2020-2021西安交通大学附属中学分校初三数学上期中试题(含答案)

合集下载

陕西省西安交通大学附属初中2021年九年级数学教学调研试卷 数 学(5月)

陕西省西安交通大学附属初中2021年九年级数学教学调研试卷 数     学(5月)

2020 - 2021学年初三教学调研试卷数学2021.05 注意事项:1.本试卷满分130分,考试用时120分钟;2.所有的答案均应书写在答题卷上,按照题号顺序答在相应的位置,超出答题区域书写的答案无效;书写在试题卷上、草稿纸上的答案无效;3.字体工整,笔迹清楚,保持答题纸卷面清洁。

一、选择题:本大题共10小题,每小题3分,共30分.1.下列实数中无理数是()A.B.C.D.﹣2.据中国政府网报道,截至2021年4月5日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗14280.2万剂次.下列说法不正确的是()A.14280.2万大约是1.4亿B.14280.2万大约是1.4×108C.14280.2万用科学记数法表示为1.42802×104D.14280.2万用科学记数法表示为1.42802×1083.下列垃圾分类图标中,是轴对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其他垃圾4.如图所示的主视图对应的几何体是()A.B.C.D.5.点a,b在数轴上的位置如图所示,且满足a+b>0,a•b<0,则原点所在的位置有可能是()A.点A B.点B C.点C D.点D6.如图,草根学堂大厅自动扶梯AB的坡度比为1:(坡比是坡面铅直高度BC与水平高度AC之比),AB长为10米,则大厅两层之间的高度BC为()米.A.5B.C.D.4(第6题)(第8题)7.关于x的方程x2﹣2x+a=0(a为常数)无实数根,则点(a,a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图是一个正方形纸板,阴影部分是由4段以正方形边长的一半为半径的弧所围成的,这些弧所在圆的圆心分别是正方形的顶点或中心,这样的图形被称为斯坦因豪斯图形.若将一根针随机投掷到该正方形纸板上,则针尖落在阴影区域的概率是()A.B.C.D.9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.S△ABC=BC•AH B.AC平分∠BADC.BH垂直平分线段AD D.AB=AD10.如图,在扇形BOC中,∠BOC=60°,点D是的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则△DEF周长的最小值为()A.2B.2C.4D.4(第9题)(第10题)(第15题)二、填空题:本大题共8小题,每小题3分,共24分.11.若代数式有意义,则实数x的取值范围是.12.若,则代数式的值是.13.已知方程组中,a,b互为相反数,则m的值是.14.圆锥的底面圆的半径是3,其母线长是9,则圆锥侧面展开图的扇形的圆心角度数是.15.如图所示的网格是正方形网格,点A,B,C,D,E,F是网格线的交点,则△ABC的面积与△DEF的面积比为.16.公元3世纪,我国古代数学家刘徽就能利用近似公式≈a+得到无理数的近似值,例如可将化为,再由近似公式得到≈1+=,若利用此公式计算的近似值时,r取正整数,且a取尽可能大的正整数,则≈.17.如图①,园区标志性建筑“靴子楼”通过简单的几何曲线处理,现代设计与苏州古城印象相呼应,把各种功能元素形成有机结合。

2020-2021西安交通大学附属中学初三数学上期中第一次模拟试题(带答案)

2020-2021西安交通大学附属中学初三数学上期中第一次模拟试题(带答案)

2020-2021西安交通大学附属中学初三数学上期中第一次模拟试题(带答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .3.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .344.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( )A .25°B .40°C .50°D .65° 5.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<6.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .2 7.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1C .3D .18.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( ) A .1B .1或4C .4D .09.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 10.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .1912.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.16.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)17.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm². 18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.19.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63120186252310 360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?24.已知关于x的方程x2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a的取值范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.D解析:D【解析】过B 作⊙O 的直径BM ,连接AM , 则有:∠MAB=∠CDB=90°,∠M=∠C , ∴∠MBA=∠CBD , 过O 作OE ⊥AB 于E ,Rt △OEB 中,BE=12AB=4,OB=5, 由勾股定理,得:OE=3,∴tan ∠MBA=OE BE =34, 因此tan ∠CBD=tan ∠MBA=34,故选D .4.B解析:B 【解析】连接OC ,∵CD 是切线,∴∠OCD=90°,∵OA=OC ,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°, ∴∠D=90°-∠COD=40°, 故选B.5.B解析:B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D解析:D 【解析】 【分析】 【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°, ∴∠DAB=∠D=45°, ∵AB=2, ∴BD=2, ∴22222222AB BD +=+=∴⊙O 的半径AO=22AD=. 故选D . 【点睛】本题考查圆周角定理;勾股定理.7.D解析:D 【解析】 【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可. 【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3,即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.8.C解析:C 【解析】 【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值. 【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1, 而a−1≠0, 所以m =4. 故选C . 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.9.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯,解得:116k,此时116k 且0k ≠; 综上,116k .故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.10.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.11.A解析:A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x因为经过两年时间让市区绿地面积增加44则有(1+x)2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步那么宽就应该是(x﹣12)步根据面积为864即可得出方程【详解】解:设矩形田地的长为x步那么宽就应该是(x﹣12)步根据矩形面积=长×宽解析:x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.16.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π. 【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.17.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R 圆锥侧面展开图为解析:2π 【解析】 【分析】 【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π, ∴圆锥的侧面积=12×2π×2=2π. 故答案为2π. 【点睛】本题考查了圆锥的侧面积公式:S =12l •R .圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径.18.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2 【解析】 【分析】连接BC ,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====角三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,1902ACB CH DH CD ∴∠︒=,==30A ∠︒=,2AC CH ∴==在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA∴=,即⊙O的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.19.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 12π+20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△解析:9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.22.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.23.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】()1∵摸到白球的频率为()++++++÷≈,0.650.620.5930.6040.6010.5990.60170.6∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等). 【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.24.(1)a >-1;(2) x 1=-3,x 2=-1. 【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a 的取值范围;(2)把a 代入后解方程即可. 试题解析:(1)∵方程有两个不相等的实数根 ∴16-4(3-a )>0, ∴a >-1 .(2)由题意得:a =0 , 方程为x 2+4x +3=0 , 解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根. 25.(1)证明见解析;(2)6πcm 2. 【解析】 【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC . 【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M . (1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°, ∵AC ∥BD , ∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC , ∵OC 为半径, ∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线, ∴OC ⊥AC .∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.。

