2018-2019年江苏省南京市数学中考试题

合集下载

2018-2019年南京市鼓楼区七上期中数学试卷

2018-2019年南京市鼓楼区七上期中数学试卷
2b a
n 花坛 m
3/9
22、(4 分)⑴写出一个含 x 的代数式,使得当 x=2 和 x= 2 时,代数式的值等于 5; ⑵写出两个都含有 a、b 的不同的二项式,使它们的和为 a2 b2 .
23、(4 分)某同学在计算 2x2 5x 6 减去某个多项式时,由于粗心,误算为加上这个多项 式,而得到 4x2 4x 6 ,请求出正确的答案.
23、 6x 6 解析:设原多项式是 A,由题意可得
2x2 5x 6 A 4x2 4x 6 A 4x2 4x 6 2x2 5x 6 A 2x2 x
因此,由题意知,原计算过程:
2x2 5x 6 2x2 x
2x2 5x 6 2x2 x 6x 6
2
132 ⑶ ( ) (36)
249
⑷ 14 (1 0.5) (3) 2 (3)2
18、(7 分)计算: ⑴ m2 2m 2m2 3m
2/9
⑵ 先化简,再求值: (ab 3a2 ) 5ab 2(2a2 ab) ,其中 a 2 , b 1 .
1 2 23 3 4 2 2 3 3 4 4
⑴观察发现
1
111
1
_________;
_________.
n(n 1)
1 2 23 3 4
n(n 1)
⑵初步应用
利用⑴的结论,解决以下问题:
1
1
①把 拆成两个分子为 1 的正的真分数之差,即 _________;
22
1
⑶解:原式
=
36




1 2

【真题】2018年南京市中考数学试卷含答案解析(word版)

【真题】2018年南京市中考数学试卷含答案解析(word版)

江苏省南京2018年中考数学试卷(解析版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选中,恰有一项是符合题目要求的)1.(2018年江苏省南京市)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.2.(2018年江苏省南京市)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方公式.3.(2018年江苏省南京市)下列无理数中,与4最接近的是()A.B.C.D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.4.(2018年江苏省南京市)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大【分析】分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,所以平均数变小,方差变小,故选:A.【点评】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.5.(2018年江苏省南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF ⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b ﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.(2018年江苏省南京市)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)7.(2018年江苏省南京市)写出一个数,使这个数的绝对值等于它的相反数:﹣1.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣1【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.8.(2018年江苏省南京市)习近平同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,河北塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是 1.12×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1120000=1.12×106,故答案为:1.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2018年江苏省南京市)若式子在实数范围内有意义,则x的取值范围是x≥2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省南京市)计算×﹣的结果是.【分析】先利用二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣2=3﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.(2018年江苏省南京市)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.12.(2018年江苏省南京市)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1=﹣2,x2=3.【分析】根据根与系数的关系结合x1+x2=1可得出m的值,将其代入原方程,再利用因式分解法解一元二次方程,即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,∴m=1,∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,解得:x1=﹣2,x2=3.故答案为:﹣2;3.【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,利用根与系数的关系求出m的值是解题的关键.13.(2018年江苏省南京市)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(1,﹣2).【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.14.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=5cm.【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE是△ABC的中位线是解题关键.15.(2018年江苏省南京市)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=72°.【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.16.(2018年江苏省南京市)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OH=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OH=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.【点评】本题主要考查圆的切线的判定与性质,解题的关键是掌握矩形的判定与性质、旋转的性质、切线的性质、垂径定理等知识点.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(2018年江苏省南京市)计算(m+2﹣)÷.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=(﹣)÷=•=2(m+3)=2m+6.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18.(2018年江苏省南京市)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在B.A.点A的左边B.线段AB上C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.【点评】本题考查了一元一次不等式,解(1)的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式;解(2)的关键是利用不等式的性质19.(2018年江苏省南京市)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20.(2018年江苏省南京市)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.【分析】(1)延长AO到E,利用等边对等角和角之间关系解答即可;(2)连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】此题考查菱形的判定,关键是根据全等三角形的判定和性质以及菱形的判定解答.(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.【分析】(1)根据平均数的定义计算可得;(2)从极端值对平均数的影响作出判断,可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)该店本周的日平均营业额为7560÷7=1080元;(2)因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理,方案:用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×1080=32400元.【点评】本题主要考查算术平均数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.22.(2018年江苏省南京市)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是D.A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球【分析】(1)先画出树状图展示所有6种等可能的结果数,再找出2个球都是白球所占结果数,然后根据概率公式求解;(2)根据概率公式分别计算出每种情况的概率,据此即可得出答案.【解答】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为=;(2)∵摸出的2个球颜色相同概率为=、摸出的2个球颜色不相同的概率为=,摸出的2个球中至少有1个红球的概率为=、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸出的2个球中至少有1个白球,故选:D.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(2018年江苏省南京市)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)【分析】在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【解答】解:在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=,同理:EF=BE﹣BF=,∴,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.(2018年江苏省南京市)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.【解答】(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x 轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.25.(2018年江苏省南京市)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为vm/min,离家的距离为s m,v 与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min时离家的距离为200m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.【分析】(1)根据路程=速度×时间求出小明出发第2min时离家的距离即可;(2)当2<t≤5时,离家的距离s=前面2min走的路程加上后面(t﹣2)min走过的路程列式即可;(3)分类讨论:0≤t≤2、2<t≤5、5<t≤6.25和6.25<t≤16四种情况,画出各自的图形即可求解.【解答】解:(1)100×2=200(m).故小明出发第2min时离家的距离为200m;(2)当2<t≤5时,s=100×2+160(t﹣2)=160t﹣120.故s与t之间的函数表达式为160t﹣120;(3)s与t之间的函数关系式为,如图所示:故答案为:200.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,读懂题目信息,从图中准确获取信息是解题的关键.26.(2018年江苏省南京市)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A 作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)首先证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.27.(2018年江苏省南京市)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;(2)由由AC•BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;(3)作AG⊥BC,由三角函数得AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)= [x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)= [x2+(m+n)x+mn]=×(3mn+mn)=mn.【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.。

