化利用项目预处理阶段。

五、应用案例1、中试实验图2 餐厨垃圾预处理系统中试设备和原料照片图3 餐厨垃圾预处理系统中试轻物质分离和破碎制浆效果照片2、泰安项目图2 泰安市餐厨垃圾资源化利用项目预处理系统图3 泰安餐厨项目ATOM厌氧反应器(2500m3×2)六、发展历史。

预处理系统

预处理系统

操作引导
基于自动流程的 投诉预处理,整 合业务平台,可 定制
认真
务实
敬业
求精
客服线上支撑典型应用(3) 客户服务现状 (3)
知识库支撑
障碍现象直接驱动 知识展现; 快速全文检索;
认真
务实
敬业
求精
客服线上支撑典型应用(4) 客户服务现状 (4)
障碍现象驱动 业务路由图
终端仿真演 示
业务路由图
包括短信、上网、语音 等业务的路由图,具备 详细的节点说明及维护 权限说明。
认真
务实
敬业
求精

认真 务实 敬业 求精
谢!
申告受理 分析与定位 修复与处理 反馈与销障

平台N
规划建设
网络优化
工程管理系统
网优系统
注:目前为实现后端支撑前置已经将客服的受理工作 纳入综调中心管控。
认真
务实
敬业
求精
移动业务申告处理的期望 客户服务现状
以前,大部分申告的处 理都在专业室
未来,很大部分申告被 客服拦截
网络监控维 护中心处理 80%的申告单
线上问题解决率提高,服务效率感知增强; 客服接触过程中得到相对明确的信息,不 再是模棱两可甚至没有回复;
认真
务实
敬业
求精
网优或建设进度关联申告处理
客服线上支撑的关键举措 客户服务现状
业务目标
客服线上支撑能力
提高预处理率 缩短流程历时 提升客户感知
关键举措
实现
信息查询与展现
用户信息查询及比对 用户业务订购信息查询 业务状态查询及比对 业务状态激活等操作
实现 操作引导
障碍现象驱动询问要素 申告处理流程模板 知识库快速检索 wap网关日志查询 AAA,AN-AAA用户认证失 败信息查询 VPDN用户日志查询 AAA话单日志查询 短信/彩信收发日志查询

预处理系统PPT课件

预处理系统PPT课件

线性判别分析(LDA)
通过投影的方法将数据投影到低维空 间,同时保证同类数据尽可能接近, 异类数据尽可能远离。
聚类分析
通过聚类算法将数据分为不同的簇, 每个簇内的数据尽可能相似,不同簇 间的数据尽可能不同。
03
预处理系统实现
系统架构
总体架构
包括数据输入、预处理、 特征提取、模型训练和评 估等模块。
基因数据分析
通过对基因数据进行预处理,可识别 与疾病相关的基因变异和表达模式, 为精准医疗和个性化治疗提供支持。
工业领域应用
生产过程监控
通过对工业传感器数据进行预处理,可实时监测生产过程中的异 常情况,提高生产效率和产品质量。
设备故障诊断
预处理系统可协助工程师快速分析和诊断设备故障数据,定位故障 原因,减少停机时间和维修成本。
数据转换
将数据转换为适合后续处理的 格式。
数据标准化
消除数据间的量纲差异,使数 据具有可比性。
预处理系统的组成
数据处理模块
包括数据清洗、转 换、特征提取等子 模块。
参数配置模块
允许用户自定义处 理参数和规则。
数据输入模块
负责接收和读取原 始数据。
数据输出模块
将处理后的数据输 出到指定位置。
日志记录模块
增强系统灵活性
通过参数配置模块,用户可以 轻松调整处理规则和参数,适
应不同的数据处理需求。
02
预处理技术
数据清洗
缺失值处理
对缺失数据进行填充、插值或删 除等操作,以保证数据的完整性。
异常值处理
识别并处理数据中的异常值,如使 用IQR方法、Z-score方法等。
数据平滑
通过滑动窗口、指数平滑等方法对 数据进行平滑处理,以消除噪声。