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。

2020-2021学年北京交大附中高一(上)期中数学试卷

2020-2021学年北京交大附中高一(上)期中数学试卷

2020-2021学年北京交大附中高一(上)期中数学试卷试题数:20,总分:1201.(单选题,4分)已知集合P={x∈R||x|<2},Q={x∈R|-1≤x≤3},则P∩Q=()A.[-1,2)B.(-2,2)C.(-2,3]D.[-1,3]2.(单选题,4分)已知命题p:∃c>0,方程x2-x+c=0有解,则¬p为()A.∀c>0,方程x2-x+c=0无解B.∀c≤0,方程x2-x+c=0有解C.∃c>0,方程x2-x+c=0无解D.∃c<0,方程x2-x+c=0有解3.(单选题,4分)如果a>b,那么下列不等式中正确的是()A. 1a <1bB.a2>b2C.a|c|>b|c|D. ac2+1>bc2+14.(单选题,4分)下面四组函数中,f(x)与g(x)表示同一个函数的是()A. f(x)=x2−1x+1,g(x)=x−1B. f(x)=|x|,g(x)={x (x≥0)−x(x<0)C. f(x)=√x2,g(x)=(√x)2D.f(x)=x0,g(x)=15.(单选题,4分)下列函数中,在区间[1,+∞)上为增函数的是()A.y=-(x-1)2B.y=-(x+1)2C.y=|x-1|D.y= 1x+16.(单选题,4分)a>-1是关于x的方程x2+2x-a+1=0有两个负根的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件的图象大致为()7.(单选题,4分)函数y= 4xx2+1A.B.C.D.8.(单选题,4分)已知函数f(x)=|x-m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[-1,+∞)B.(-∞,-1]C.[-2,+∞)D.(-∞,-2]9.(单选题,4分)一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字()A.4,6B.3,6C.3,7D.1,710.(单选题,4分)设集合A是集合N*的子集,对于i∈N*,定义φi(A)={1,i∈A0,i∉A,给出下列三个结论:① 存在N*的两个不同子集A,B,使得任意i∈N*都满足φi(A∩B)=0且φi(A∪B)=1;② 任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∩B)=φi(A)•φi(B);③ 任取N*的两个不同子集A,B,对任意i∈N*都有φi(A∪B)=φi(A)+φi(B).其中,所有正确结论的序号是()A. ① ②B. ② ③C. ① ③D. ① ② ③11.(填空题,4分)函数f(x)= 1√x2−2x的定义域为___ .12.(填空题,4分)方程组{x 2=1y2=x的解集中元素的个数为___ .13.(填空题,4分)若不等式x2-ax-2<0在x∈(1,2)内恒成立,则a的取值范围是___ .14.(填空题,4分)已知函数y=f(x),y=g(x)的对应关系如表:x 1 2 3f(x) 1 3 1x 1 2 3 g(x) 3 2 1则f(g(1))的值为___ ;满足f(g(x))>g(f(x))的x的值是___ .15.(填空题,4分)对任意的x1<0<x2,若函数f(x)=a|x-x1|+b|x-x2|的大致图象为如图所示的一条折线(两侧的射线均平行于x轴),试写出a、b应满足的条件___ .16.(问答题,12分)已知集合A={x|x2-4x-5>0},B={x|x−(a+3)x−a<0}.(1)若A∩B=∅,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围.17.(问答题,12分)已知函数f(x)=1+x21−x2.(1)求函数f(x)的定义域;(2)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.18.(问答题,12分)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R.(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)若f(x)为偶函数,且a>0,设F(x)={f(x),x>0,−f(x),x<0.,mn<0,m+n>0,判断F(m)+F(n)是否大于零,请说明理由.19.(问答题,12分)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P(单位:元/102kg)与上市时间t(单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与时间的函数关系式Q=g(t);(2)若市场售价减去种植成本为纯收益,问何时上市的纯收益最大?20.(问答题,12分)对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,=M,则称M为函数y=f(x)的“均值”.存在唯一的x2∈D满足等式f(x1)+f(x2)2(1)判断1是否为函数f(x)=2x+1(-1≤x≤1)的“均值”,请说明理由;(2)若函数f(x)=ax2-2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).2020-2021学年北京交大附中高一(上)期中数学试卷参考答案与试题解析试题数:20,总分:1201.(单选题,4分)已知集合P={x∈R||x|<2},Q={x∈R|-1≤x≤3},则P∩Q=()A.[-1,2)B.(-2,2)C.(-2,3]D.[-1,3]【正确答案】:A【解析】:解关于x的不等式,求出P、Q的交集即可.【解答】:解:∵P={x∈R,||x|<2}={x|-2<x<2},Q={x∈R|-1≤x≤3},则P∩Q=[-1,2),故选:A.【点评】:本题考查了集合的运算,考查绝对值不等式问题,是一道基础题.2.(单选题,4分)已知命题p:∃c>0,方程x2-x+c=0有解,则¬p为()A.∀c>0,方程x2-x+c=0无解B.∀c≤0,方程x2-x+c=0有解C.∃c>0,方程x2-x+c=0无解D.∃c<0,方程x2-x+c=0有解【正确答案】:A【解析】:直接利用特称命题的否定是全称命题写出结果即可.【解答】:解:因为特称命题的否定是全称命题,所以,命题p:∃c>0,方程x2-x+c=0 有解,则¬p为∀c>0,方程x2-x+c=0无解.故选:A.【点评】:本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.(单选题,4分)如果a>b,那么下列不等式中正确的是()A. 1a <1bB.a2>b2C.a|c|>b|c|D. ac2+1>bc2+1【正确答案】:D【解析】:由不等式的基本性质逐一判断即可.【解答】:解:若a>0>b,则1a >1b,故A错误;取a=-1,b=-2,满足a>b,但a2<b2,故B错误;若c=0,a|c|=b|c|,故C错误,因为c2+1>0,a>b,∴ ac2+1>bc2+1,故D正确.故选:D.【点评】:本题主要考查不等式的基本性质,属于基础题.4.(单选题,4分)下面四组函数中,f(x)与g(x)表示同一个函数的是()A. f(x)=x2−1x+1,g(x)=x−1B. f(x)=|x|,g(x)={x (x≥0)−x(x<0)C. f(x)=√x2,g(x)=(√x)2D.f(x)=x0,g(x)=1【正确答案】:B【解析】:看两个函数是不是同一个函数,要观察三个方面,A选项,f(x)的定义域{x|x≠-1},定义域不同,不是同一个函数,选项C是定义域不同,前者是全体实数,后者是非负数,选项D 也是定义域不同,后者是全体实数,后者是不等于0【解答】:解:∵对于A选项,f(x)的定义域{x|x≠-1},定义域不同,不是同一个函数,选项C也是定义域不同,前者是全体实数,后者是非负数,选项D 也是定义域不同,后者是全体实数,后者是不等于0,故选:B.【点评】:本题考查判断两个函数是不是同一个函数,本题解题的关键是判断两个函数的定义域是否相同,本题是一个基础题.5.(单选题,4分)下列函数中,在区间[1,+∞)上为增函数的是()A.y=-(x-1)2B.y=-(x+1)2C.y=|x-1|D.y= 1x+1【正确答案】:C【解析】:结合基本初等函数的单调性分别检验各选项即可判断.【解答】:解;根据二次函数的性质可知,y=-(x-1)2,y=-(x+1)2在区间[1,+∞)上为减函数,A,C不符合题意;在区间[1,+∞)上为减函数,D 不符合题意;根据反比例函数的性质可知,y= 1x+1故选:C.【点评】:本题主要考查了函数单调性的判断,属于基础试题.6.(单选题,4分)a>-1是关于x的方程x2+2x-a+1=0有两个负根的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:B【解析】:关于x的方程x2+2x-a+1=0有两个负根,则△=4-4(-a+1)≥0,且-a+1>0,解得a范围,即可判断出结论.【解答】:解:关于x的方程x2+2x-a+1=0有两个负根,则△=4-4(-a+1)≥0,且-a+1>0,解得:1>a≥0,∴a>-1是关于x的方程x2+2x-a+1=0有两个负根的必要不充分条件.故选:B.【点评】:本题考查了简易逻辑的判定方法、方程与不等式的解法,考查了推理能力与计算能力,属于基础题.7.(单选题,4分)函数y= 4xx2+1的图象大致为()A.B.C.D.【正确答案】:A【解析】:根据函数的奇偶性和函数值的正负即可判断.【解答】:解:函数y= 4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)= 4xx2+1,则f(-x)=- 4xx2+1=-f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.【点评】:本题考查了函数图象的识别,属于基础题.8.(单选题,4分)已知函数f(x)=|x-m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A.[-1,+∞)B.(-∞,-1]C.[-2,+∞)D.(-∞,-2]【正确答案】:D【解析】:根据题意,分析可得f(x)在区间(-2,-1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m的取值范围.【解答】:解:根据题意,函数f(x)=|x-m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则f(x)在区间(-2,-1)上递增,而f(x)=|x-m|= {x−m,x≥m−x+m,x<m,在区间(m,+∞)上为增函数,则有m≤-2,即m的取值范围为(-∞,-2];故选:D.【点评】:本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.9.(单选题,4分)一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字()A.4,6B.3,6C.3,7D.1,7【正确答案】:D【解析】:若正确的密码中一定含有数字3,6,而3,6在第1,2,3,4的位置都有,与它们各自的位置均不正确矛盾.同理正确的密码中一定含有数字4,6,或3,7不正确.正确的密码中一定含有数字1,7.【解答】:解:若正确的密码中一定含有数字3,6,而3,6在第1,2,3,4的位置都有,与它们各自的位置均不正确矛盾.同理正确的密码中一定含有数字4,6,或3,7不正确.若正确的密码中一定含有数字1,7,而3,6在第1,2,3,4的位置都有,根据它们各自的位置均不正确,可得1在第三位置,7在第四位置.故选:D.【点评】:本题考查了合情推理,考查了推理能力,属于中档题.10.(单选题,4分)设集合A 是集合N*的子集,对于i∈N*,定义 φi (A )={1,i ∈A 0,i ∉A,给出下列三个结论:① 存在N*的两个不同子集A ,B ,使得任意i∈N*都满足φi (A∩B )=0且φi (A∪B )=1; ② 任取N*的两个不同子集A ,B ,对任意i∈N*都有φi (A∩B )=φi (A )•φi (B ); ③ 任取N*的两个不同子集A ,B ,对任意i∈N*都有φi (A∪B )=φi (A )+φi (B ). 其中,所有正确结论的序号是( ) A. ① ② B. ② ③ C. ① ③ D. ① ② ③ 【正确答案】:A【解析】:对题目中给的新定义要充分理解,对于i∈N*,φi (A )=0或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【解答】:解:∵对于i∈N*,定义 φi (A )={1,i ∈A0,i ∉A,∴ ① 例如A={正奇数},B={正偶数},∴A∩B=∅,A∪B=N*,∴φi (A∩B )=0;φi (A∪B )=1,故 ① 正确;② 若φi (A∩B )=0,则i∉(A∩B ),则i∈A 且i∉B ,或i∈B 且i∉A ,或i∉A 且i∉B ;∴φi (A )•φi (B )=0;若φi (A∩B )=1,则i∈(A∩B ),则i∈A 且i∈B ;∴φi (A )•φi (B )=1;∴任取N*的两个不同子集A ,B ,对任意i∈N*都有φi (A∩B )=φi (A )•φi (B );正确,故 ② 正确;③ 例如:A={1,2,3},B={2,3,4},A∪B={1,2,3,4},当i=2时,φi (A∪B )=1;φi (A )=1,φi (B )=1;∴φi (A∪B )≠φi (A )+φi (B ); 故 ③ 错误;∴所有正确结论的序号是: ① ② ; 故选:A .【点评】:本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 11.(填空题,4分)函数f (x )=√x 2−2x的定义域为___ .【正确答案】:[1](-∞,0)∪(2,+∞)【解析】:根据二次根式的性质以及分母不为0,求出函数的定义域即可.【解答】:解:由题意得: x 2-2x >0,解得:x >2或x <0,故函数的定义域是(-∞,0)∪(2,+∞), 故答案为:(-∞,0)∪(2,+∞).【点评】:本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题. 12.(填空题,4分)方程组 {x 2=1y 2=x 的解集中元素的个数为___ .【正确答案】:[1]2【解析】:通过解方程组得到所求解集和元素个数.【解答】:解:解方程组 {x 2=1y 2=x 得到: {x =1y =1 或 {x =1y =−1 .所以原方程组解集为{(1,1),(1,-1)}, 则解集的元素个数为2. 故答案是:2.【点评】:本题集合的表示方法,考查运算能力,属于基础题.13.(填空题,4分)若不等式x 2-ax-2<0在x∈(1,2)内恒成立,则a 的取值范围是___ . 【正确答案】:[1][1,+∞)【解析】:不等式x 2-ax-2<0在x∈(1,2)内恒成立⇔a >x- 2x 在x∈(1,2)内恒成立,令t (x )=x- 2x ,x∈(1,2),由函数的单调性求得t (x )的范围得答案.【解答】:解:由不等式x 2-ax-2<0在x∈(1,2)内恒成立, 得ax >x 2-2,即a >x- 2x 在x∈(1,2)内恒成立,令t (x )=x- 2x ,x∈(1,2),该函数为增函数,则t (x )<t (2)=1. 可得a≥1.∴a 的取值范围是[1,+∞). 故答案为:[1,+∞).【点评】:本题考查二次函数的性质,考查不等式恒成立问题的求解方法,训练了利用函数单调性求最值,是基础题.14.(填空题,4分)已知函数y=f(x),y=g(x)的对应关系如表:x 1 2 3f(x) 1 3 1x 1 2 3 g(x) 3 2 1则f(g(1))的值为___ ;满足f(g(x))>g(f(x))的x的值是___ .【正确答案】:[1]1; [2]2【解析】:根据题意,对于第一空:由函数y=f(x)的对应关系求出g(1)的值,结合f(x)的图象可得f(g(1))的值,对于第二空:分别将x=1,2,3代入f[g(x)],g[f(x)],判断出满足f[g(x)]>g[f(x)]的x.【解答】:解:根据题意,由f(x)的表格可得:g(1)=3,则f(g(1))=f(3)=1,当x=1时,f[g(1)]=1,g[f(1)]=g(1)=3,不满足f[g(x)]>g[f(x)],当x=2时,f[g(2)]=f(2)=3,g[f(2)]=g(3)=1,满足f[g(x)]>g[f(x)],当x=3时f[g(3)]=f(1)=1,g[f(3)]=g(1)=3,不满足f[g(x)]>g[f(x)],故满足f[g(x)]>g[f(x)]的x的值是2,故答案为1;2.【点评】:本题考查函数的表示方法,涉及函数值的计算,属于基础题.15.(填空题,4分)对任意的x1<0<x2,若函数f(x)=a|x-x1|+b|x-x2|的大致图象为如图所示的一条折线(两侧的射线均平行于x轴),试写出a、b应满足的条件___ .【正确答案】:[1]a>0且a+b=0;(该结论的等价形式都对)【解析】:将f(x)化为分段函数,逐段与图象对应,根据图象在各段上的变化规律:常数函数、正比例函数、常数函数确定解析式的各项系数.找出共同条件.【解答】:解:当x≤x 1时,f (x )=-a (x-x 1)-b (x-x 2)=-(a+b )x+(ax 1+bx 2) 由图可知 {a +b =0 ① ax 1+bx 2<0 ②当x 1<0<x 2时,f (x )=a (x-x 1)-b (x-x 2)=(a-b )x-ax 1+bx 2 由图可知 {a −b >0 ①′−ax 1+b x 2=0②′当x≥x 2时,f (x )=a (x-x 1)+b (x-x 2)=(a+b )x-(ax 1+bx 2) 由图又可得出 ① ② 两式. 由 ① , ① ′两式可得a=-b >0,同时使得 ② , ② ′成立. 故答案为:a >0且a+b=0 (或a=-b >0)【点评】:本题考查绝对值函数的图象,以及识图能力、逆向思维能力. 16.(问答题,12分)已知集合A={x|x 2-4x-5>0}, B ={x|x−(a+3)x−a<0} . (1)若A∩B=∅,求实数a 的取值范围; (2)若B⊆A ,求实数a 的取值范围.【正确答案】:【解析】:(1)先化简集合A ,B ,再根据A∩B=∅,即可求得a 的值. (2)B⊆A ,即B 是A 的子集,即可求得a 的取值范围.【解答】:解:B={x|(x-a )[x-(a+3)]<0}={x|a <x <a+3},A={x|x 2-4x-5>0}={x|x <-1或x >5},(1)要使A∩B=∅,则需满足下列不等式组 {a +3≤5a ≥−1 ,解此不等式组得-1≤a≤2, 则实数a 的取值范围为[-1,2], (2)要使B⊆A ,即B 是A 的子集, 则需满足a+3<-1或a >5, 解得a >5或a <-4,即a 的取值范围是{a|a >5或a <-4}.【点评】:本题考查了集合间的关系和运算,深刻理解集合间的关系和运算法则是解决此题的关键.17.(问答题,12分)已知函数f(x)=1+x21−x2.(1)求函数f(x)的定义域;(2)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.【正确答案】:【解析】:(1)由分母1-x2≠0,求出函数的定义域{x|x≠±1};(2)证明:为了便于证明,先整理函数f(x)=1+x 21−x2 = 2−(1−x2)1−x2= 21−x2-1,然后利用函数单调性定义证明,设1<x1<x2,作差(x1)-f(x2)变形,直到容易判断符号为止,从而证明函数单调性.【解答】:解:(1)由1-x2≠0,得x≠±1,即f(x)的定义域{x|x≠±1}(2)证明:整理函数f(x)=1+x 21−x2 = 2−(1−x2)1−x2= 21−x2-1,设1<x1<x2,则f(x1)-f(x2)= 21−x12−1−21−x22+1 = 2(x1−x2)(x1+x2)(1−x1)(1−x2)(1+x1)(1+x2)∵1<x1<x2,∴x1-x2<0,1-x2<0,1-x1<0,1+x2>0,1+x1>0,x2+x1>0,则f(x1)-f(x2)<0,即f(x1)<f(x2),则函数f(x)在(1,+∞)上是增函数.【点评】:本题考查了分式函数求定义域的方法,利用函数单调性定义证明函数单调性,属于基础题.18.(问答题,12分)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R.(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;(3)若f(x)为偶函数,且a>0,设F(x)={f(x),x>0,−f(x),x<0.,mn<0,m+n>0,判断F(m)+F(n)是否大于零,请说明理由.【正确答案】:【解析】:(1)利用f (-1)=0和值域为[0,+∞),结合二次函数的性质可建立方程组求出a ,b 的值,进而可以求解,(2)由(1)可得函数g (x )解析式,利用已知可得函数的对称轴在区间外,建立不等式即可求解,(3)由已知函数是偶函数可得b=0,进而可得函数F (x )的解析式,再假设m >n ,由已知可得m >-n >0,进而可得|m|>|-n|,即可判断F (m )+F (n )与0的关系.【解答】:解:(1)由f (-1)=0可得a-b+1=0,又函数的值域为[0,+∞),所以 {a ≠0△=b 2−4a =0 ,解得a=1,b=2,故函数f (x )的解析式为:f (x )=x 2+2x+1;(2)由(1)可得g (x )=f (x )-kx=x 2+(2-k )x+1, 对称轴为x= k−22,因为函数g (x )在区间[-2,2]上单调,则有k−22≤−2或k−22≥2 ,解得k≥6或k≤-2,故k 的取值范围为(-∞,-2]∪[6,+∞); (3)大于零,理由如下:因为f (x )是偶函数,所以f (x )=ax 2+1, 则F (x )= {ax 2+1,x >0−ax 2−1,x <0,不妨设m >n ,则n <0,由m+n >0得m >-n >0, 所以|m|>|-n|,又a >0,所以F (m )+F (n )=f (m )-f (n )=(am 2+1)-(an 2+1)=a (m 2-n 2)>0, 故F (m )+F (n )大于零.【点评】:本题考查了二次函数的解析式与性质,考查了学生的逻辑推理能力和运算能力,属于中档题.19.(问答题,12分)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P (单位:元/102kg )与上市时间t (单位:天)的关系符合图1中的折线表示的函数关系,西红柿种植成本Q (单位:元/102kg )与上市时间t (单位:天)的关系符合图2中的抛物线表示的函数关系.(1)写出图1表示的市场售价与时间的函数关系式P=f (t ),写出图2表示的种植成本与时间的函数关系式Q=g (t );(2)若市场售价减去种植成本为纯收益,问何时上市的纯收益最大?【正确答案】:【解析】:(1)分0<t≤200和200<t≤300两种情况,结合一次函数分段写出P=f (t );根据二次函数的顶点式来写Q=g (t );(2)设纯收益为W ,则W=f (t )-g (t ),然后分0<t≤200和200<t≤300两种情况,并利用配方法来求W 的最大值.【解答】:解:(1)P=f (t )= {−t +300,0<t ≤2002t −300,200<t ≤300,Q=g (t )= 1200 (t-150)2+100,0<t≤300. (2)设纯收益为W ,则W=f (t )-g (t ), 若0<t≤200,W=-t+300- 1200 (t-150)2-100 =- 1200 t 2+ 12 t+1752 =- 1200 (t-50)2+100, ∴当t=50时,纯收益W 最大,为100元/102kg , 若200<t≤300, W=2t-300-1200(t-150)2-100=-1200 t 2+ 72 t- 10252 =- 1200(t-350)2+100, ∴当t=300时,纯收益W 最大,为87.5元/102kg ,综上所述,当t=50,即从2月1日开始的第50天上市,西红柿的纯收益最大.【点评】:本题考查分段函数和二次函数的实际应用,选择合适的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.20.(问答题,12分)对于定义域为D 的函数y=f (x ),若有常数M ,使得对任意的x 1∈D ,存在唯一的x 2∈D 满足等式f (x 1)+f (x 2)2=M ,则称M 为函数y=f (x )的“均值”.(1)判断1是否为函数f (x )=2x+1(-1≤x≤1)的“均值”,请说明理由;(2)若函数f (x )=ax 2-2x (1<x <2,a 为常数)存在“均值”,求实数a 的取值范围; (3)若函数f (x )是单调函数,且其值域为区间I .试探究函数f (x )的“均值”情况(是否存在、个数、大小等)与区间I 之间的关系,写出你的结论(不必证明).【正确答案】:【解析】:(1)根据均值的定义,要判断1是函数f (x )=2x+1(-1≤x≤1)的“均值”,即要验证f (x 1)+f (x 2)2=x 1+x 2+1=1 ;(2)函数f (x )=ax 2-2x (1<x <2,a 为常数)存在“均值”,当a=0时,f (x )=-2x (1<x <2)存在“均值”,且“均值”为-3;当a≠0时,由f (x )=ax 2-2x (1<x <2)存在均值,可知对任意的x 1,都有唯一的x 2与之对应,从而有f (x )=ax 2-2x (1<x <2)单调,从而求得实数a 的取值范围;(3)根据(1),(2)的结论对于当I=(a ,b )或[a ,b]时,函数f (x )存在唯一的“均值”;当I 为(-∞,+∞)时,函数f (x )存在无数多个“均值”,当为半开半闭区间时,函数f (x )不存在均值.【解答】:解:(1)对任意的x 1∈[-1,1],有-x 1∈[-1,1], 当且仅当x 2=-x 1时,有f (x 1)+f (x 2)2=x 1+x 2+1=1 ,故存在唯一x 2∈[-1,1],满足f (x 1)+f (x 2)2=1 ,所以1是函数f (x )=2x+1(-1≤x≤1)的“均值”.(2)当a=0时,f (x )=-2x (1<x <2)存在“均值”,且“均值”为-3;当a≠0时,由f(x)=ax2-2x(1<x<2)存在均值,可知对任意的x1,都有唯一的x2与之对应,从而有f(x)=ax2-2x(1<x<2)单调,故有1a ≤1或1a≥2,解得a≥1或a<0或0<a≤12,综上,a的取值范围是a≤12或a≥1.(3)① 当I=(a,b)或[a,b]时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为a+b2;② 当I为(-∞,+∞)时,函数f(x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③ 当I=(a,+∞)或(-∞,a)或[a,+∞)或(-∞,a]或[a,b)或(a,b]时,函数f(x)不存在“均值”.① 当且仅当I形如(a,b)、[a,b]其中之一时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为a+b2;② 当且仅当I为(-∞,+∞)时,函数f(x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③ 当且仅当I形如(a,+∞)、(-∞,a)、[a,+∞)、(-∞,a]、[a,b)、(a,b]其中之一时,函数f(x)不存在“均值”.【点评】:此题是个中档题,考查函数单调性的理解,和学生的阅读能力,以及分析解决问题的能力,其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.。