2019年江苏省南京市中考数学试卷解析版

2019年江苏省南京市中考数学试卷解析版

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()5 A.0.13×104B.1.3×103C.13×102D.130×10 232.(2分)计算(ab)的结果是()23 A.ab53B.ab663C.abD.ab3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.29.(2分)分解因式(a﹣b)+4ab的结果是.2﹣4x+m=0的一个根,则m=.10.(2分)已知2+是关于x的方程x11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力4.7以下4.74.84.94.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△A B C 中,A B =4,∠C =60°,∠A >∠B C 的长的. 三、解答题(本11小88分,请在答题卡指定区域内作答,解写出文 字说明、证明过程或 22 xy+y )17.(7分)计算(x+y )(x 18.(7分)解方1=. 19.(7分)如图,D 是△A B AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求 证:△ADF ≌△CEF . 20.(8分)如图5天的天气情况. (1)利用方差判这5天的日最高气温波动大还是日最低气温波动大; (2)根据如图提供的信息,请再写出两个不 21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要选择两天参加活动.1)甲同学随机选择两天,其中有一天是星期二的概率? (2)乙同学随机选择连续的两天,其中有一天是星期二的概率是. 22.(7分)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .求证:PA =PC . 23.(8分)已知一次函数y 1=k x +2(k 为常数,k ≠0)和y 23.(1)当2y 1>y 2,求x 的取. (2)当x <1时,y 1>y 2.结合图象,出k 的取. 24.(8分)如图,山顶有一塔AB ,塔高33m .计划在塔的正下方沿直线CD 开通穿山隧道 E F .从与E 点相距80m 的得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan22°≈0.40,tan27°≈0.51.) 25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充 后的矩形场长与为3:2.扩充区域的扩建费30元,扩建后在原广场 和扩充区域都铺设地砖,铺设地砖费100元.如果费用642000元,扩 充后广场的长和宽应分别 26.(9分)如图①,在Rt △ABC 中,∠C =90°,AC =3,BC =4.求作菱形DEFG ,使点 A C 上,点E 、A B 上,点BC 上. 小明的作法 .如图②AC 上取一点D ,过点D 作DG ∥AB 交BC 于点G ..以点D ,D G 长为半径画AB 于点E . 3.在E B 上截取E F =E D ,连接F G ,形DEFG 为所求作的菱形. (1)证明小明所作形DEFG 是菱形. (2)小明进一步探索,发现可作出的菱形个点D 的位置变化而变化 续探索,接写出菱形的个数的C D 的长的 27.(11分)【概】 城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按 直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角xOy ,对两 点A (x 1,y 1)和B (x 2,y 2),用以下方式定义两点:d (A ,B )=|x2|+|y1﹣ y2|. 【数学理解】 (1)①已知点2,1),则d (O ,A )=. ②函数2x +4(0≤x ≤2)的图①所示,B 是图象上一点,d (O ,B )=3,则 点B 的坐标是. (2)函数y =(x >0)的图②所示.求证:该函数的图象在点C ,使d(O ,C )=3. 2 3)函数y 5x +7(x ≥0)的图③所示,D 是图象上一点,求d (O ,D )的 最小值的点D 的坐标. 【问】 (4)某市要修建一条通往景观湖的道图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在 1.(2分)2018年中国与“一带一路”沿线国家货物13000亿美元.用 科学记数法表示13000是() 5 A .0.13×10 4 B .1.3×10 3 C .13×10 2 D .130×10 n 【分析】科学记数法的表示形式为a ×10 的形的值时,要看把原a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同.当原数绝1时,n 是正数;当原数的绝对值<1时,n 是负数. 4 【解答】解:13000=1.3×10 故选:B . n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10 的形式,其 中1≤|a |<10,n 为整数,表示时关键要正a 的n 的值. 23 2.(2分)计算(ab ) 的结果是() 23 A .ab 53 B .ab 663 C .abD .ab 【分析】根据积的乘方法则解. 2323363 【解答】解:(a =(a =a b )). bb 故选:D . 【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积每个因式乘方的积. 3.(2分)面积为4的正方形的边长是() A .4的平方根B .4的算术平方根 C .4开平方的结果D .4的立方根 【分析】已知正方形面积求边长就是求面积的算术平方根; 【解答】解:面积为4的正方形的边长是,即为4的算术平方根; 故选:B . 【点评】本题考查算术平方根;是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年中考数学试题含答案 (13)

2019年中考数学试题含答案 (13)

2019年中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S=6,找出所有可△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,=AB•BC=6.∴AC==5,S△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S=S△ABC=×6=4.32;等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即即可得S△AOC可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴=()2,∵点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,∴S=,S△AOC=2,△OBD∴=,∴tan∠OAB==.故选:A.【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为正整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数平行四边形ABCD是()A.2 B.3 C.4 D.5【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC==和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;=S△EOC=OE•OC=,⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=,代入可得结论.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,∴S===;△AOP故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。

江苏省南京市2019年中考数学试题及参考答案与解析

江苏省南京市2019年中考数学试题及参考答案与解析

2019年江苏省南京市中考数学试题及参考答案与解析(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:13000=1.3×104故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方法则解答即可.【解答过程】解:(a2b)3=(a2)3b3=a6b3.故选:D.【总结归纳】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【知识考点】平方根;算术平方根;立方根.【思路分析】已知正方形面积求边长就是求面积的算术平方根;【解答过程】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【总结归纳】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【知识考点】实数与数轴.【思路分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答过程】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【总结归纳】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.7【知识考点】估算无理数的大小.【思路分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答过程】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【总结归纳】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【知识考点】几何变换的类型.【思路分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答过程】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【总结归纳】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