污水处理系统及处理污水的工艺流程

污水处理系统及处理污水的工艺流程

污水处理系统及处理污水的工艺流程一、引言污水处理系统是为了解决城市和工业生产中产生的污水问题,保护环境和人类健康而建立的设施。

本文将详细介绍污水处理系统的标准格式及处理污水的工艺流程。

二、污水处理系统的标准格式1. 系统概述污水处理系统由进水系统、预处理系统、生化处理系统、沉淀系统和出水系统组成。

2. 进水系统进水系统包括进水管道、进水泵站和进水调节池。

进水管道将污水引入处理系统,进水泵站负责提升污水流量,进水调节池用于平衡进水流量和水质。

3. 预处理系统预处理系统主要用于去除污水中的大颗粒物和沉淀物。

预处理设备包括格栅、砂沉箱和沉砂池。

格栅用于拦截大颗粒物,砂沉箱用于去除细颗粒物,沉砂池用于沉淀重颗粒物。

4. 生化处理系统生化处理系统是污水处理的核心部份,用于去除有机物和氮磷等污染物。

常见的生化处理工艺包括活性污泥法、厌氧-好氧法和人工湿地法。

5. 沉淀系统沉淀系统用于沉淀生化处理后的污泥。

常见的沉淀设备包括沉淀池和浓缩池。

沉淀池用于沉淀污泥,浓缩池用于浓缩污泥体积。

6. 出水系统出水系统用于处理生化处理后的水体,使其达到排放标准。

出水系统包括消毒设备和出水管道。

消毒设备通常采用紫外线消毒或者氯消毒,出水管道将处理后的水体排放到指定地点。

三、处理污水的工艺流程1. 进水处理污水经过进水管道进入处理系统,进水泵站将污水提升至预处理设备。

进水调节池用于平衡进水流量和水质,确保后续处理工艺的稳定运行。

2. 预处理污水经过格栅去除大颗粒物,然后进入砂沉箱去除细颗粒物。

沉砂池进一步沉淀重颗粒物,使污水的固体含量降低。

3. 生化处理经过预处理后的污水进入生化处理系统,根据实际情况选择适合的工艺。

活性污泥法通过生物降解有机物,厌氧-好氧法通过厌氧和好氧条件下的微生物代谢去除氮磷等污染物,人工湿地法利用湿地植物和微生物去除污染物。

4. 沉淀处理生化处理后的污水进入沉淀系统,通过沉淀池使污泥沉淀下来。

沉淀池中的污泥经过浓缩池浓缩,减少污泥体积。

水处理设备通常由哪处理系统三部分组成

水处理设备通常由哪处理系统三部分组成

水处理设备通常由哪处理系统三部分组成
水处理设备通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。

预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。

反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。

超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。

水处理设备的预处理系统通常由聚丙烯纤维(PP)过滤器和
活性炭(AC)过滤器组成。

对硬度较高的原水还需加装软化树脂过滤器。

PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。

AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。

软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。

技术资料由莱特莱德水处理设备公司提供。

铁水预处理L2系统使用说明

铁水预处理L2系统使用说明

铁水预处理L2系统使用说明一、生产操作过程 (2)1. 当铁包到达预处理工位后: (2)2. 处理过程中 (3)3. 当铁包离开预处理工位后: (3)二、操作说明 (5)1.运行系统 (5)2.系统登陆/换班选择 (5)3.计划管理 (6)4.生产跟踪 (7)5.生产事件 (8)6.设备管理 (9)7.转炉信息 (10)8.换班记录 (11)9.历史炉次 (12)10.报表打印 (13)一、生产操作过程以下步骤为必须操作的步骤,通过点击炉次开始,确认炉次初始数据,点击炉次结束。

这样一个过程,可以将相应的炉次数据保存下来,以便以后查询,并自动生成报表。

生产操作过程分三个步骤:铁包到达后点击炉次开始确认炉次的初始数据铁包离开时点击炉次结束。

下面为生产操作的详细说明1.当铁包到达预处理工位后:如下图所示,点击“生产跟踪”界面右中上方的“冶炼开始”按钮,系统会弹出“初始确认”对话框,确认需要选择的炉次号、铁水量、铁包号、初始温度、初始成分及目标成分(S成分必须有数值)。