2020-2021西安交通大学附属中学分校小学二年级数学下期中试题(含答案)

2020-2021西安交通大学附属中学分校小学二年级数学下期中试题(含答案)

2020-2021西安交通大学附属中学分校小学二年级数学下期中试题(含答案) 一、选择题1.有18只,平均装在9个笼子里,每个笼子里装()只。

A. 2B. 3C. 4D. 52.从48中连续减8,减( )次后结果为0。

A. 8B. 6C. 73.二年级有72个同学去慰问烈军属,每8个人一组,求共分成几组?正确的解答是()A. 72÷9=8(组) B. 72÷8=9(组) C. 72+8=80(组) D. 72-8=64(组)4.是从哪张纸上剪下来的?()A. B. C. D.5.下列图形中,()不是轴对称图形。

A. B. C. D.6.每2个一盒,可以放几盒?就是求()。

A. 10里面有几个2?B. 把10平均分成5份,每份是多少?7.有25个,每次拿5个,拿( )次就拿完了。

A. 4B. 5C. 68.与136.5÷5.4得数相同的是()A. 1365÷5.4B. 136.5÷54C. 1365÷549.选一选种类连环画故事书科技书其他人数(人)181284A.连环画B.故事书C.科技书D.其他(2)喜欢()的人数最少。

A.连环画B.故事书C.科技书D.其他(3)喜欢故事书的比喜欢连环画的少()人。

A.10B.6C.4D.8(4)喜欢连环画的和喜欢科技书的一共()人。

A.30B.20C.26D.1210.下表是二年级学生喜欢的图书人数情况。

A.连环画B.故事书C.科技D.其他(2)喜欢()的人数最少。

A.连环画B.故事书C.科技书D.其他(3)喜欢故事书的人数比喜欢连环画的少()人。

A.10B.6C.4D.8(4)喜欢连环画的和喜欢科技书的一共有( )人。

A.30B.20C.26D.1211.下面是某年级(二)班同学对水果的爱好情况统计表,喜欢()水果的人数最多。

A. 苹果B. 梨C. 香蕉D. 桃12.下列现象是平移的是()。

A. B. C.二、填空题13.横线上最大能填几呢?________×8<40 6×________<40 27>3×________________×9<81 5×________<35 28>7×________14.教室的玻璃窗户的开和关是________现象,电风扇的运动是________现象。

2020-2021西安经开第一学校(西安经发学校)初三数学上期中模拟试卷(含答案)

2020-2021西安经开第一学校(西安经发学校)初三数学上期中模拟试卷(含答案)
【详解】
解:A、∵任何数的绝对值都是非负数,∴ 是必然事件,不符合题意;
B、∵ ,∴ 的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C、∵ ,∴a-1<-1<0是必然事件,故C不符合题意;
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
故选A.
【点睛】
本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.
4.B
解析:B
【解析】
【分析】
根据轴对称图形与中心对称图形的概念逐一判断即可得答案.
【详解】
A.不是中心对称图形,是轴对称图形,不符合题意,
B.是中心对称图形,不是轴对称图形,符合题意,
C.不是中心对称图形,是轴对称图形,不符合题意,
6.B
解析:B
【解析】
【分析】
根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.
【详解】
设每天的利润为W元,根据题意,得:
W=(x-28)(80-y)-5000

∵当x=258时, ,不是整数,
∴x=258舍去,
∴当x=256或x=260时,函数取得最大值,最大值为8224元,
D.是中心对称图形,也是轴对称图形,不符合题意.
故选:B.
【点睛】
本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)