江苏省南京市联合体(江北、栖霞、江宁)2018-2019学年八下数学期中试卷(PDF版)含答案

江苏省南京市联合体(江北、栖霞、江宁)2018-2019学年八下数学期中试卷(PDF版)含答案

2019年南京市联合体(栖霞、江宁、江北)期中八年级数学注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚;2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,不能答在试卷上;...............3.考试时间100分钟,试卷满分100分.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).......1.下列图形中,是中心对称图形但不是轴对称图形的是(▲)A.B.C.D.2.下列调查适合普查的是(▲)A.了解某品牌手机的使用寿命B.了解公民保护环境的意识C.了解中央电视台“朗读者”的收视率D.了解“月兔二号”月球车零部件的状况3.如图,C、D两个转盘均将圆分成8等分,若转盘自由转动一次,停止后,指针落在阴影区域内概率最大的转盘是(▲)A.B.C.D.4.下列条件中,不能判定四边形ABCD是平行四边形的是(▲)A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC5.菱形ABCD中,AC=10,BD=24,则该菱形的周长等于(▲)A.13B.52C.120D.2406.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12;如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的(▲)A.12B.14C.16D.18红豆40%巧克力其它奶油30%二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上)7.为了了解某校八年级学生的视力情况,从中随机抽取50名学生,并对他们的视力进行分析,则在该调查中,总体指的是▲.8.3月12日是中国的植树节,如图是某种幼树在移植过程中成活率的统计图,估计该种幼树在此条件下移植成活的概率为▲(结果精确到0.01).9.某班级40名学生在期中数学考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有▲人.10.如图是某冷饮店一天售出各种口味蛋糕数量的扇形统计图,其中售出奶油口味的雪糕150支,那么售出红豆口味雪糕的数量是▲支.11.某学校为了解本校2000名学生的课外阅读情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下的统计表,根据表中信息估计全校每周课外阅读时间不超过2小时的学生有▲人.每周课外阅读时间x (小时)0≤x ≤11<x ≤22<x ≤3x >3人数710141912.如图,在□ABCD 中,∠A =70°,将□ABCD 绕顶点B 顺时针旋转到□A 1BC 1D 1,当C 1D 1首次经过顶点C 时,旋转角为▲°.(第12题)(第13题)(第14题)13.如图,在△ABC 中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF ⊥CF ,若AC =3,BC=5,则DF =▲.(第10题)(第8题)(第8题)图①图②ABCDA 1C 1D 1ABCDEFABC DOE14.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是线段BO 上一点,若AB =AE ,∠ABE=65°,则∠OAE =▲°.15.如图,在£ABCD 中,线段BE 、CE 分别平分∠ABC 和∠BCD ,若AB =5,BE =8,则CE 的长度为▲.(第15题)(第16题)16.如图,矩形纸片ABCD ,AD =4,AB =3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,若△EFC 是直角三角形,则BE 的长为▲.三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)已知△ABC 的三个顶点的坐标分别为A (﹣5,0)、B (﹣2,3)、C (﹣1,0)(1)画出△ABC 关于坐标原点O 成中心对称的△A ′B ′C ′;(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出对应的△A ′′B ′′C ′′;(3)若以A ′、B ′、C ′、D ′为顶点的四边形为平行四边形,则在第四象限中的点D ′坐标为▲.18.(6分)如图,点E ,F 是四边形ABCD 对角线AC 上的两点,AD ∥BC ,DF ∥BE ,AE =CF .(1)求证:△AFD ≌△CEB ;(2)求证:四边形ABCD 是平行四边形.(第17题)A DBBAC O(第18题)19.(6分)4月22日是世界地球日,为了增强学生环保意识,某中学八年级举行了“环保知识竞赛”活动.为了了解本次竞赛情况,只抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(1)a =▲,b =▲.(2)补全频数分布直方图;(3)该校八年级有500名学生,估计八年级学生中竞赛成绩高于80分的有多少人?20.(6分)一个不透明的袋子里装有黑白两种颜色的球共40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近▲(精确到0.1);(2)估计袋中黑球的个数为▲只;(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了▲个黑球.21.(8分)某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是▲;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对三项活动课程的兴趣情况.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100.5ab16摸球次数10002000300040005000(第20题)(第19题)22.(6分)证明:对角线相等的平行四边形是矩形.已知:如图,▲.求证:▲.证明:23.(6分)定义:一条对角线垂直平分另一条对角线的四边形叫做筝形.如图,筝形ABCD 的对角线AC 、BD 相交于点O ,且AC 垂直平分BD .(1)请结合图形,写出筝形两种不同类型的性质:性质1:▲;性质2:▲.(2)若AB //CD ,求证:四边形ABCD 为菱形.24.(7分)如图,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)当△ABC 满足什么条件时,四边形AFBD 是正方形,并说明理由.(第24题)ABD VCOABCDO(第23题)(第22题)25.(7分)如图,点A 在直线l 外,点B 在直线l 上.(1)在l 上求作一点C ,在l 外求作一点D ,使得以A 、B 、C 、D 为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)(2)连接AB ,若AB =5,且点A 到直线l 的距离为4,通过计算,找出(1)中面积最小的菱形.26.(10分)概念提出若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形”.(1)下列四边形一定是巧妙四边形的是▲;(填序号)①平行四边形;②矩形;③菱形;④正方形.初步应用(2)在绝妙四边形ABCD 中,AC 垂直平分BD ,若∠BAD =80°,则∠BCD =▲°;深入研究(3)如图,在梯形ABCD 中,AD ∥BC ,AB =AD =CD ,∠B =72°.求证:梯形ABCD 是绝妙四边形.(4)在巧妙四边形ABCD 中,AB =AD =CD ,∠A =90°,AC 是四边形ABCD 的巧分线,请直接写出∠BCD 的度数.ABl(第25题)(第26题)ABCD一、选择题题号 1 2 3 4 5 6 答案CDADBD二、填空题三、解答题 17.(1)(2)(3)(6,-3)18.(1)如图,//AD BC ,//DF BE ,12∴∠=∠,34∠=∠.又AE CF =,AE EF CF EF ∴+=+,即AF CE =.在AFD ∆与CEB ∆中, 1234AF CE ∠=∠= ∠=∠, ()AFD CEB ASA ∴∆≅∆;(2)由(1)知,AFD CEB ∆≅∆,则AD CB =.又//AD BC ,∴四边形ABCD 是平行四边形.19. (1)12;0.24 (2)(4)()28050024.032.0=×+∴高于80有280人 20. (1)0.5 (2)20 (3)1021. (1)(2)100 (3)2.1153605016=×° (4)根据全校人数估计喜欢武术的学生最多,达到480人次,舞蹈和剪纸一样各360人.22.已知:四边形ABCD 是平行四边形,AC 、BD 是两条对角线,且AC BD =. 求证:平行四边形ABCD 是矩形.证明:如图, 四边形ABCD 是平行四边形,AB DC ∴=,//AB DC .在ABC ∆与DCB ∆中, AB DC AC BD BC CB == =, ()ABC DCB SSS ∴∆≅∆. ABC DCB ∴∠=∠.又180ABC DCB ∠+∠=° , 90ABC DCB ∴∠=∠=°, ∴平行四边形ABCD 是矩形.23.(1)对角线相互垂直;是轴对称图形 (2)∵AC 垂直平分BD∴AB =AD 同理BC =CD∵AB ∥CD ∴∠ABO =∠ODC 在△ABO 和△CDO 中∠=∠=∠=∠DOC AOB DOBO ODC ABO∴ △ABO ≌△CDO (ASA ) ∴AB =CD∵AB =AD ,BC =CD ∴AB =AD =CD =CB ∴四边形ABCD 为菱形24.(1)//AF BC ,AFE DCE ∴∠=∠,E 为AD 的中点, AE DE ∴=,在AFE ∆和DCE ∆中, AFE DCE AEF DEC AE DE ∠=∠∠=∠ =, ()AFE DCE AAS ∴∆≅∆, AF CD ∴=,AF BD = , CD BD ∴=;(2)当ABC ∆为等腰直角三角形时,四边形AFBD 是矩形,理由如下://AF BD ,AF BD =,∴四边形AFBD 是平行四边形,AB AC = ,D 是BC 中点,∴∠ADB =90°,AD =21BC ,�AD =BD∴四边形AFBD 是正方形.25.(1)如图,共有四个菱形,其中ABC 3D 3和ABC 1D 1一样大,画其一即可(2)由图可知, 22BD AC 的面积最小作AM �2C B 于点M�AB =5,AM =4在Rt �ABM 中BM =设2MC x =,则223BC AC x ==+在Rt �2AC M 中22222AC C M AM =+222(3)4x x +=+ �76x = �7504363S =×+=26. (1)③、④(2)80°或140°(3)方法一证明:连接AC 、BD过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F在Rt △ABE 和Rt △DCF 中AB DC AE DF= = ∴Rt △ABE ≌Rt △DCF (HL )∴∠DCB =∠ABC =72°∴AD ∥BC∴∠D =180°-∠DCB =108°∴DA=DC∴△DAC 是等腰三角形∴∠DAC =∠DCA =1802D °−∠=1801082°−°=36° ∴∠CAB =∠DAB -∠DAC =180°-∠B -∠DAC =72° ∴CAB=B =72°∴△ABC 是等腰三角形同理可证△ABD 和△BCD 是等腰三角形∴梯形ABCD 是绝妙四边形方法二证明:过点D作DE∥AB交BC于点E∵AD∥BE,AB∥DE∴四边形ABED是平行四边形∴DE=AB=DC∴∠C=∠DEC=∠ABC=72°∴∠ADC=180°-∠C=108°∵DA=DC∴△ADC是等腰三角形,∠DAC=∠DCA=36°∴∠BAC=∠BAD-∠DAC=72°∴CA=CB∴△ABC是等腰三角形连接BD同理可证△ABD和△BDC是等腰三角形∴梯形ABCD是绝妙四边形(4)90∴∠=°或135°或45°BCD。