如果上述数据需要修改,可以在输入框内直接更正。

如果上述数据确认无误,则点击对话框下方的“确认”按钮,则处理过程开始。

如果无法自动生成炉次号,请在计划窗体内手工录入炉次号。

2.处理过程中在处理过程中,生产实际的数据将自动采集,可以不需要手动操作。

操作人员可翻看“生产跟踪”、“生产事件”、“设备管理”、“转炉信息”等窗体,查看生产中的过程记录。

3.当铁包离开预处理工位后:需要点击“生产根踪”窗体右中上方的“冶炼结束”按钮,会弹出确认冶炼结束的对话框,选择“炉次结束”选项框,再点击“确认”按钮,即可结束炉次处理。

如果本炉次是因为在L2系统上误操作而开始处理的,可以选择“炉次取消”选项框,在点击“确认”按钮,即可取消该炉次,并将相应的炉次记录返回至计划列表中。

二、操作说明1.运行系统双击桌面上的图标“快捷方式No1DesSer.exe”2.系统登陆/换班选择系统登陆:系统启动后会提示需要登陆系统(如下图所示),可以选择登陆的班组,并输入密码(目前密码均为1),后点击“确认”按钮即可登陆系统。

预处理系统

预处理系统
进行维修。
(3) 未切断电源时,不得移动潜水搅拌机,人员更不能进 入渗滤液中。
5.2.调节池提升泵操作规程
5.2.1启动前操作 (1) 检查调节池能水位是否超过最低开泵要求,否则 不能开泵。 (2) 检查电源装置是否安全可靠,各仪表准确,现场 制系统是否正常,电缆线有无破损这断,接线盒是否密封 完好。 (3) 检查泵的进出水阀门是否打开、回流阀是否打开。 (4)检查厌氧进水池是否在高液位。
5.2.2 启动与运行管理
(1) 合上电柜,开启水泵,排空过滤器空气。 (2) 运行人员在水泵开启至运行稳定后方可离开控制现场。 (3) 在运行中密切留意池内水位变化,以便根据情况及时 调整回流阀门开度,严禁泵干转,还要留意水泵和过滤器 的工作情况,检查水泵的流量、泵头温度是否稳定,当出 现异常时,如仪表显示不正常,流量不稳定、或水泵机组 有异常声响或震动,应及时关机。
3、渗滤液进水格栅机,用于去除较大颗粒悬浮物,处理流量= 20m3
4、旋转格栅机的管理
4.调节池的主要设备及参数
1. 结构形式:半地下式钢筋混凝土结构,分两个单元(调节
池、事故池),每个单元池内均设置两台呈对角位置的潜水搅
拌器,外部设有进出水管道根据需要单独或同时进水。
2. 调节池尺寸:15.3m X 12m X 6.5m
渗滤液预处理知识培训
北控环境再生能源沭阳有限公司 2017年2月17日
一、污水的定义
目录
二、预处理的组成及渗滤液的流程路线
三、调节池、事故池的运行管理
四、初沉池、水解酸化系统的运行管理
五、常见问题与处理方法
一、污水的定义
1.污水的来源
北控环境再生能源沭阳有限公司焚烧发电的垃圾炉料 来自于城区居民的生活垃圾,为了提高燃烧值将这些垃圾 贮存在垃圾仓内,经过发酵腐热后沥出渗滤液,即俗称“ 渗滤液”。