上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.3.已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.4.函数132xy x-=+的图象中心是______.5.函数y =的定义域是______.6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.7.已知6x <,求2446x x x ++-的最大值______.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.11.已知函数)()lg f x ax =的定义域为R ,则实数a 的取值范围是____________.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.【答案】{}1【解析】【分析】通过全集,计算出{}0,1,4B =,根据交集的定义即可.【详解】因为{}0,1,2,3,4U =,{}2,3B =,所以{}0,1,4B =所以{}1A B ⋂=.故答案为:{}1.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.【答案】()2020,2023-【解析】【分析】根据01(0,1)a a a =>≠,结合条件,即可求得答案.【详解】 01(0,1)a a a =>≠,令20200x +=,得2020x =-,020222023y a =+=,∴函数20202022(0,1)x y a a a +=+>≠的图象恒过定点()2020,2023-,故答案为:()2020,2023-.3.已知幂函数()()22322n n f x n n x -=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.【答案】1【解析】【分析】根据函数是幂函数得2221+-=n n ,求得3n =-或1,再检验是否符合题意即可.【详解】因为()()22322n n f x n n x -=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=.故答案为:1.4.函数132xy x-=+的图象中心是______.【答案】()2,3--【解析】【分析】将函数化成ky b x a=++,根据的对称中心为(,)a b -,即可得出答案.【详解】1373(2)73222x x y x x x --+===-+++,因为函数72y x =+的图象的对称中心是()2,0-,所以函数732y x =-+的图象的对称中心是()2,3--.故答案为:()2,3--.【点睛】对称性的3个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称;(2)若对于R 上的任意x 都有(2)()f a x f x -=或(2)()f a x f x +=-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.5.函数y =的定义域是______.【答案】(7,)+∞【解析】【分析】根据被开方数非负且分母不为零可得132log 05x ⎛⎫>⎪-⎝⎭,解对数不等式即可求得定义域.【详解】1322log 00155x x ⎛⎫>⇒<<⎪--⎝⎭,()()271075055x x x x x -<⇒>⇒-->--且5x ≠,解得5x <或7x >,2055x x <⇒>-,∴函数y =(7,)+∞.故答案为:(7,)+∞6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】【分析】根据幂函数的定义域和单调性得到关于a 的不等式,解之可得实数a 的取值范围.【详解】由题意知,3322(21)(1)a a --->+,>由于幂函数32y x =的定义域为[0,)+∞,且在[0,)+∞上单调递增,则2101121110a a a a ->⎧⎪⎪>⎨-+⎪+>⎪⎩,即:()()12202111a a a a a ⎧>⎪⎪-⎪>⎨-+⎪⎪>-⎪⎩,所以1221a a a ⎧>⎪⎪<⎨⎪>-⎪⎩,所以实数a 的取值范围是:122a <<.故填:1,22⎛⎫ ⎪⎝⎭.【点睛】本题主要考查幂函数的定义域和单调性,属于基础题.7.已知6x <,求2446x x x ++-的最大值______.【答案】0【解析】【分析】原式化为64(6)166x x -++-,结合基本不等式即可求解最大值.【详解】6x < ,所以60x ->,2244(6)16(6)6464(6)16666x x x x x x x x ++-+-+==-++---因为64(6)6x x -+-64[(6)]166x x =--+-=--,当且仅当2x =-时,取等号;∴2244(6)16(6)6464(6)160666x x x x x x x x ++-+-+==-++---.即2446x x x ++-的最大值为0.故答案为:0.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.【答案】3737±【解析】【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得137log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根,所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以1137log log log 37log b c c acc b b a a===±-.故答案为:3737±【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.【答案】存在一个大于2的偶数不可以表示为两个素数的和.【解析】【分析】从命题的否定入手可解.【详解】反证法先否定命题,故答案为存在一个大于2的偶数不可以表示为两个素数的和.【点睛】本题主要考查反证法的步骤,利用反证法证明命题时,先是否定命题,结合已知条件及定理得出矛盾,从而肯定命题.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.【答案】(,4-∞-【解析】【分析】利用换元法,设20x t t =>,,转化为方程2210t at a +++=,有正根,分离参数,求最值.【详解】设20x t t =>,,转化为方程2210t at a +++=,有正根,即221(2)4(2)55[(2)]4222t t t a t t t t ++-++=-=-=-++++++,022t t >∴+> ,,则5[(2)4442t t -+++≤-+=-+当且仅当5(2)2t t +=+,即2t =时取等,(,4a ∴∈-∞-故答案为:(,4-∞-11.已知函数)()lgf x ax =的定义域为R ,则实数a 的取值范围是____________.【答案】[1,1]-【解析】【分析】根据对数函数的真数大于0,得出+ax >0恒成立,利用构造函数法结合图象求出不等式恒成立时a 的取值范围.【详解】解:函数f (x )=lg (+ax )的定义域为R ,+ax >0恒成立,-ax 恒成立,设y =,x ∈R ,y 2﹣x 2=1,y ≥1;它表示焦点在y 轴上的双曲线的一支,且渐近线方程为y =±x ;令y =﹣ax ,x ∈R ;它表示过原点的直线;由题意知,直线y =﹣ax 的图象应在y =的下方,画出图形如图所示;∴0≤﹣a ≤1或﹣1≤﹣a <0,解得﹣1≤a ≤1;∴实数a 的取值范围是[﹣1,1].故答案为[﹣1,1].【点睛】本题考查了不等式恒成立问题,考查数形结合思想与转化思想,是中档题.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.【答案】24S <≤【解析】【详解】1122224+4=2+2(2)(2)2(22)(22)2222(22)x y x y x x y x y x y x y ++⇒+=+⇒+-⋅⋅=+22222xyS S -=⋅⋅,又22(22)022222x y xyS +<⋅⋅≤=.22022S S S <-≤,解得24S <≤二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】C 【解析】【分析】根据充分、必要条件定义判定即可.【详解】解:当33a b >时,根据指数函数3x y =是定义域内的增函数可得a b >,因为幂函数3y x =是定义域内的增函数,所以33a b >,所以充分性成立,当33a b >时,因为幂函数3y x =是定义域内的增函数,所以a b >,又指数函数3x y =是定义域内的增函数,所以33a b >,所以必要性成立,综上:“33a b >”是“33a b >”的充要条件.故选:C.【点睛】充分条件、必要条件的三种判定方法:(1)定义法:根据,p q q p ⇒⇒进行判断,适用于定义、定理判断性问题;(2)集合法:根据,p q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题;(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.【答案】B 【解析】【分析】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,且01b <<,可得函数()x g x a b =+的图象递减,且1(0)2g <<,从而可得结果.【详解】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,再由图象的平移知,()log ()a f x x b =+的图象由()log a f x x =向左平移可知01b <<,故函数()x g x a b =+的图象递减,且1(0)2g <<,故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素 D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】由题意依次举出具体的集合,M N ,从而得到,,A B D 均可成立.【详解】对A ,若{|0}M x Q x =∈<,{|0}N x Q x =∈;则M 没有最大元素,N 有一个最小元素0,故A 正确;对B ,若{|M x Q x =∈<,{|N x Q x =∈;则M 没有最大元素,N 也没有最小元素,故B 正确;对C ,M 有一个最大元素,N 有一个最小元素不可能,故C 错误;对D ,若{|0}M x Q x =∈,{|0}N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;故选:C .【点睛】本题考查对集合新定义的理解,考查创新能力和创新应用意识,对推理能力的要求较高.16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个 B.1个C.2个D.3个【答案】C 【解析】【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断.【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =,故③正确;故选:C.【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【解析】【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?【答案】(1)466;(2)3倍.【解析】【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg 502100x-=,即()3log 2lg 521lg 2 1.40100x==-=,所以1.403 4.66100x==,所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减可得:13211log 22x x =,所以132log 1x x =,即123x x =,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据任意正实数a ,b ,x ,y ,由柯西不等式得222()(()a b x y a b x y +++,从而证明222()a b a b x yx y+++成立;(2)由121n x x x ++=…+,得121(1)(1)(1)n n x x x +=++++⋯++,然后利用柯西不等式,即可证明12212211111x x xx x x n++⋯⋯+++++成立.【详解】(1)对任意正实数a ,b ,x ,y ,由柯西不等式得()()()()222222222a b a b x y a b x y ⎡⎤⎛⎫⎡⎤⎢⎥++=++⎪⎢⎥⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当x y a b=时取等号,∴222()a b a b x y x y+++.(2)121n x x x ++⋯+= ,121(1)(1)(1)n n x x x ∴+=++++⋯++,2221212()(1)111n nx x x n x x x ++⋯+++++222121212()[(1)(1)(1)]111n n nx x x x x x x x x =++⋯+++++⋯+++++212()1n x x x ++⋯+=,当且仅当121n x x x n==⋯==时取等号,∴222121211111n nx x x x x x n ++⋯+++++.【点睛】方法点睛:利用柯西不等式求最值或证明不等式时,关键是对原目标代数式进行配凑,以保证出现常数结果.同时,要注意等号成立的条件,配凑过程采取如下方法:一是考虑题设条件;二是对原目标代数式进行配凑后利用柯西不等式解答.20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.【答案】(1)()2x f x =;(2)[]3,1-;(3)2log 3-.【解析】【分析】(1)由2211(2)4f aa --===可得答案.(2)由条件可得()2()4()1m f x f x -+=在区间[]0,2上有解,设2x t =,由[]0,2x ∈,则14t ≤≤,即()24123t t t m -+==--在区间[]1,4t ∈上有解,可得答案.(3)由条件121x k =-,221x k =+,即12121x x k k --=+,以及431221xk k +=+或3+1221x k k =+,所以341312x x k k -+=+,从而可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++,求出最大值可得答案.【详解】(1)由2211(2)4f a a --===,所以2a =所以()2xf x =(2)()()22log ()4()0m f x f x -+=在区间[]0,2上有解即()2()4()1m f x f x -+=在区间[]0,2上有解即()22421x x m -+⨯=在区间[]0,2上有解即设2x t =,由[]0,2x ∈,则14t ≤≤所以()24123t t t m -+==--在区间[]1,4t ∈上有解当[]1,4t ∈时,[]2134,1t t ∈--+所以31m -≤≤(3)由()10f x k --=,即21x k =+或21x k=-由方程()10f x k --=的解分别为1x 、()212x x x <,则121x k =-,221x k=+所以12121x x k k--=+由()1021k f x k --=+,即31212121x k k k k +=+=++或+1212121xk k k k =-=++方程()1021k f x k --=+的解分别为3x 、()434x x x <,则431221x k k +=+或3+1221xk k =+所以341312x xk k -+=+所以()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++函数431133y k =++-在113k ⎡⎫∈⎪⎢⎣⎭,上单调递减,当13k =时,431133y k =++-有最大值13.所以()()1234123x x x x -+-≤,则1322421log log 33x x x x -=-+≤-所以1234x x x x -+-的最大值为2log 3-【点睛】关键点睛:本题考查指数的运算和方程有解求参数,方程根的关系,解答本题的关键是由题意可得()22421x x m -+⨯=在区间[]0,2上有解,设2x t =,分类参数即()24123t t t m -+==--在区间[]1,4t ∈上有解,以及根据方程的根的情况可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅===-++++,属于中档题.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.【答案】(1)集合{}1,2,3,4不是,集合{}1,3,5,7,9,11,13是;(2)证明见解析;(3)①证明见解析;②7.【解析】【分析】(1)根据“可分集合”定义直接判断即可得到结论;(2)不妨设123450a a a a a <<<<<,分去掉的元素是1a 时得5234a a a a =++①,或2534a a a a +=+②,去掉的元素是2a 得5134a a a a =++③,或1534a a a a +=+④,进而求解得矛盾,从而证明结论.(3)①设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,进而分类讨论M 为奇数和M 为偶数两类情况,分析可得集合A 中的元素个数为奇数;②结合(1)(2)问依次验证3,5,7n n n ===时集合A 是否为“可分集合”从而证明.【详解】解:(1)对于集合{}1,2,3,4,去掉元素1,剩余的元素组成的集合为{}12,3,4A =,显然不能分为两个集合B 和C ,满足B C =∅ ,1B C A ⋃=,其中B 和C 的所有元素之和相等,故{}1,2,3,4不是“可分集合”对于集合{}1,3,5,7,9,11,13,去掉元素1,{}13,5,7,9,11,13A =,显然可以分为{}{}11,13,3,5,7,9B C ==,满足题意;去掉元素3,{}21,5,7,9,11,13A =,显然可以分为{}{}1,9,13,5,7,11B C ==,满足题意;去掉元素5,{}31,3,7,9,11,13A =,显然可以分为{}{}1,3,7,11,9,13B C ==,满足题意;去掉元素7,{}41,3,5,9,11,13A =,显然可以分为{}{}1,9,11,3,5,13B C ==,满足题意;去掉元素9,{}51,3,5,7,11,13A =,显然可以分为{}{}7,13,1,3,5,11B C ==,满足题意;去掉元素11,{}61,3,5,7,9,13A =,显然可以分为{}{}3,7,9,1,5,13B C ==,满足题意;去掉元素13,{}71,3,5,7,9,11A =,显然可以分为{}{}1,3,5,9,7,11B C ==,满足题意;故{}1,3,5,7,9,11,13是可分集合.(2)不妨设123450a a a a a <<<<<,若去掉的是1a ,则集合{}12345,,,A a a a a =可以分成{}{}5234,,,B a C a a a ==或{}{}2534,,,B a a C a a ==,即:5234a a a a =++①或2534a a a a +=+②若去掉的是2a ,则集合{}21345,,,A a a a a =可以分成{}{}5134,,,B a C a a a ==或{}{}1534,,,B a a C a a ==,即:5134a a a a =++③或1534a a a a +=+④,由①③得21a a =,矛盾;由①④21a a =-,矛盾;由②③得21a a =-,矛盾;由②④21a a =,矛盾;所以五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)①证明:设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,若M 为奇数,则()1,2,3,,i a i n = 也均为奇数,由于12n M a a a =+++ ,所以n 为奇数;若M 为偶数,则()1,2,3,,i a i n = 也均为偶数,此时设()21,2,3,,i i a b i n == ,则{}12,,,n b b b 也是“可分集合”,重复上述操作有限次,便可得各项均为奇数的“可分集合”,此时各项之和也为奇数,集合A 中的元素个数为奇数.综上所述,集合A 中的元素个数为奇数.②当3n =时,显然任意集合{}123,,A a a a =不是“可分集合”;当5n =时,第二问已经证明集合{}12345,,,,A a a a a a =不是“可分集合”;当7n =时,第一问已验证集合{}1,3,5,7,9,11,13A =是“可分集合”.所以集合A 中元素个数的最小值为7.【点睛】本题考查集合新定义的问题,对此类题型首先要多读几遍题,将新定义理解清楚,然后根据定义依次验证,证明即可.注意对问题思考的全面性,考查学生的思维迁移能力,分析能力.本题第二问解题的关键在于假设123450a a a a a <<<<<,以去掉元素1a 和2a 两种情况下的可分集合推出矛盾,进而证明,是难题.。

2020-2021学年陕西西安交大附中九上数学期中试卷(原卷版)

2020-2021学年陕西西安交大附中九上数学期中试卷(原卷版)