南京市鼓楼区2018-2019学年八年级上期中数学试卷含答案解析

南京市鼓楼区2018-2019学年八年级上期中数学试卷含答案解析

江苏省南京市鼓楼区2019〜2019学年度八年级上学期期中数学试卷一、选择题(本大题共6小题,每小题2分,共计12分•在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题纸上)1 •在下列常见的手机软件小图标中,是轴对称图形的是()2 •下列几组数中,能构成直角三角形三边的是()2 2 2A • 2, 3, 5B • 3, 4, 4 C. 3 , 4 , 5 D. 6, 8, 103.下列说法正确的是()A •全等三角形是指形状相同的两个三角形B・全等三角形的周长和面积分别相等C・全等三角形是指面积相等的两个三角形D •所有的等边三角形都是全等三角形4.如图,在厶ABC中,AB=AC , AD是BC边上中线.若AB=10 , AD=8 ,则△ ABC的周长是()A. 26B. 28C. 32D. 365 .如图,点O是厶ABC的两外角平分线的交点,下列结论:①OB=OC ;②点O到AB、AC的距离相等;③点O到厶ABC的三边的距离相等;④点O在/ A的平分线上•其中结论正确的个数是6 .如图,在△ ABC 中,AB=BC,/ ACB=90 ° 点D、E 在AB 上,将△ ACD、△ BCE 分别沿CD、CE翻折,点A、B分别落在点A'、B 的位置,再将△ A CD、△ BCE分别沿A'C、B'C翻折,点D 与点E恰好重合于点O,则/ A OB 的度数是()C. 3B. 120° C . 135° D . 150°二、填空题(本大题共 10小题,每小题2分,共20分•不需写出解答过程,请把答案直接填写在 答题纸相应位置上)7•如图,△ ABC 中,/ ACB=90 °,以它的各边为边向外作三个正方形,面积分别为S i , S 2, S 3已知 S i =15 , S 3=25,贝U S 2= _________ .8•已知等腰三角形一个外角等于80°则这个等腰三角形的顶角的度数是 __________________PD 丄DA ,垂足为D , PD=2 ,则点P 到OB 的距离是9•如图,已知/ BAC= / DAC ,请添加一个条件: 可).____________ ,使△ ABC ◎△ ADC (写出一个即A . 90 匚;11•如图,在△ ABC中,/ B与/ C的平分线交于点0,过点0作DE // BC,分别交AB、AC于点D、E.若AB=9 , AC=7,贝U △ ADE 的周长是____________ •12 •如图,△ ABC为等边三角形,以AC为直角边作等腰直角三角形ACD,/ ACD=90。