直饮机的原理

直饮机的原理

直饮机的原理
直饮机的原理是通过过滤和净化水源,使其达到饮用水的标准。

一般来说,直饮机主要由以下几个部分组成:
1. 预处理系统:直饮机通常配备有预处理系统,用于去除水中的悬浮物、颗粒物和大颗粒污染物。

预处理系统通常包括过滤器、颗粒物过滤器、活性炭过滤器等。

这些过滤器能够有效去除水中的杂质和异味。

2. 反渗透膜(RO膜):RO膜是直饮机的核心组成部分。

RO
膜通常由多层薄膜组成,具有非常小的孔径,可以有效地阻挡水中的溶解盐、重金属、细菌、病毒等微小的污染物。

通过
RO膜的作用,水可以被分离为纯净的水和浓缩的废水。

3. 净水器:RO膜产生的纯净水会经过一个净水器进一步处理,以去除残留的污染物、异味和味道。

净水器通常采用活性炭过滤、紫外线消毒等技术来提高水质。

4. 贮水罐:直饮机还配备有一个贮水罐,用于存储纯净水。

贮水罐有一定的容量,可以满足用户一段时间的饮水需求。

5. 取水龙头:直饮机的最后一部分是取水龙头,用户可以通过取水龙头直接获取到纯净的饮用水。

总的来说,直饮机通过预处理系统去除大颗粒杂质,利用RO
膜去除微小污染物,再经过净水器进一步提升水质,最终提供给用户安全、便捷的直饮水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预处理系统1. 什么是减压式取样探头?减压式取样探头是将减压阀和取样管组合成一体,将样品减压后再取出的一种探头,国外将其称为GPR(Genie Probe Regulator)探头,可译为Genie探头式减压器或Genie减压调节探头,由美国A+公司开发生产。

这种探头多用于天然气管道取样,可在14MPaG(2000psiG)压力下工作,其优点是可以防止天然气凝析液进入分析仪,也可用于其他易液化气体或中高压气体样品的取样。

其结构如图21-9所示。

该探头下端装有热翼片,其作用是当样品减压膨胀湿度降低时,可通过翼片吸热从气流的热质中得到补偿。

2. 对样品传输的基本要求有哪些?(1)传输滞后时间不得超过60s,这就要求分析仪至取样点的距离尽可能短,传输系统的窖尽可能小,样品流速尽可能快(1.5-3.5m/s之间为宜)。

(2)如果在分析仪允许通过的流量下,时间滞后60s,则应采用快速回路系统。

(3)传输管线最好是笔直地到达分析仪,只有最少数目的谈判和转角。

(4)没有死的支路和死体积。

(5)对含有冷凝液的气体样品,传输管线应保持一定坡度向下倾斜,最低点应靠近分析仪并设有冷凝液收集罐。

倾斜坡度一般为1:12,对于黏滞冷凝液可增至1:5。

(6)防止相变,即在传输过程中,气体样品完全保持为气态,液体样品完全保持为液态。

(7)样品管线应避免通过极端的湿度变化区,它会引起样品条件无控制的变化。

(8)样品传输系统不得有泄漏,以名样品外泄或环境空气侵入。

3. 样品处理系统的作用是什么?它有什么重要性?样品处理系统的作用是保证分析仪在最短的滞后时间内得到有代表性的工艺样品,样品的状态(湿度、压力、流量和清洁程度)适合分析仪所需的操作条件。

在线分析仪能否用好,往往不在分析仪自身,而是取决于样品系统的完善程度和可靠性。

因为,分析仪无论如何复杂和精确,分析精度也要受到样品的代表性,实时性和物理状态的限制。

事实上,样品系统使用中遇到的问题往往比分析仪还要多,样品系统的维护量也往往超过分析仪本身。

所以,要重视样品系统的作用,至少要把它放在和分析仪等同的位置上来考虑。

4. 对样品系统的基本要求有哪些?(1)使分析仪得到的样品与工艺管线或设备中物料的组成和含量一致。

(2)工艺样品的消耗量最少。

(3)易于操作和维护。

(4)能长期可靠工作。

(5)系统构成尽可能简单。

(6)采用快速回路以减少样品传送滞后时间。

5. 取样点的位置如何选择?在工艺管线上选择分析仪的取样点位置时,应遵循下述原则,最佳位置可能是以下各点中某几点的权衡和折衷:(1).取样点应仅位于能反映工艺流体性质和组成变化的灵敏点上;(2).取样点应仅次于对过程控制最适宜的位置,以避免不必要的工艺滞后;(3).取样点应仅次于可用工艺压差构成快速循环回路的位置;(4).取样点应选择在样品温度、压力、清洁度、干燥度和其他条件尽可能接近分析仪要求的位置,以便使样品处理部件的数目减至最小;(5).取样点位置应易于从扶梯或固定平台接近;(6).在线分析仪和实验室分析取样点应分开设置。