2020-2021学年陕西省西安交大附中九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若关于x的一元二次方程x2+2x+m﹣1=0有一个根是0,则m的值为()A.1B.﹣1C.2D.02.(3分)如图,该几何体的左视图是()A.B.C.D.3.(3分)已知4a=5b(ab≠0),下列变形错误的是()A.B.C.D.4.(3分)一元二次方程x2﹣5x+6=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断5.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于()A.B.C.D.6.(3分)如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.=C.=D.∠E=∠C 7.(3分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D,AB=2BC,则tan∠ABD 的值为()A.2B.C.D.8.(3分)已知函数y=(m<0),以下结论中正确的有()个.①图象位于一,三象限;②若点A(﹣1,a),点B(1,b)在图象上,则a<b;③对于不同的m值,反比例函数的图象可能会相交;④若点P(x,y)在图象上,则点P1(﹣y,﹣x)也在图象上.A.4B.3C.2D.19.(3分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m10.(3分)如图,已知正比例函数y1=4x的图象与反比例函数y=的图象相交于A,B两点,正比例函数y2=kx(k≠0)的图象与反比例函数y=的图象相交于C,D两点.连接AD,BD,BC,AC,若四边形ADBC是矩形,则k的值是()A.B.C.D.1二、填空题(共6小题,每小题3分,共18分)11.(3分)方程x2﹣x=0的解是.12.(3分)已知点P是线段AB的黄金分割点,且AP<PB,若AB=2,则BP=(结果保留根号).13.(3分)如图,平面直角坐标系中,O为坐标原点,正方形ABCO的两边OA、OC分别与x轴、y轴重合,点E,F分别是BC,AB边上的中点,过点E,F在反比例函数y=(k ≠0)的图象交上,△OEF的面积为3,求k的值.14.(3分)在“红旗Ma11”举行的促销活动中,某商品经连续两次降价后,售价变为原来的81%,若两次降价的百分率相同,则该商品每次降价的百分率为.15.(3分)如图,在等腰△ABC中,AB=AC=6,BC=3,将△ABC的一角沿着MN折叠,点B'落在AC上,若B'M∥AB,则BM的长度为.16.(3分)如图,在等边△ABC中,AB=4,P为AC的中点,M,N分别为AB,BC边上的一点,当△PMN周长取最小值时,MN长度为.三、解答题(共7小题,共72分,解答应写出过程)17.(5分)画出如图所示立体图的主视图与俯视图.18.(10分)已知关于x的方程x2﹣6x+k+1=0有两个实数根x1,x2.(1)求实数k的取值范围:(2)若方程的两个实数根x1,x2,=x1x2﹣2,求k的值.19.(12分)如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=(x>0)的图象交于A(m,m+1),B(2,6)两点.(1)求m的值;(2)求一次函数的表达式;(3)当一次函数y=k1x+b的值小于反比例函数y=(x>0)的值时,求出自变量x的取值范围.20.(12分)如图,在正方形ABCD中,点E为BC中点,连接DE,过点E做EF⊥ED交AB于点G.交AD延长线于点F.(1)求证:△ECD∽△GAF;(2)若AB=4,求EF的长.21.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).22.(10分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.23.(13分)实践探究:如图①,在△ABC中,点D为AB上一点,DE∥BC交AC于点E,连接BE,CD交于点O.(1)当AD=DB时,S△ADE:S△ABC=;S△DOE:S△COE=.(2)当AD:DB=m时,用含m的代数式表示S△BOC:S△ABC.问题解决:(3)如图②,公园内有一块梯田ABCD,AD∥BC,CD⊥BC,BC=60米,AD=20米,tan B =2.园林设计者想在这块田地中划出一块三角形形状的地△EFG来种植草皮,其他区域种植花卉,已知种植花卉每平方米200元,种植草皮每平方米100元.要求E,F,G分别位于AB,CD,BC边上,且EF∥BC,要使得种植费用的造价最低,种植草皮的△EFG面积应该满足什么条件?并求出费用的最小值.。

2020-2021西安交通大学附属中学航天学校初三数学上期末模拟试题(含答案)

2020-2021西安交通大学附属中学航天学校初三数学上期末模拟试题(含答案)
15.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
17.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.
解析:8
【解析】
【分析】
首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.
【详解】
解:∵y=x2﹣2x﹣3,设y=0,
∴0=x2﹣2x﹣3,
解得:x1=3,x2=﹣1,
即A点的坐标是(﹣1,0),B点的坐标是(3,0),
∵y=x2﹣2x﹣3,
=(x﹣1)2﹣4,
∴顶点C的坐标是(1,﹣4),
7.D
解析:D
【解析】
【分析】
利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.
【详解】
∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;
∴直线与抛物线的交点为(-1,0)和(4,5),
而-1<x<4时,y1>y2,
18.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时
公交车用时的频数
线路
合计
A
59
151
166
124
500

2020-2021西安市九年级数学上期末第一次模拟试题(附答案)

2020-2021西安市九年级数学上期末第一次模拟试题(附答案)
5.B
解析:B 【解析】 【分析】
根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出 △ABG≌△DBH,得出四边形 GBHD 的面积等于△ABD 的面积,进而求出即可. 【详解】 连接 BD,
∵四边形 ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,
半径为______.
17.一个等边三角形边长的数值是方程 x2﹣3x﹣10=0 的根,那么这个三角形的周长为 _____. 18.一个扇形的半径为 6,弧长为 3π,则此扇形的圆心角为___度.
19.一元二次方程 2x2 2 0 的解是______.
20.如图,在“3×3”网格中,有 3 个涂成黑色的小方格.若再从余下的 6 个小方格中随机选 取 1 个涂成黑色,则完成的图案为轴对称图案的概率是______.
B.x(x+20)=300
C.60(x+20)=300
D.60(x-20)=300
4.二次函数 y 3x2 6x 变形为 y a x m2 n 的形式,正确的是( )
A. y 3 x 12 3
B. y 3 x 12 3
C. y 3 x 12 3
D. y 3 x 12 3
5.如图,四边形 ABCD 是菱形,∠A=60°,AB=2,扇形 BEF 的半径为 2,圆心角为 60°,则 图中阴影部分的面积是( )
类别
儿童玩具
童车
童装
抽查件数
90
请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图; (2)已知所抽查的儿童玩具、童车、童装的合格率分别为 90%、88%、80%,若从该超市 的这三类儿童用品中随机购买一件,买到合格品的概率是多少? 24.如图,Rt△ABC 中,∠ABC=90°,以 AB 为直径作⊙O,点 D 为⊙O 上一点,且 CD=CB、连接 DO 并延长交 CB 的延长线于点 E (1)判断直线 CD 与⊙O 的位置关系,并说明理由; (2)若 BE=4,DE=8,求 AC 的长.

2020-2021西安交通大学附属中学分校初三数学下期中试题(含答案)

2020-2021西安交通大学附属中学分校初三数学下期中试题(含答案)

2020-2021西安交通大学附属中学分校初三数学下期中试题(含答案)一、选择题1.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.192.观察下列每组图形,相似图形是()A.B.C.D.3.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:94.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶15.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 6.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252B.25-C.251D527.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)8.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<9.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80310.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.3B.5C.23D.2511.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°12.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.14.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x 的图象经过A 、B 两点,则菱形ABCD 的面积是_____;15.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.16.已知点(,)P m n 在直线2y x =-+上,也在双曲线1y x=-上,则m 2+n 2的值为______. 17.反比例函数y =k x的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________. 18.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.19.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.20.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.三、解答题21.已知:如图,点C ,D 在线段AB 上,△PCD 是等边三角形,且AC=1,CD=2,DB=4.求证:△ACP ∽△PDB .22.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)23.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).24.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)成正比例;1.5小时后(包括1.5小时)y 与x 成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y 与x 之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.如图,已知在ABC V 中,4AB =,8BC =,D 为BC 边上一点,2BD =.(1)求证:ABD CBA V :V ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.2.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.3.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.4.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.5.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.6.A解析:A【解析】根据黄金比的定义得:512APAB=,得5142522AP=⨯= .故选A.7.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.8.C解析:C【解析】【分析】根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.9.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .10.D解析:D【解析】【分析】【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,==, cosA=AD AB, 故选D .11.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 12.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 二、填空题13.05【解析】∵EG ⊥ABFH ⊥ADHG 经过A 点∴FA ∥EGEA ∥FH ∴∠HFA =∠AEG =90°∠FHA =∠EAG ∴△GEA ∽△AFH ∴∵AB =9里DA =7里EG =15里∴FA =35里EA =45里∴解析:05【解析】∵EG ⊥AB ,FH ⊥AD ,HG 经过A 点,∴FA ∥EG ,EA ∥FH ,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.【解析】【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y解析:42【解析】【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222+=2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=2,故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.15.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.16.6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m 以及mn 的值再利用完全平方公式将原式变形得出答案详解:∵点P (mn )在直线y=-x+2上∴n+m=2∵点P (m解析:6【解析】分析:直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m 以及mn 的值,再利用完全平方公式将原式变形得出答案.详解:∵点P (m ,n )在直线y=-x+2上,∴n+m=2,∵点P (m ,n )在双曲线y=-1x上, ∴mn=-1,∴m 2+n 2=(n+m )2-2mn=4+2=6.故答案为6.点睛:此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m ,n 之间的关系是解题关键.17.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).18.3【解析】试题分析:如图∵CD∥AB∥MN∴△ABE∽△CDE△ABF∽△MNF∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.19.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A 关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.三、解答题21.见解析【解析】【分析】先证明∠ACP=∠PDB=120°,然后由△PCD为等边三角形可证明,从而可证明△ACP∽△PD B.【详解】证明:∵△PCD为等边三角形,∴∠PCD=∠PDC=60°,PC=PD=CD=2∴∠ACP=∠PDB=120°∴.∴△ACP∽△PD B.本题考查的知识点是相似三角形的判定和等边三角形的性质,解题关键是熟记等边三角形的性质.22.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=,∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++5=.∴下降高度:55DE DF -=-=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB 和AC 的长度即可,根据题目中的条件可以求得AB 和AC 的长度,即可得到结论.试题解析:解:∵AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE ,∴△F AB ∽△FDE ,∴AB FB DE FE = ,∵FB =4米,BE =6米,DE =9米,∴4946AB =+,得AB =3.6米,∵∠ABC =90°,∠BAC =53°,cos ∠BAC =AB AC ,∴AC =cos AB BAC ∠ =3.60.6=6米,∴AB +AC =3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.24.(1)100(0 1.5)225( 1.5)x x y x x⎧⎪=⎨⎪⎩剟…;(2)第二天早上7:00不能驾车去上班,见解析. 【解析】【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案; (2)根据题意得出x =10时y 的值进而得出答案.【详解】(1)由题意可得:当0≤x ≤1.5时,设函数关系式为:y =kx ,则150=1.5k ,解得:k =100,故y =100x ,当1.5≤x 时,设函数关系式为:y a x =,则a =150×1.5=225,解得:a =225,故y 225x=(x ≥1.5). 综上所述:y 与x 之间的两个函数关系式为:y ()()1000 1.5225 1.5x x x x ⎧≤≤⎪=⎨≥⎪⎩; (2)第二天早上7:00不能驾车去上班.理由如下:∵晚上21:00到第二天早上7:00,有10小时,∴x =10时,y 22510==22.5>20,∴第二天早上7:00不能驾车去上班.【点睛】本题考查了反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.25.(1)证明见解析;(2)△CDE ,3DE =.【解析】【分析】(1)中根据图中B Ð为公共角,找到三角形相似的“夹角相等”的条件,只要证明AB BD BC AB=,依据是“两边对应成比例,且夹角相等,两三角形相似 ;(2)由//DE AB 可得出C ABD ED V V ∽,在(1)中ABD CBA V :V ,所以可得EDC CBA V :V ,于是可构建与线段DE 有关的比例式,即可求出DE 的长 .【详解】(1)【证明】∵4AB =,8BC =,2BD =,12AB BD CB BA ∴==. ∵ABD CBA ∠=∠, ∴ABD CBA V :V .(2)【解】由(1)知,ABD CBA V :V .∵//DE AB ,∴CDE CBA V :V ,∴V :V ABD CDE .由CDE CBA V :V ,得DE DC BA BC =, 即8248DE -=, 解得3DE =.【点睛】本题考查的知识点是相似三角形的判定,关键是根据题中的线段的长和图形的特点,通过仔细观察和计算寻找缺少的条件.。

2020-2021西安交通大学附属中学航天学校高中必修一数学上期中模拟试题(含答案)

2020-2021西安交通大学附属中学航天学校高中必修一数学上期中模拟试题(含答案)
17.已知函数 其中 ,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.
18.已知 是定义在 上的奇函数,当 , 的图象如图所示,那么 的值域是______.
19.己知函数 = 的图象经过点(1,3),其反函数 的图象经过点(2.0),则 =___________.
解析:D
【解析】
【分析】
根据题意可得函数 的奇偶性以及单调性,据此原不等式转化为 ,求解可得x的取值范围,即可得出结论.
【详解】
根据题意,函数 ,
则有 ,解可得 ,
即函数的定义域为 ,关于原点对称,
又由 ,
即函数 为奇函数,
设 ,则 ,
,在 上为减函数,
而 在 上为增函数,
故 在区间 上为减函数,

解析:
【解析】
试题分析:由题意画出函数图象如下图所示,要满足存在实数b,使得关于x的方程f(x)=b有三个不同的根,则 ,解得 ,故m的取值范围是 .
【考点】分段函数,函数图象
【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.
20.若函数 有两个零点,则实数 的取值范围是_____.
三、解答题
21.已知函数 在区间[2,3]上有最大值4和最小值1.
(1)求a、b的值;
(2)设 ,若不等式 在x∈ 上恒成立,求实数 的取值范围.
22.
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).