2018-2019年南京市数学中考真题试题解析

2018-2019年南京市数学中考真题试题解析

四、(每小题 8 分,共 16 分)
20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九年级学生进行调查 (每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:学生感兴 趣的课程情况条形统计图学生感兴的课程情况扇形统计图
根据统计图提供的信息,解答下列问题
(1)如图,当∠ACB=90°时,
①求证:△BCM≌△CAN;
②求∠BDE 的度数;
(2)当∠ACB= ,其它条件不变时,∠BDE 的度数是
(用含 的代数式表示)
(3)若△ABC 是等边三角形,AB= 3 3 ,点 N 是 BC 边上的三等分点,直线 ED 与直线 BC 交于点 F,请直 接写出线段 CF 的长
D.(-1,-4)
5.下列运算错误的是
A.(m2)3=m6
B.a10÷a9=a
C.x3·x5=x8
D.a4 +a3=a7
6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2 补角的度数是
A.60° B.100° C.110° 7.下列事件中,是必然事件的是
D.120°
A.任意买一张电影票,座位号是 2 的倍数
(1)在这次调查中一共抽取了
名学生,m 的值是
.
(2)请根据以上信息直接在答题卡上补全条形统计图;
2
2
(3)扇形统计图中,“数学”所对应的圆心角度数是
度;
(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生 对数学感兴趣.
21、某公司今年 1 月份的生产成本是 400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成 本是 361 万元、假设该公司 2、3、4 月每个月生产成本的下降率都相同.

20182019学年江苏省南京市三区联盟九年级(下)期初数学试卷(解析版)

20182019学年江苏省南京市三区联盟九年级(下)期初数学试卷(解析版)