一般认为,在大多数气体和液体管线中,从产生良好混合的湍流位置上取样,可保证样品真正具有代表性。

因为气体或流体混合物除非有湍流存在是不容易达到完全混合的,取样点可选在一个或多个90º弯头之后,紧接最后一个弯头的顺流位置上,或选在节流元件下游一个相对平静的位置上(不要紧靠节流元件)。

尽可能避免以下情况。

(1)不要在一个相当长而直的管道下游取样。

因为这个位置流体的流动往往呈层流状态,管道横截面上的浓度梯度会导致样品组成的非代表性。

(2)避免在可能存在污染的位置或可能积存有气体、蒸汽、液态烃、水、灰尘和污物的死体积处取样。

6. 对于清洁样品、含尘气样、脏污液样、各应采用何种探头取样?对于清洁样品或含尘量不大(<10mg/m3)气体样品,采用直通式(敞开式)取样探头,探头切口呈45º角,背向流体流动方向。

液样中含有少量颗粒物、黏稠物、聚合物、结晶物时,易造成堵塞,可采用不停车带压插拔式取样探头,这也是一种直通式探头,可方便地将探管取出进行清洗,这种探头也可用于含有少量易赤地千里塞物(冷凝物、黏稠物)的气体样品。

含尘量较高(>10mg/ m3)的气体样品,可采用过滤式探头取样,过滤器装在探管头部(工艺管道内)的称为内置过滤器式探头,装在探管尾部(工艺管道外)的称为外置过滤器式探头。

脏污液样不得采用过滤式按着,因为湿性污物附着力强,难以靠液体的冲刷达到自清洗目的。

一般是采用口径较大的直通式探头,将液样取出后再加以除污。

对于乙烯裂解气、催化裂化再生烟气、硫磺回收尾气、煤或重油汽化气、尿素酸性气等复杂条件样品的取样,应采用特殊设计的专用取样装置。

7. 取样探头的长度应如何确定?探头的长度主要取决于插入长度,为了保证取出样品的代表性,一般认为插入长度至少等于管道内径的1/3,EEMVA No.138标准推荐的插入长度为:min2——30mm;max2——0.5d+10mm(d为管道内径)。

8. 取样探头应从什么方位插入工艺管道?取样探头的插入方位应作如下考虑:1.水平管道气体取样,探头应从管道顶部插入,以避开可能存在的凝液或液滴,探头应从管道侧壁插入,以避开管道上部可能存在的蒸气和所泡,以及管道底部可能存在的残渣和沉淀物。

2.垂直管道从管道侧壁插入,液体应从由下至上流动的管段取出,避免下游液体流动不正常时的气体混入。

9. 在线分析仪表和样品处理系统中使用的Tube管有哪些类型和规格?常用的Tube管按材质分,主要有316不锈钢和304不锈钢;按成型工艺分,有无缝钢管(先热轧后冷拔而成)和焊接钢管(用带钢焊接而成)两种;按其外径和壁厚尺寸采用的计量单位制有英寸制Tube管米制Tube管两种。

10. 在线分析仪表和样品处理系统中使用的管接头有哪些类型?答:管接头的类型繁多,但可归纳为以下几个大类。

1. 中间接头(Union) 用于Tube管和Tube管之间的连接,或者说两边均采用卡套连接的接头,主要有以下几种:直通中间接头(Union);三通中间接头(Union Tee);四通中间接头(Union Cross);弯通中间接头{Union Elbow(有90º和45º弯通两种)};穿板接头(Bulkhead Union)。

2. 异径接头(Reducing Union) 用于不同管径Tube管之间的连接,俗称大小头,也是一种中间接头。

3. 终端接头(Connector) 用于Tube管和分析仪、样品处理部件(过滤器、减压阀、流量计、样品泵等)之间的连接。

这种接头,一边采用卡套和Tube管连接,一边采用螺纹和分析仪及样品处理部件连接,是Tube管终端处的连接件,所以称为终端接头。

主要有以下几种:直通终端接头(Connector);三通终端接头(Connector Tee);弯通终端接头{Connector Elbow (有90º和45º弯通两种)};穿板接头(Bulkhead Connector)。