2020-2021西安交通大学第二附属中学南校区小学数学小升初试卷(含答案)

2020-2021西安交通大学第二附属中学南校区小学数学小升初试卷(含答案)

2020-2021西安交通大学第二附属中学南校区小学数学小升初试卷(含答案)一、选择题1.加工一批零件,经检验有100个合格,不合格的有25个,这批零件的合格率是()A. 25% B. 75% C. 80% D. 100%2.下面得数不相等的一组是()。

A. B. C. D.3.某市规定每户每月用水量不超过6吨时,每吨价格为2.5元;当用水量超过6吨时,超过的部分每吨价格为3元。

下图中能正确表示每月水费与用水量关系的是()。

A. B.C. D.4.等腰三角形两条邻边分别长3厘米、6厘米,这个等腰三角形的周长是()。

A. 9厘米B. 12厘米C. 15厘米D. 12厘米或15厘米5.下面图形中,底与高标对的是()。

A. B. C. D.6.在棱长为a的正方体中挖一个最大的圆柱。

正方体与圆柱的体积之比是()。

A. 4:πB. π:4C. 1:D. a:7.把正方体的表面展开,可能得到的展开图是()。

A. B. C. D.8.一个三角形,三个内角度数的比是2:5:3,则这个三角形是()。

A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定9.要想描述六年级(3)班同学身高分组的分布情况,应选用()合适。

A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上都行10.一件衬衣的售价是500元,一条长裤的价钱和这件衬衣的价钱之比是6:5.这条长裤售价是()A. 100元B. 500元C. 600元D. 1100元11.一个两位数,十位上的数字是a,个位上的数字是8,这个两位数表示()A. a+8B. 10a+8C. 8a12.有一张方格纸,每个小方格的边长是1厘米,上面堆叠有棱长1厘米的小正方体(如左下图),小正方体A的位置用(1,1,1)表示,小正方体B的位置用(2,6,5)表示,那么小正方体 C的位置可以表示成()。

A. (6,2,3)B. (2,2,3)C. (2,6,3)二、填空题13.观察1、3、6、10……的排列规律,第6个数应该填________.14.一个三角形的三个角度数的比是1: 3: 5,那么这个三角形是________三角形,其中最小的角是________.15.一件上衣,现在八折出售,比原来便宜了36元,原价________元。

2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷及参考答案

2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷及参考答案

2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有-项是符合题目要求的)1.(3分)的倒数是()A.B.C.D.2.(3分)如图所示,从左面观察该几何体得到的形状图是()A.B.C.D.3.(3分)新型冠状病毒,因武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名“2019﹣nCoV”.冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米=1×10﹣9米),125纳米用科学记数法表示等于()米.A.1.25×10﹣10B.1.25×10﹣11C.1.25×10﹣8D.1.25×10﹣7 4.(3分)如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.35.(3分)如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为()A.35°B.45°C.55°D.65°6.(3分)关于x的方程3a+x=18的解为x=﹣3,则a的值为()A.4B.5C.6D.77.(3分)已知线段AB长为5,点C为线段AB上一点,若BC=AC,则线段AC的长为()A.B.C.D.8.(3分)数a,b在数轴上对应点的位置如图所示,化简|a﹣2|﹣|a﹣b|的结果是()A.﹣2a+b+2B.﹣2a﹣b﹣2C.b﹣2D.﹣b+29.(3分)某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长方形铁片可以制作成一个油桶(如图),已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,为使生产的铁片恰好配套,设安排x人生产圆形铁片,可列方程()A.80x=2×120(42﹣x)B.2×80x=120(42﹣x)C.120x=2×80(42﹣x)D.2×120x=80(42﹣x)10.(3分)如图,观察表1,寻找规律,表2、表3、表4分别是从表1中截取的一部分,其中m为整数且m>1,则a+b+c=()A.m2﹣m+44B.m2+m+46C.m2﹣m+46D.m2+m+44二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:()1+20200=.12.(3分)一个多边形从同一个顶点引出的对角线,将这个多边形分成7个三角形.则这个多边形有条边.13.(3分)若单项式﹣x m+1y2与x3y n﹣1能合并成一项,则m﹣n的值是.14.(3分)已知p2+2pq=13,则p2+pq﹣3的值为.15.(3分)如图,三边长分别为3cm,4cm,5cm的直角三角形,绕其斜边所在直线旋转一周,所得几何体的体积为cm3.(结果保留π)16.(3分)如图,点A,O,B依次在直线MN上,射线OA绕点O以每秒3°的速度顺时针旋转,同时射线OB绕点O以每秒6°的速度逆时针旋转,直线MN保持不动,设旋转时间为t秒(0<t<30),现以射线OM,OA,ON中两条为边组成一个角,使射线OB 为该角的角平分线,此时t的值为.三、解答题(本大题共7小题,共s2分)17.(8分)(1)计算:﹣22×3﹣|﹣3+1|+;(2)解方程:﹣=﹣1.18.(8分)(1)计算:(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2;(2)先化简,再求值:3(2x2y﹣xy2)﹣(5x2y+2xy2),其中x=﹣1,y=2.19.(5分)已知:线段a,b.求作:线段AB,使AB=a﹣2b.20.(5分)我校为了丰富学生课余生活,计划开设以下课外活动项目:A﹣篮球,B﹣乒乓球,C﹣羽毛球,D﹣足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目).并将调查结果绘制成了两幅统计图,请回答下列问题:(1)这次被调查的学生共有人,扇形统计图中,“D﹣足球”所占圆心角的度数是;(2)请你将条形统计图补充完整;(3)若该校学生总数为1000人,试估计该校学生中最喜欢“乒乓球”项目的人数.21.(6分)如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.22.(8分)越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.(1)小赵使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小赵这两次提现分别需支付手续费多少元?(2)小周使用微信至今,用自己的微信账户共提现三次,若小周第三次提现金额恰好等于前两次提现金额的差,提现手续费如表,求小周第一次提现的金额.第一次第二次第三次手续费/元0 1.10.223.(12分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为4时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合),是否存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存在,请说明理由.2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有-项是符合题目要求的)1.【分析】根据倒数的定义直接进行解答即可.【解答】解:根据倒数的定义得:﹣的倒数是﹣;故选:A.【点评】此题考查了倒数,熟记倒数的定义是解题的关键,是一道基础题.2.【分析】直接利用左视图观察角度分析得出答案.【解答】解:从左面观察该几何体得到的形状图是:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:125纳米=125×10﹣9米=1.25×10﹣7米.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【分析】用气温26℃出现的天数除以总天数10即可得.【解答】解:由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故选:D.【点评】本题主要考查频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.5.【分析】根据同角的余角相等即可求解.【解答】解:∵两块三角板的直角顶点O重合在一起,∴∠BOD和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.【点评】考查了余角和补角,关键是熟悉同角的余角相等的知识点.6.【分析】把x=﹣3代入已知方程求解即可.【解答】解:把为x=﹣3代入方程3a+x=18,得3a﹣3=18,解得a=7.故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【分析】利用线段的和差和等量关系用AC表示AB,根据AB=5即可得出AC.【解答】解:如图所示:∵BC=BD=AC,∴AB=AC+BC=AC+AC=AC,∵AB=5,∴AC=AB=×5=,故选:B.【点评】本题考查了线段的和差,能结合题意正确构造出线段图是解题的关键.8.【分析】根据绝对值的意义:非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数,即可求解.【解答】解:由实数a,b在数轴上对应的点的位置可知:a﹣2<0,a﹣b>0,∴|a﹣2|﹣|a﹣b|=2﹣a﹣(a﹣b)=2﹣a﹣a+b=﹣2a+b+2.故选:A.【点评】此题主要考查了实数与数轴的之间的对应关系及绝对值的化简,应特别注意:根据点在数轴上的位置来正确判断出代数式的值的符号.9.【分析】设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,根据生产的圆形铁片的数量是长方形铁片数量的2倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,依题意得:120x=2×80(42﹣x).故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】根据表中数字规律推出a和c的值,再确定b和m的关系即可.【解答】解:由题知表2是表1的第三列的一部分,即a=15+3=18,根据表3在表1中位置规律知b=m2﹣m,表4是表一第六列和第七列的一部分,即c=35﹣7=28,∴a+b+c=18+m2﹣m+28=m2﹣m+46,故选:C.【点评】本题考查数字的变化规律,归纳出数字在表中的位置关系是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案.【解答】解:原式=+1=.故答案为:.【点评】此题主要考查了零指数幂的性质以及有理数的乘方,正确化简各数是解题关键.12.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数,再求出对角线.【解答】解:设多边形有n条边,则n﹣2=7,解得:n=9.所以这个多边形的边数是9,故答案为:九.【点评】本题考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.13.【分析】由于单项式﹣x m+1y2与x3y n﹣1能合并成一项,则﹣x m+1y2与x3y n﹣1是同类项,据此求出m、n的值,代入所求式子进行计算.【解答】解:根据题意得m+1=3,n﹣1=2,解得m=2,n=3,∴m﹣n=2﹣3=﹣1.故答案为:﹣1【点评】本题考查了合并同类项:把多项式中同类项合成一项,叫做合并同类项;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.14.【分析】直接利用已知将原式变形,进而代入已知数据求出答案.【解答】解:∵p2+2pq=13,∴p2+pq﹣3=(p2+2pq)﹣3=×13﹣3=3.5.故答案为:3.5.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.15.【分析】根据三角形旋转是圆锥,根据圆锥的体积公式,可得答案.【解答】解:如图.∵OB⊥AC,∠ABC=90°,∴OB==,几何体的体积为×π×()2×5=9.6π(cm3).故答案为:9.6π.【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.16.【分析】分为两种情况:①OB平分∠AON时;②OB平分∠AOM时;③OB平分∠MON时;列出方程,求出方程的解即可.【解答】射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(大于0°而小于180°)的平分线有以下两种情况:①OB平分∠AON时,∵∠BON=∠AON,∴6t=(180﹣3t),解得:t=12;②OB平分∠AOM时,∵∠AOM=∠BOM,∴t=180﹣6t,解得:t=24;③OB平分∠MON时,∵∠MON=∠BOM,∴6t=90,解得t=15.综上,当t的值分别为12、15、24秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.故答案为:12或15或24.【点评】本题考查了一元一次方程的应用以及角的计算,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共s2分)17.【分析】(1)根据有理数的混合计算解答即可;(2)去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:(1)=﹣4×3﹣2+=﹣12﹣2+=﹣13;(2),去分母得:3(3x﹣1)﹣2(2x﹣2)=﹣6,去括号得:9x﹣3﹣4x+4=﹣6,移项得:9x﹣4x=﹣6+3﹣4,合并同类项得:5x=﹣7,系数化为1得:x=﹣.【点评】此题考查解一元一次方程,关键是根据有理数的混合计算的步骤和解一元一次方程的步骤解答即可.18.【分析】(1)直接利用积的乘方运算以及整式的混合运算法则计算得出答案;(2)直接去括号合并同类项,进而将已知数据代入得出答案.【解答】解:(1)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2=﹣a6﹣a6+4a8÷a2=﹣a6﹣a6+4a6=2a6;(2)3(2x2y﹣xy2)﹣(5x2y+2xy2)=6x2y﹣3xy2﹣x2y﹣xy2=x2y﹣4xy2,当x=﹣1,y=2时,原式=×(﹣1)2×2﹣4×(﹣1)×22=7+16=23.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.19.【分析】作射线AM,在射线AM上截取AC=a,在线段CA上截取CB=2b,线段AB 即为所求.【解答】解:如图线段AB即为所求.【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.【分析】(1)根据扇形统计图,可求出“A篮球”所占整体的百分比,再根据喜欢“篮球”的人数为20人,可求出调查人数;进而求出“D足球”所占的百分比,计算相应的圆心角度数即可;(2)求出“C羽毛球”的人数,即可补全条形统计图;(3)求出样本中喜欢“B乒乓球”所占的百分比,即可估计总体1000人喜欢“B乒乓球”的人数.【解答】解:(1)20÷=200(人),360°×=72°,故答案为:200,72°;(2)200﹣20﹣80﹣40=60(人),补全条形统计图如图所示:(3)1000×=400(人),答:该校1000名学生中最喜欢“乒乓球”项目的大约有400人.【点评】本题考查条形统计图、扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键.21.【分析】(1)欲求∠MON,需求∠BON和∠BOM.由OM平分∠AOB,ON平分∠BOD,得∠NOB=,∠BOM=,进而解决此题.(2)由题意得射线OC可能在∠DON内部或射线OC在∠NOB内部,故需分类讨论.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠NOB=,∠BOM=.∴∠NOB+∠BOM==.∴∠MON=.又∵∠AOD=156°,∴∠MON==78°.(2)由题意得:射线OC可能在∠DON内部或射线OC在∠NOB内部.①当射线OC可能在∠DON内部时,如图1.由(1)知:∠MON=78°.∴∠COM=∠CON+∠MON=23°+78°=101°.②当射线OC在∠NOB内部时,如图2.由(1)知:∠MON=78°.∴∠COM=∠MON﹣∠NOC=78°﹣23°=55°.综上:∠COM=101°或55°.【点评】本题主要考查角平分线的定义以及角的和差关系,熟练掌握角平分线的定义以及角的和差关系是解决本题的关键.22.【分析】(1)利用手续费=(提现金额﹣1000)×0.1%,即可求出结果;(2)根据表格中的数据结合手续费为超出金额的0.1%,即可得出小周第三次提现金额为200元,再结合第二次的手续费为1.1元,可得超出金额为1100元,可设小周第一次提现的金额为x元,根据小周第三次提现金额恰好等于前两次提现金额的差,得到关于x 的方程,解方程即可得出结果.【解答】解:(1)(1500﹣1000)×0.1%=0.5(元),1500×0.1%=1.5(元),故小赵这两次提现分别需支付手续费0.5元,1.5元;(2)设小周第一次提现的金额为x元,由题意得:0.1%(x+x+0.2÷0.1%﹣1000)=1.1,解得:x=950.故小周第一次提现的金额为950元.【点评】本题考查了一元一次方程组的应用;解题的关键是:(1)根据数量之间的关系,列式计算;(2)找准等量关系,列出一元一次方程.23.【分析】(1)利用绝对值及偶次方的非负性,可求出a,c的值,由b是最小的正整数,可得出b的值;(2)当运动时间为t秒时,点A表示的数为4t﹣2,点B表示的数为t+1,点C表示的数为t+5.①由AC=4,即可得出关于t的一元一次方程,解之即可得出结论;②分别求出点A与点B或点C重合时t的值,分0<t<1及1<t<两种情况考虑,由2AC+m•AB的值不随t的变化而变化,可求出m的值.【解答】解:(1)∵|a+2|+(c﹣5)2=0,∴a+2=0,c﹣5=0,∴a=﹣2,c=5.∵b是最小的正整数,∴b=1.故答案为:﹣2;1;5.(2)当运动时间为t秒时,点A表示的数为4t﹣2,点B表示的数为t+1,点C表示的数为t+5.①∵AC=4,∴|4t﹣2﹣(t+5)|=4,即3t﹣7=﹣4或3t﹣7=4,∴t=1或t=.②当4t﹣2=t+1时,t=1;当4t﹣2=t+5时,t=.当0<t<1时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[t+1﹣(4t﹣2)]=﹣(6+3m)t+14+3m,∵2AC+m•AB的值不随t的变化而变化,∴6+3m=0,∴m=﹣2;当1<t<时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[4t﹣2﹣(t+1)]=(3m﹣6)t+14﹣3m,∵2AC+m•AB的值不随t的变化而变化,∴3m﹣6=0,∴m=2.∴存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变,m的值为﹣2或2.【点评】本题考查了一元一次方程的应用、数轴、绝对值以及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,c的值;(2)①找准等量关系,正确列出一元一次方程;②用含t的代数式表示出2AC+m•AB的值.。