2018-2019学年江苏省南京市三区联盟九年级(下)期初数学试卷一、选择题(本大题共6小题,共12.0分)1.下列哪个方程是一元二次方程()A. B. C. D.2.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. B. C. D.3.一组数据-2,-1,0,3,5的极差是()A. 7B. 6C. 5D. 04.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=2:1,则△ADE与△ABC的面积比为()A. 2:1B. 2:3C. 4:1D. 4:95.如图,已知AB是半圆O的直径,∠BAC=32°,D是的中点,那么∠DAC的度数是()A. B. C. D.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.B. 当时,y随x的增大而增大C.D. 3是方程的一个根二、填空题(本大题共10小题,共20.0分)7.如果=≠0,那么=______.8.已知⊙O的半径为5cm,圆心O到直线l的距离为4cm,那么直线l与⊙O的位置关系是______.9.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.10.已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=______.11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm2(结果保留π).12.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=5,则⊙O的半径为______.13.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,则BC=______.14.已知二次函数y=x2+bx+c中,其函数y与自变量x之间的部分对应值如下表:x…-10123…y…2-1-2m2…则m的值为______.15.若m是一元二次方程x2-3x+1=0的一个根,则2019-m2+3m=______.16.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°,则∠ABD=______°.三、计算题(本大题共1小题,共8.0分)17.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(抽到偶数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,恰好这个两位数是奇数的概率是多少?四、解答题(本大题共9小题,共80.0分)18.解方程:(1)x2+2x-3=0;(2)x(x+1)=2(x+1).19.如图,已知AD?AC=AB?AE.求证:△ADE∽△ABC.20.关于x的一元二次方程x2-2mx+4m-3=0.(1)若该方程有一根为-1,求m的值及方程的另一根;(2)如果该方程有两个相等的实数根,求m的值.21.从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):甲:6,12,8,12,10,12;乙:9,10,11,10,12,8;(1)填表:平均数众数方差甲10______ ______乙______ 10(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?22.如图,在阳光下,某一时刻,旗杆AB的影子一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为20m,在墙面上的影长CD为4m,同一时刻,小明又测得竖立于地面长1m的标杆的影长为0.8m,求旗杆AB的高度,23.如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点(1)对称轴是______;(2)D点坐标______;(3)根据图象直接写出y>0时,自变量x的取值范围______;(4)若一次函数的图象过点B、D,根据图象直接写出使一次函数值大于二次函数值时的x的取值范围.(5)求此二次函数的表达式,并写出顶点坐标.24.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.25.如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的直线CD,垂足为D,AB的延长线交直线CD于点E,连接OD交AC于点G,AC平分∠DAB.(1)求证:CD是⊙O的切线;(2)若=,求的值.26.某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为______(元/千克),获得的总利润为______(元);(2)设批发商将这批水果保存x天后一次性卖出,试求批发商所获得的总利润w (元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.答案和解析1.【答案】 D【解析】解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.此题主要考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.2.【答案】 A【解析】解:二次函数y=-2(x-1)2+3的图象的顶点坐标为(1,3).故选:A.根据二次函数顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.【答案】 A【解析】解:由题意可知,极差为5-(-2)=7.故选:A.根据极差的定义即可求得.此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.4.【答案】 D【解析】解:∵AD:DB=2:1,∴AD:AB=2:3,∵DE∥BC,∴△ADE∽△ABC,∴△ADE与△ABC的面积比=()2=,故选:D.根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.5.【答案】 B【解析】解:连接BC,∵AB是半圆O的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°-32°=58°,∴∠D=180°-∠B=122°(圆内接四边形对角互补),∵D是的中点,∴∠DAC=∠DCA=(180°-∠D)÷2=29°,故选:B.连接BC,根据圆周角定理及等边对等角求解即可.本题利用了圆内接四边形的性质,直径对的圆周角是直角求解.6.【答案】 D【解析】解:∵抛物线开口向下,∴a<0,故A选项错误;∵抛物线与y轴的正半轴相交,∴c>0,故C选项错误;∵对称轴x=1,∴当x>1时,y随x的增大而减小;故B选项错误;∵对称轴x=1,∴另一个根为1+2=3,故D选项正确.故选:D.根据图象可得出a<0,c>0,对称轴x=1,在对称轴的右侧,y随x的增大而减小;根据抛物线的对称性另一个交点到x=1的距离与-1到x=1的距离相等,得出另一个根.本题考查了抛物线与x轴的交点问题以及二次函数的图象与系数的关系,是基础知识要熟练掌握.7.【答案】【解析】解:∵=≠0,∴=.故答案为:.直接利用已知将比例式变形得出答案.此题主要考查了比例的性质,正确将比例式变形是解题关键.8.【答案】相交【解析】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴4<5,即d<r,∴直线l与⊙O的位置关系是相交.故答案为:相交.由题意得出d<r,根据直线和圆的位置关系的判定方法判断即可.本题考查了直线和圆的位置关系的应用;注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.9.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.10.【答案】【解析】解:由于P为线段AB=2的黄金分割点,且AP是较长线段;则AP=2×=-1.根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.理解黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.11.【答案】3π【解析】解:该圆锥的侧面面积==3π(cm2).故答案为3π.利用圆锥的侧面展开图为一扇形,所以计算扇形的面积即可得到该圆锥的侧面面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形面积公式.12.【答案】【解析】解:设⊙O的半径为R,∵EM=5,∴OC=R,OM=5-R,∵直径EF⊥CD,垂足为M,CD=2,∴∠OMC=90°,CM=DM=1,由勾股定理得:OC2=OM2+CM2,即R2=(5-R)2+12,解得:R=,故答案为:.根据垂径定理求出CM,根据勾股定理得出方程,求出方程的解即可.本题考查了勾股定理和垂径定理,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分这条弦.13.【答案】8【解析】解:∵∠BAC=90°,AD是BC边上的高,∴△ABD∽△CBA,∴∵AB=4,BD=2,∴,∴BC=8,故答案为:8.由于∠BAC=90°,AD是BC边上的高,那么利用直角三角形斜边上的高所分得两个三角形与原三角形相似可知△ABD∽△CBA,利用相似三角形的性质即可求出BC的长.本题考查了相似三角形的判定和性质,直角三角形斜边上的高所分得两个三角形与原三角形相似.14.【答案】-1【解析】解:把x=-1,y=2和x=0,y=-1代入y=x2+bx+c,解得,所以二次函数为y=x2-2x-1,当x=2时,y=4-4-1=-1,所以m=-1.故答案为-1.先把x=-1,y=2和x=0,y=-1代入二次函数解析式求出b、c,确定二次函数解析式,然后计算出自变量为2的函数值即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.15.【答案】2020【解析】解:∵m是一元二次方程x2-3x+1=0的一个根,∴m2-3m+1=0,即m2-3m=-1,∴2019-m2+3m=2019-(m2-3m)=2019-(-1)=2020.故答案为:2020.根据一元二次方程的解的定义得到m2-3m+1=0,即m2-3m=-1,再变形得到2019-m2+3m=2019-(m2-3m),然后利用整体代入的方法计算.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】55【解析】解:∵∠A+∠C=180°,∴∠A=180°-110°=70°,∵AB=AD,∴∠ABD=∠ADB,∴∠ABD=(180°-70°)=55°.故答案为55.先利用圆内接四边形的性质得到∠A=70°,然后根据等腰三角形的性质和三角形内角和计算∠ABD的度数.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了等腰三角形的性质.17.【答案】解:(1)随机地抽取一张,所有可能出现的结果有3个,每个结果发生的可能性都相等,其中卡片上的数字为偶数的结果有1个.所以偶数.(3分)(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成的两位数为:12、13、21、23、31、32,∴P==.(6分)【解析】(1)求出1,2,3三个数中偶数的个数,再直接根据概率公式求解即可;(2)分别列举出可能组成的两位数,再根据概率公式解答即可.本题考查的是概率公式,熟知随机事件A的概率P(A)=是解答此题的关键.18.【答案】(1)解:(x+3)(x-1)=0 …(2分)x1=-3,x2=1 …(4分)解二:a=1,b=2,c=-3 …(1分)x=…(2分)x=…(3分)x1=-3,x2=1.…(4分)(2)x(x+1)-2(x+1)=0…(1分)(x+1)(x-2)=0…(2分)x1=-1,x2=2…(4分)【解析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程.本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式.19.【答案】证明:∵AD?AC=AE?AB,∴=在△ABC与△ADE中∵=,∠A=∠A,∴△ABC∽△ADE.【解析】利用相似三角形的性质得出=,进而利用相似三角形的判定方法得出答案.此题主要考查了相似三角形的判定与性质,正确掌握相似三角形判定方法是解题关键.20.【答案】解:(1)∵x1=-1,代入方程得:1+2m+4m-3=0解得:m=∵x1+x2=2m∴x2=∴m的值为,方程的另一根为.(2)∵方程有两个相等的实数根∴b2-4ac=(-2m)2-4(4m-3)=0解得:m1=1,m2=3∴m的值是1或3.【解析】(1)把x1=-1代入方程即求出m;利用韦达定理x1+x2=即能快速简便地求出另一根x2.(2)根据一元二次方程根与系数的关系,有两个相等的实数根即b2-4ac=0,即求出m的值.本题考查了一元二次方程的解,根与系数的关系,根的判别式,准确运用韦达定理能使运算简便.21.【答案】12 10【解析】解:(1)甲:12出现的次数最多,所以众数为12,S甲2=[(6-10)2+(12-10)2+(8-10)2+(12-10)2+(10-10)2+(12-10)2]=;乙:=(9+10+11+10+12+8)=10.故答案为12,;10;(2)解答一:派甲运动员参加比赛,因为甲运动员成绩的众数是12个,大于乙运动员成绩的众数10个,说明甲运动员更容易创造好成绩;解答二:派乙运动员参加比赛,因为两位运动员成绩的平均数都是10个,而乙成绩的方差小于甲成绩的方差,说明乙运动员的成绩更稳定.(1)根据众数、平均数、方差的求法进行计算即可;(2)可以从不同的方面说,比如:平均数或方差,方差越小,成绩越稳定,答案不唯一.本题考查了方差、平均数以及众数,是中考的常见题型,要熟练掌握.22.【答案】解:作DE⊥AB于E,∵DC⊥BC于C,AB⊥BC于B,∴四边形BCDE为矩形,∴DE=BC=20m,BE=DC=4m,∵同一时刻物高与影长所组成的三角形相似,∴,解得AE=25m,∴AB=25+4=29m.答:旗杆的高度为29m.【解析】作DE⊥AB于E,可得矩形BCDE,利用同一时刻物高与影长的比一定得到AE 的长度,加上CD的长度即为旗杆的高度.考查相似三角形的应用;构造出直角三角形进行求解是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.23.【答案】x=-1 (-2,3)-3<x<1【解析】解:(1)由二次函数交点A(-3,0)、B(1,0),∴=2∴对称轴为:x=-1故答案为:x=-1(2)点C、点D是二次函数上的一对对称点,∴点C、点D关于对称轴x=-1对称,∵点C的坐标为:(0,3)∴点D的坐标为:(-2,3)故答案为:(-2,3)(3)由图象可得,当-3<x<1时,二次函数y>0,故答案为:-3<x<1(4)由图象可知,当x<-3或,x>1时,一次函数的图象过点B、D,根据图象直接写出使一次函数值大于二次函数值(5)二次函数,经过点(0,3),点(-3,0),点(1,0)故可设二次函数的解析式为:y=a(x+3)(x-1),将点(0,3)代入得:3=a(0+3)(0-1),得a=-1故y=-(x+3)(x-1),化为一般式得:y=-x2-2x+3,顶点坐标为:(-1,4)(1)因二次函数与x轴交于点A,点B,故可以求出|AB|的中点,即可以求出对称轴(2)点C、点D关于对称轴对称,点C(0,3),所以得出点D(-2,3)(3)要使y>0,即函数图象在x轴的上方即可.(4)要使一次函数值大于二次函数值,即只要直线BD位于二次函数的图象的上方即可.(5)由抛物线与x轴交于点A、点B,可以设二次函数的两点式y=a(x+3)(x-1),再代入(0,3)即可求.此题主要考查二次函数的图象的性质与特征,与x轴两交点即可求出对称轴.要使直线BD的值大于二次函数的值,只要图象在上方即可.24.【答案】解:(1)长方体盒子的长是:(30-2x)cm;长方体盒子的宽是(40-2x)÷2=20-x(cm)长方体盒子的高是xcm;(2)根据图示,可得2(x2+20x)=30×40-950,解得x1=5,x2=-25(不合题意,舍去),长方体盒子的体积V=(30-2×5)×5×(20-5)=20×5×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.【解析】(1)根据所给出的图形可直接得出长方体盒子的长、宽、高;(2)根据图示,可得2(x2+20x)=30×40-950,求出x的值,再根据长方体的体积公式列出算式,即可求出答案.此题考查了一元二次方程的应用,用到的知识点是长方体的表面积和体积公式,关键是根据图形找出等量关系列出方程,要注意把不合题意的解舍去.25.【答案】(1)证明:连结OC,如图,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴CD是⊙O的切线;(2)解:∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==.【解析】(1)连结OC,根据角平分线的性质得到∠DAC=∠CAB,根据等腰三角形的性质得到∠CAB=∠ACO,等量代换得到∠DAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥DE,即可得到结论;(2)由于OC∥AD,推出△OCG∽△DAG,根据相似三角形的性质得到= =,由于OC∥AD,推出△ECO∽△EDA,根据相似三角形的性质即可得到结论.本题考查了切线的判定,相似三角形的判定和性质,等腰三角形的性质,平行线的判定和性质,正确的作出辅助线是解题的关键.26.【答案】62 10340【解析】解:(1)当x=1时,y=60+2x=62(元),利润为:62×(500-10)-500×40-40=10340(元);(2)由题意得:w=(60+2x)(500-10x)-40x-500×40=-20x2+360x+10000;(3)w=-20x2+360x+10000=-20(x-9)2+11620∵0≤x≤8,x为整数,当x≤9时,w随x的增大而增大,∴x=8时,w取最大值,w最大=11600.答:批发商所获利润w的最大值为11600元.(1)将x=1代入水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x即可求得该种水果的售价,然后乘以水果质量求得利润即可;(2)根据利润=售价×销售量-成本列出函数关系式即可;(3)利用配方法即可求出利润最大值.本题考查了二次函数的应用,解答本题的关键是仔细审题,将实际问题用函数表示出来,注意掌握配方法求二次函数最值得应用.。