4 压力表接头(Gauge Connector) 用于Tube管和压力表之间的连接,也是一种终端接头。

主要有直通(Gauge Connector)和三通(Gauge Connector Tee)两种。

5 其他如短管接头(Adapter)、管堵头(Flug)、管帽(Cap)等,不再赘述。

11. 什么是伴热?什么是隔热?伴热(heat-tracing) 利用蒸汽伴热管、电伴热带对样品管线加热来补充样品在传输过程中损失的热量,以维持样品湿度在某一范围内。

隔热(thermal insulation) 为了减少样品在传输过程中向周围环境散热,或从周围环境中吸热,而在样品管线外表面采取的包覆措施。

或者说,为保证样品在传输过程中免受周围环境温度影响而采取的隔离措施。

12.样品传输管线为什么要进行伴热或隔热保温?哪些样品需要伴热或隔热保温传输?在石油化工装置中,样品传输管线往往需要伴热或隔热保温,以保证样品相态和组成不因温度变化而改变。

样品传输过程中一个明显的温度变化来源是天气的变化,我国处于大陆性季风带,冬夏极端温度之差往往高达60℃以上。

此外,还必须考虑直接太阳辐射的加热效应,在夏季阳光曝晒下,样品管线表面温度有时可达80-90℃。

因此,在样品传输设计中必须考虑环境温度变化对样品粗态和组成的影响。

气样中含有易冷凝的组分,应伴热保温在其露以上;液样中含有易气化的组分,应隔热保温在其蒸发温度以下或保持压力在其蒸气压以上。

微量分析样品(特别是微量水、微量氧)必须伴热输送,因为管壁的吸附效应随温度降低而增强,解吸效应则呈相反趋势。

易凝析、结晶的样品也必须伴热传输。

总之,应根据样品条件和组成,根据环境温度的变化情况,合理选择保温方式,确定保温温度。

13.蒸汽伴热有何公有优缺点?采用低压蒸汽伴热的优点:温度高,热量大,可迅速加热样品并使样品保持在较高温度。

其缺点如下:1.蒸汽伴热系统因蒸汽管径偏细,气压不能太高和存在立管高度的变化,有效伴热长度受到很大的限制,以致样品管线较长或重负荷伴热时,不得不采用分段伴热的做法。

根据国外资料,蒸汽伴热的最大有效伴热长度为100ft(30.48m),因此,对于60m长的样品管线,一般要分两段伴热。

2.蒸汽压力的波动会导致温度的较大幅度变化,供气不足甚至短时中断也时有发生,难以达到样品管线伴热温度均衡、稳定的要求。

3.样品管线采用蒸汽伴热时,对伴热温度进行控制是非常困难的,或者说是不可控的(对样品处理箱可采用温控阀控温)。

14.与蒸汽伴热方式相比,电伴热有何优越性?目前国内石化企业大多使用蒸汽伴热方式,主要原因是可以利用厂内原已存在的蒸汽锅炉,但其伴热效能及日后运转中的维修和水泵都远不如采用电伴热经济。

另外,供汽管网和回水管路的材料、保温安装及日后维护费用、蒸汽用水的交货费用也是相当可观的。

与蒸汽伴热相比,电伴热还具有以下优点。

1电伴热是比较简单的伴热系统,不像蒸汽伴热那样需要复杂的供汽管网和回水管路,所需的供配电设施可与其他电气线路共用。

2电伴热的热损失范围和运行、维护费用仅限于伴热管线上。

3电伴热是极易控制的伴热系统,其温度控制可以十分精确,这是蒸汽伴热无法达到的。

4无噪声、无污染,蒸汽伴热有“跑、冒、滴、漏”现象,电伴热则没有。

5电伴热带的使用寿命可达25年甚至更长,这一点是蒸汽伴热很难达到的。

6安装、使用、维护方便。

很多发达国家已在工业领域普遍采用电伴热技术,目前国内新建的大型石化项目,仪表系统的伴热不少已采用电伴热。

但需注意电伴热温度范围通常低于200℃,蒸汽伴热范围可达到450℃,有些样品的汽化、传输仍需采用蒸汽伴热方式。

相关文档
最新文档