2020-2021西安交通大学附属中学航天学校小学六年级数学上期中模拟试题(含答案)

2020-2021西安交通大学附属中学航天学校小学六年级数学上期中模拟试题(含答案)

2020-2021西安交通大学附属中学航天学校小学六年级数学上期中模拟试题(含答案)一、选择题1.天安门广场上的国旗长495cm,宽330cm,长和宽的最简整数比是()A. 2:3B. 3:2C. 495:3302.六年级某班男女生人数的比是3:4,这个班可能有()人。

A. 30B. 40C. 49D. 523.合唱队女生人数原来占,后来有6名女生加入,这样女生人数就占总人数的。

现在合唱队有女生()人。

A. 10B. 16C. 20D. 364.如图,如果以海洋舰为观测点,雷达站的位置是()。

A. 东偏北60°B. 东偏北30°C. 北偏西60°D. 西偏南30°5.以学校为观测点,贝贝家在学校的南偏西20 º方向,距离学校500米,那么以贝贝家为观测点,学校在贝贝家( )的方向。

A. 东偏北70 ºB. 北偏西70 ºC. 南偏北70 º6.如图所示,巡洋舰在雷达站的()处.A. 北偏东40°方向50kmB. 北偏西40°方向50kmC. 北偏东40°方向100km 7.哪幅图表示 × 的积?A. B. C.8.同一根2米长的绳子,小明剪去了,李东剪去了米,两人剪的相比较,()。

A. 小明剪的多 B. 李东剪的多 C. 一样多 D. 无法比较9.冬天快到了,服装店进了一批衣服,如下图,男装有几件?正确的列式是()A. (200+32)×B. (200-32)÷C. 200× -32D. 200× +3210.有千克糖,平均分成3份,每份是1千克的()。

A. B. C.11.两个正方形的边长比是4:3,它们的面积比是()。

A. 16:9B. 8:6C. 9:16D. 4:312.小华体重的与小红体重的相等,那么()。

A. 小华重些B. 小红重些C. 无法确定谁重二、填空题13.“一蓑一笠一扁舟,一丈竿头一只钩,一水一拍似一唱,一翁独钓一江秋。

2020-2021西安交通大学第二附属中学南校区小学五年级数学上期中试卷(含答案)

2020-2021西安交通大学第二附属中学南校区小学五年级数学上期中试卷(含答案)

2020-2021西安交通大学第二附属中学南校区小学五年级数学上期中试卷(含答案)一、选择题1.下列算式中,与40.8÷0.5结果不同的是()A. 40.8×2B. 4.08÷0.05C. 408÷5D. 4.08÷0.5 2.除法算式47.88÷24=1.995的商按“四舍五入”法精确到百分位应写作()。

A. 2.0B. 2.00C. 1.993.下面算式中,得数最小的是()。

A. 1.25×1.6B. 1.2÷0.8C. 2.4÷1.54.9.5÷b(b≠0),当b是()时,商一定大于9.5。

A. 大于1B. 小于1C. 等于D. 无法确定5.如图,如果将三角形ABC向右平移5格为三角形A′B′C′,则点C′的位置用数对表示为()A. (3,9)B. (8,4)C. (7,1)6.点A的位置在(2,7),点B的位置在(2,1),点C的位置在(6,1),那么三角形ABC是一个()三角形。

A. 锐角B. 直角C. 钝角7.三角形三个顶点的位置用数对表示如下:A(2,6),B(5,2),C(2,2),则三角形ABC是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判断8.的积是()位小数。

A. 20B. 21C. 22D. 23 9.1.25×3.2×2.5的算法正确的是()A. (1.25×8)+(2.5×0.4)B. (1.25×8)×(2.5×0.4)C. (1.25×8)×(2.5×4)10.某日,中国银行外汇牌价如图。

这一天,同一块手表在美国标价80美元,在香港标价610港元,在法国标价62欧元。

换算成人民币()的标价最低。

A. 美国B. 香港C. 法国D. 无法判断11.在估算5.09×7.9时,误差较小的是估成()A. 6×8B. 5×8C. 6×7D. 5×7 12.如图,三角形ABC,如果将它向上平移2格,再向右平移4格,则顶点A的位置用数对表示是()。

2020-2021西安西工大附中分校高中必修三数学上期中一模试卷(及答案)

2020-2021西安西工大附中分校高中必修三数学上期中一模试卷(及答案)