2018-2019学年江苏省南京市秦淮区七年级(上)期中数学试卷

2018-2019学年江苏省南京市秦淮区七年级(上)期中数学试卷

(1)根据题意,填写下列表格: 行驶速度(km/h)
行驶时间(h)
行驶路程(km)
甲车
120
x
乙车
(2)已知 A、B 两地相距 akm(a>30).
①当甲车到达 B 地时,求乙车与 B 地的距离(用含 a 表示代数式表示,结果需简化).
②当两车相遇时,用方程描述甲、乙两车行驶路程之间的相等关系.
③当 x=
邮费为 0.8 元,小明一共用了
元(用含有 m 的代数式表示).
15.(2 分)若﹣xym 和 2xy2 是同类项,则 m 的值是

16.(2 分)若点 A、B 是数轴上的两个点,点 A 表示的数是﹣4,点 B 与点 A 的距离是 2,
点 B 表示的数是

17.(2 分)观察下列等式: 第 1 个等式:1×3+1=22; 第 2 个等式:2×4+1=32; 第 3 个等式:3×5+1=42;
A.点 A 的左侧
B.点 A 和点 B 之间
C.点 B 和点 C 之间
D.点 C 的左侧
【分析】根据数轴可以得到 a、b、c 的关系,然后根据题目中的条件,可以得到点原点
在什么位置,本题得以解决.
【解答】解:由数轴可得,
a<b<c,|b﹣a|<|c﹣b|,
∵a+c<0,
∴c>0,a<0 且|a|>|c|,
6.(2 分)某商品标价 x 元,进价为 400 元,在商场开展的促销活动中,该商品按 8 折销售
获利( )
A.(8x﹣400)元
B.(400×8﹣x)元
C.(0.8x﹣400)元
D.(400×0.8﹣x)元
【分析】根据题意,可以用代数式表示出该商品按 8 折销售所获利润,本题得以解决.