2020-2021西安西工大附中分校高中必修三数学上期中一模试卷(及答案)一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.492.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为 ( ) A.11347250C CCB.20347250C CCC.1233250C CC+D.1120347347250C C C CC+3.一组数据的平均数为m,方差为n,将这组数据的每个数都乘以()0a a>得到一组新数据,则下列说法正确的是()A.这组新数据的平均数为m B.这组新数据的平均数为a m+C.这组新数据的方差为an D.这组新数据的标准差为a n4.阅读下边的程序框图,运行相应的程序,则输出s的值为( )A.1B.0C.1D.35.统计某校n名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m=;②800n=;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是()A.①②B.①③C.②③D.②④6.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为()A.111B.211C.355D.4557.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为()A.35B.13C.415D.159.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m的值为67,则输入a的值为()A .7B .4C .5D .1110.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤L ,()1150k b k ≤≤为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( ) A .12150b b b M n ++=LB .12150150b b b M ++=LC .12150b b b M n++>LD .12150150b b b M ++>L11.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .712.同时掷三枚硬币,至少有1枚正面向上的概率是( )A .78B .58C .38D .18二、填空题13.若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则221x y +<的概率为__________. 14.如图,四边形ABCD 为矩形,3AB =,1BC =,以A 为圆心,1为半径作四分之一个圆弧»DE,在DAB ∠内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.15.如图所示,程序框图(算法流程图)的输出值x =________.16.高二某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为__________.17.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 18.根据下图所示的流程图,回答下面问题:若a=50.6,b=0.65,c=log0.65,则输出的数是________.19.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:+的值为分).已知甲组数据的中位数为14,乙组数据的平均数为16,则x y__________.20.为了在运行下面的程序之后得到输出y=25,键盘输入x应该是____________. INPUT xIF x<0 THENy=(x+1)*(x+1)ELSEy=(x-1)*(x-1)END IFPRINT yEND三、解答题21.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x(单位:亿元)与该地区粮食产量y(单位:万亿吨)之间存在着线性相关关系,统计数据如下表:年份20142015201620172018补贴额x/亿元91012118粮食产量y/万亿2526313721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 22.已知椭圆的焦距为2,离心率12e =. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 是椭圆上一点,且1260F PF ∠=o,求△F 1PF 2的面积.23.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数. 分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶524. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米至75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2016年全年每天的 2.5PM 监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示:(十位为茎,个位为叶)(1)从这15天的数据中任取3天的数据,求空气质量至少有一天达到一级的概率; (2)以这15天的 2.5PM 日均值来估算一年的空气质量情况,则一年(按360天计算)中大致有多少天的空气质量达到一级.25.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求1A 被选中的概率; (2)求1B 和1C 不全被选中的概率.26.某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x (单位:千万元)对年销售量y (单位:千万件)的影响,统计了近10年投入的年研发费用i x 与年销售量()1,2,,10i y i =L 的数据,得到散点图如图所示:(Ⅰ)利用散点图判断,y a bx =+和dy c x =⋅(其中c ,d 为大于0的常数)哪一个更适合作为年研发费用x 和年销售量y 的回归方程类型(只要给出判断即可,不必说明理由);(Ⅱ)对数据作出如下处理:令ln i u x =,ln i y υ=,得到相关统计量的值如下表:根据(Ⅰ)的判断结果及表中数据,求y 关于x 的回归方程; (Ⅲ)已知企业年利润z (单位:千万元)与x ,y 的关系为27z y x e=-(其中2.71828e =L ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据()()()1122,,,,,,n n u u u υυυL ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆnniii i i i nniii i u u u nu u u unuυυυυβ====---==--∑∑∑∑,ˆˆˆu αυβ=-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形, 其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.D解析:D 【解析】 【分析】由题意,恰好两件都是次品,共有23C 种不同的取法,恰好两件中一件是次品、一件是正品,共有11347C C 种不同的取法,即可求解. 【详解】由题意,从含有3件次品的50件产品中,任取2件,共有250C 种不同的取法, 恰好两件都是次品,共有20347C C 种不同的取法,恰好两件中一件是次品、一件是正品,共有11347C C 种不同的取法,所以至少取到1件次品的概率为1120347347250C C C C C +,故选D . 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中正确理解题意,合理分类讨论,利用组合数的公式是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.3.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n,标准差为,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n,标准差为. 故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.4.B解析:B 【解析】经过第一次循环得到32s i ==,,不满足4i >, 执行第二次循环得到43s i ==,, 不满足4i >,, 执行第三次循环得到s=1,i=4,不满足4i >,, 经过第四次循环得到05s i ==,, 满足判断框的条件 执行“是”输出0S =.故选B . 5.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.C解析:C 【解析】 【分析】利用列举法求得基本事件的总数,再得出选取两个不同的数且和等于30,所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解. 【详解】由题意,不超过32的质数有2,3,5,7,11,13,17,19,23,29,31,共有11个, 其中随机选取两个不同的数且和等于30的有30=7+23=11+19=13+17,共有3组,所以所求概率为2113355C =, 故选:C. 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用列举法求得基本事件的总数是解答的关键,着重考查了推理与计算能力.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.C解析:C 【解析】 【分析】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案. 【详解】题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,2314615C p C ==;第二种情况是前面四次都是正品,则剩余的两件是次品,44246115C p C ==;故12415p p p =+=. 故选:C . 【点睛】本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.9.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-; 4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.10.A解析:A 【解析】 【分析】由于选项中必有一项正确,故本选择题利用特殊法解决.设2n =,这2名学生的得分分别为150,150.则这2名学生中得分至少为(1150)k k 剟分的人数分别为:2,2,⋯,2,2.一共有150个“2”,计算12150b b b n++⋯+的值,再对照选项即可得到答案.【详解】 利用特殊法解决.假设2n =,这2名学生的得分分别为150,150. 则这2名学生中得分至少为1分的人数分别为:12b =, 这2名学生中得分至少为2分的人数分别为:22b =, 这2名学生中得分至少为3分的人数分别为:32b =,⋯这2名学生中得分至少为150分的人数分别为:1502b =, 即这2名学生中得分至少为(1150)k k 剟分的人数k b 分别为: 2,2,⋯,2,2.一共有150个“2”,从而得k 分的同学会被记k 次,所有k b 的和恰好是所有人得分的总和, 即12112k k b b b b a a -++⋯++=+, 从而121502222215015022b b b n ++⋯++++⋯+⨯===.12150222221502150150150b b b ++⋯++++⋯+⨯===.对照选项,只有(A )正确. 故选:A . 【点睛】本题主要考查众数、中位数、平均数、数列求和等基础知识,考查运算求解能力,考查特殊化思想思想、化归与转化思想.属于基础题.11.A解析:A 【解析】 【分析】根据框图,模拟计算即可得出结果. 【详解】程序执行第一次,0021s =+=,1k =,第二次,1=1+23,2S k ==,第三次,33211,3S k =+==,第四次,11112100,4S k =+>=,跳出循环,输出4k =,故选A. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.12.A解析:A 【解析】 【分析】先根据古典概型概率公式求没有正面向上的概率,再根据对立事件概率关系求结果. 【详解】因为没有正面向上的概率为112228=⨯⨯,所以至少有1枚正面向上的概率是1-1788=,选A. 【点睛】古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.二、填空题13.【解析】分析:不等式组表示的是正方形区域面积为满足的平面区域为阴影部分的面积利用几何概型概率公式可得结果详解:根据题意画出图形如图所示则不等式组表示的是正方形区域面积为其中满足的平面区域为阴影部分的解析:36p【解析】 分析:不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,利用几何概型概率公式可得结果.详解:根据题意,画出图形,如图所示, 则不等式组0303x y ≤≤⎧⎨≤≤⎩表示的是正方形区域,面积为339⨯=,其中满足221x y +<的平面区域为阴影部分的面积21144ππ⋅=,故所求的概率为4936P ππ==,故答案为36p . 点睛:对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.14.【解析】【分析】连接可求得满足条件的事件是直线AP 与线段BC 有公共点根据几何概型的概率公式可得【详解】连接如图所示所以满足条件的事件是直线AP 在∠CAB 内且AP 与BC 相交即直线AP 与线段BC 有公共点解析:1 3【解析】【分析】连接AC,可求得CAB∠,满足条件的事件是直线AP与线段BC有公共点,根据几何概型的概率公式可得CAB PDAB∠=∠.【详解】连接AC,如图所示,3tan3CBCABAB∠==,所以π6CAB∠=,满足条件的事件是直线AP在∠CAB内且AP与BC相交,即直线AP与线段BC有公共点,所以所求事件的概率π16π32CABPDAB∠===∠.故答案为:1 3 .【点睛】本题考查几何概型的概率计算,考查学生的计算能力与推理能力,属于基础题.15.12【解析】试题分析:第一圈是x=2;第二圈否x=4否x=5;第三圈是x=6否x=8否x=9;第四圈是x=10否x=12是输出x=12故答案为12考点:程序框图功能识别点评:简单题程序框图功能识别一解析:12【解析】试题分析:第一圈,是,x=2;第二圈,否,x=4,否,x=5,;第三圈,是,x=6,否,x=8,否,x=9;第四圈,是,x=10,否,x=12,是,输出x=12.故答案为12 .考点:程序框图功能识别点评:简单题,程序框图功能识别,一般按程序逐次运行即可.16.【解析】∵高二某班有学生56人用系统抽样的方法抽取一个容量为4的样本∴样本组距为56÷4=14则5+14=19即样本中还有一个学生的编号为19解析:19【解析】∵高二某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为56÷4=14, 则5+14=19,即样本中还有一个学生的编号为19.17.【解析】【分析】【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有种其中表示3个同学中选2个同学选择的项目表示从三种组合中解析:23【解析】 【分析】 【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种,有且仅有两人选择的项目完全相同有21133218C C C ⨯⨯=种,其中23C 表示3个同学中选2个同学选择的项目,13C 表示从三种组合中选一个,12C 表示剩下的一个同学有2中选择,故有且仅有两人选择的项目完全相同的概率是182273=. 考点:古典概型及其概率计算公式.18.6【解析】因为所以输出解析:6 【解析】因为a b c >>,所以输出50.6.a =19.9【解析】阅读茎叶图由甲组数据的中位数为可得乙组的平均数:解得:则:点睛:茎叶图的绘制需注意:(1)叶的位置只有一个数字而茎的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录不能遗漏特别解析:9 【解析】阅读茎叶图,由甲组数据的中位数为14 可得4x = ,乙组的平均数:824151810165y+++++= ,解得:5y = ,则:459x y +=+= .点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.20.-6或6【解析】当x <0时25=(x+1)2解得:x=﹣6或x=4(舍去)当x ≥0时25=(x ﹣1)2解得:x=6或x=﹣4(舍去)即输入的x 值为±6故答案为:﹣6或6点睛:根据流程图(或伪代码)写解析:-6或6【解析】当x <0时,25=(x+1)2,解得:x=﹣6,或x=4(舍去) 当x ≥0时,25=(x ﹣1)2,解得:x=6,或x=﹣4(舍去) 即输入的x 值为±6 故答案为:﹣6或6.点睛:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.三、解答题21.(1)ˆ 2.24yx =+(2)大约为19.4万亿吨 【解析】 【分析】(1)分别求出x 和y ,根据公式,求出ˆb和ˆa ,即可得出线性回归方程; (2)由(1)得ˆ 2.24yx =+,可估计出2019年该地区的粮食产量. 【详解】解:(1)由表中所给数据可得,91012118105x ++++==,2526312721265y ++++==,代入公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,解得ˆ 2.2b=, 所以ˆˆ4ay bx =-=. 故所求的y 关于x 的线性回归直线方程为ˆ 2.24yx =+. (2)由题意,将7x =代入回归方程ˆ 2.24y x =+, 可得,ˆ19.4y=. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】本题考查求线性回归方程,以及根据回归方程解决实际问题,考查计算能力.22.(Ⅰ)22143x y +=或22143y x +=(Ⅱ【解析】 【分析】(Ⅰ)由已知可得1c =,再由离心率求得2a =,结合隐含条件求得b 的值,从而求得椭圆的方程;(Ⅱ)在焦点三角形中利用余弦定理求得|PF 1||PF 2|=4,代入三角形的面积公式得答案. 【详解】(Ⅰ)椭圆方程可设为2222222211x y y x a b a b+=+=或且c =1,又12c e a ==,得a =2, ∴b 2=a 2-c 2=4-1=3,∴椭圆的方程为22143x y +=或22143y x +=.(Ⅱ)在△PF 1F 2中,由余弦定理可得:22212124||2c PF PF PF PF cos =+-∠F 1PF 2, 即212124()2PF PF PF PF =+--2|PF 1||PF 2|×cos 60°, ∴4=16-3|PF 1||PF 2|,即|PF 1||PF 2|=4.∴△F 1PF 2的面积S =12|PF 1||PF 2|sin 60°=142⨯= 【点睛】该题考查的是有关椭圆的问题,涉及到的知识点有椭圆的标准方程的求解,椭圆焦点三角形的面积,余弦定理,属于简单题目. 23.(1)0.005a =(2)73 (分)(3)10 【解析】 【分析】(1)由频率分布直方图的性质列方程即可得到a 的值; (2)由平均数加权公式可得平均数,计算出结果即可;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[5090,)之外的人数.24.(1)6791;(2)一年中平均有120天的空气质量达到一级. 【解析】 【分析】(1)由茎叶图知随机抽取15天的数据中, 2.5PM 日均值在35微克/立方米以下的天数有5天,由此能求出从这15天的数据中任取3天的数据,至少有一天空气质量达到一级的概率.(2)依题意可知,一年中每天空气质量达到一级的概率为51153P ==,一年中空气质量达到一级的天数为η,则1~(360,)3B η,由此能求出一年中大致有多少天的空气质量达到一级.【详解】解:(1)由茎叶图知随机抽取15天的数据中,2.5PM 日均值在35微克/立方米以下的天数有5天, ∴从这15天的数据中任取3天的数据, 则至少有一天空气质量达到一级的概率为:1221351051053331515156791C C C C C p C C C =++=. (2)依题意可知,一年中每天空气质量达到一级的概率为51153P ==, 一年中空气质量达到一级的天数为η,则1~(360,)3B η,13601203E η∴=⨯=(天),∴一年中平均有120天的空气质量达到一级.【点睛】本题考查等可能事件概率的求法,以及离散型随机变量的分布列与数学期望的计算问题,考查运算求解能力,考查函数与方程思想,属于中档题. 25.(1)13;(2)56.【解析】 【分析】 【详解】(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成,因而61()183P M ==. (2)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 26.(Ⅰ)由散点图知,选择回归类型y c x α=⋅更适合; (Ⅱ)13y e x =⋅;(Ⅲ)要使年利润取最大值,预计下一年度投入27千万元. 【解析】 【分析】(Ⅰ)根据散点图的特点可知,相关关系更接近于幂函数类型; (Ⅱ)根据所给数据,代入公式求得回归直线的方程;(Ⅲ)先求出年利润的表达式,结合不等式特点利用导数可得最值. 【详解】(Ⅰ)由散点图知,选择回归类型dy c x =⋅更适合.(Ⅱ)对dy c x =⋅两边取对数,得ln ln ln y c d x =+,即ln v c du =+ 由表中数据得: 1.5u v ==,∴()()()1122221130.510 1.5 1.5146.510 1.53ˆn niii i i i nni ii i u u v v u v nuvdu u unu ====----⨯⨯====-⨯--∑∑∑∑,∴1ln 1.5 1.51,3ˆc v duc e =-=-⨯=∴=, ∴年研发费用x 与年销售量y 的回归方程为13y e x =⋅. (Ⅲ)由(Ⅱ)知,13()27z x x x =-, ∴23()91z x x -='-, 令23()910z x x--'==,得27x =,且当(0,27)x ∈时,()0z x '>,()z x 单调递增; 当(27,)x ∈+∞时,()0z x '<,()z x 单调递减.所以当27x =千万元时,年利润z 取得最大值,且最大值为(27)54z =千万元. 答:要使年利润取最大值,预计下一年度投入27千万元. 【点睛】本题主要考查非线性回归方程的求解及决策判断,非线性回归方程一般是转化为线性回归方程求解,侧重考查数学建模和数据分析的核心素养.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021西安交通大学附属中学分校初三数学上期中试题(含答案)
一、选择题
1.方程x2+x-12=0的两个根为( )
A.x1=-2,x2=6B.x1=-6,x2=2C.x1=-3,x2=4D.x1=-4,x2=3
2.﹣3的绝对值是( )
A.﹣3B.3C.- D.
3.下列图形是我国国产品牌汽车的标识,在这些汽白球的概率 (摸到白球) ________;
如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为 ?
25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
A. B. C. D.
4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()
A.25°B.40°C.50°D.65°
5.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
6.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为( )
19.若抛物线的顶点坐标为 ,且它在 轴截得的线段长为 ,则该抛物线的表达式为________.
20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为 ,则图中阴影部分的面积为_____.
三、解答题
21.如图, 是边长为 的等边三角形,边 在射线 上,且 ,点 从点 出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将 绕点C逆时针方向旋转60°得到 ,连接DE.
11.如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是()
A.30ºB.35ºC.25ºD.60º
12.如图,在⊙O中,AB是⊙O的直径,AB=10, ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()
24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共 个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:
摸球的次数
摸到白球的次数
摸到白球的频率
请估计:当实验次数为 次时,摸到白球的频率将会接近________;(精确到 )
A. B. C. D.
9.如图,在 中, , , , 由 绕点 顺时针旋转得到,其中点 与点 、点 与点 是对应点,连接 ,且 、 、 在同一条直线上,则 的长为()
A.3B. C.4D.
10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()
A. B. C. D.以上都不对
试题分析:将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.
交于点E,且AE平分∠BAC.
(1)求证:BC是⊙O的切线;
(2)若∠EAB=30°,OD=3,求图中阴影部分的面积.
23.已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D.
(I)如图①,若BC是⊙O的直径,BC=4,求BD的长;
(Ⅱ)如图②,若∠ABC的平分线交AD于点E,求证:DE=DB.
(1)求通道的宽是多少米?
(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
17.一副三角板如图放置,将三角板ADE绕点A逆时针旋转 ,使得三角板ADE的一边所在的直线与BC垂直,则 的度数为______.
18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
A.1B.2C.3D.4
二、填空题
13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.
A.32×20﹣2x2=570B.32×20﹣3x2=570
C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=570
7.已知函数 的图象与x轴有交点.则 的取值范围是( )
A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3
8.下列图形中,既是轴对称图形又是中心对称图形的是()
14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
15.已知 是关于 的方程 的一个根,则 __________.
16.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.
(1)如图1,求证: 是等边三角形;
(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.
(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
22.如图,在Rt△ABC中,∠C=90°,点D在AB上,以AD为直径的⊙O与BC相
相关文档
最新文档