2018-2019学年江苏省南京市金陵汇文学校九年级(上)期初数学试卷含参考答案

2018-2019学年江苏省南京市金陵汇文学校九年级(上)期初数学试卷含参考答案

2
3
19.(8 分)解方程; (1) 3(x 1) x(1 x)
(2) 2x2 4x 1 0
3
20.(6
分)(1)化简:
x2
4
4
x
1
2
(2)方程的
4 x2
4
x
1
2
1 2
解是

21.(6 分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需 求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调 查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
25.(6 分)如图,一次函数 y kx 2 与反比例函数 y m 的图象交于 A(4, 6) , B 两点,其 x
中 B 点纵坐标是 4 . (1)求反比例函数的关系式; (2)根据所给条件,请直接写出不等式: kx 2 m 的解集;
x (3)过点 B 作 BC x 轴,垂足为 C ,则 SABC
5
26.(8 分)(1)方法回顾 在学习三角形中位线时,为了探索三角形中位线的性质,思路如下: 第一步添加辅助线:如图 1,在 ABC 中,延长 DE (D 、 E 分别是 AB 、 AC 的中点)到点
F ,使得 EF DE ,连接 CF ; 第 二 步 证 明 ADE CFE , 再 证 四 边 形 DBCF 是 平 行 四 边 形 , 从 而 得 到 DE / /BC ,
2018-2019 学年南京市金陵汇文学校九年级(上)期初数学试卷
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)

2018-2019学年江苏省南京市七年级(上)期中数学试卷含答案解析

2018-2019学年江苏省南京市七年级(上)期中数学试卷含答案解析

2018-2019学年江苏省南京市七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.的倒数是()A.2018B.﹣2018C.﹣D.2.如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣203.下列各组数中,互为相反数的是()A.与﹣0.8B.与﹣0.33C.﹣2与﹣D.0与0 4.下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3)a+1;(4)a2﹣;(5)﹣(x+y)A.1B.2C.3D.45.在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x6.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=37.下列方程中是一元一次方程的是()A.2x﹣4=y+2B.5x﹣3=6x+1C.xy=2D.x+=2 8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,系数化为1,得t=1D.方程=,去分母,得5(x﹣1)=2x9.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017 10.已知x m﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1B.﹣1C.﹣2D.211.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>012.代数式mx﹣2x+y+8的值与x的取值无关,那么m的值是()A.﹣8B.0C.2D.8二、填空题(本题共6个小题,每小题3分,共18分)13.单项式﹣2ab2的系数是.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.15.将数1.4920精确到十分位为.16.如果|m﹣1|+(n﹣2018)2=0,那么mn的值为.17.某商品每件的售价是192元,销售利润是60%,则该商品每件的进价元,18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=﹣2×1+3×5=13,则方程x⊕4=0的解为.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.(8分)计算:(1)(﹣10)÷(﹣)×5(2)(﹣1)10×2+(﹣2)3÷420.(8分)解方程:(1)5(x﹣8)=10;(2).21.(8分)先化简,再求值:(x2﹣2x3+1)﹣(﹣1﹣2x3+2x2),其中x=2.22.(8分)已知:x﹣2y﹣2=0.(1)x﹣2y=.(2)求:+(5+4x﹣6y)+2(y﹣x+1)的值.23.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).24.(8分)(1)一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做多少天完成?(2)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做A种零件,多少天做B种零件,才能使得所有零件都刚好配套?25.(9分)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.26.(9分)数轴上两点A、B,其中A、B对应的数分别是a、b(b>0).(1)若A点表示数﹣4,点B表示数7,求线段AB的长;(2)若A点表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3)若P、Q点分别同时从点A、B向右运动,点P速度为x个单位秒,点Q速度为b 个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a、b取何值,才使得P、Q两点对应的数m、n始终满足.2018-2019学年江苏省南京市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.的倒数是()A.2018B.﹣2018C.﹣D.解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.2.如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣20解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选:D.3.下列各组数中,互为相反数的是()A.与﹣0.8B.与﹣0.33C.﹣2与﹣D.0与0解:A、与﹣0.8不是相反数,错误;B、与﹣0.33不是相反数,错误;D、﹣2与﹣不是相反数,是倒数,错误;D、0与0是相反数,正确;故选:D.4.下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3)a+1;(4)a2﹣;(5)﹣(x+y)A.1B.2C.3D.4解:(1)单独一个字母a是单项式,故错误;(2)2x2+2xy+y2;(3)a+1;(5)﹣(x+y)都是多项式.故选:C.5.在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x解:与2xy是同类项的是xy.故选:C.6.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=3解:A、在等式a=b的两边应该加上同一个数该等式才成立,故本选项错误;B、在等式a=b的两边同时乘以c,该等式仍然成立,故本选项正确;C、当c=0时,该等式不成立,故本选项错误;D、如果a2=3a,那么a=0或a=3,故本选项错误;故选:B.7.下列方程中是一元一次方程的是()A.2x﹣4=y+2B.5x﹣3=6x+1C.xy=2D.x+=2解:A、2x﹣4=y+2,含有2个未知数,不是一元一次方程,选项不符合题意;B、5x﹣3=6x+1是一元一次方程,故选项符合题意;C、xy=2,含有2个未知数,且次数是2次,不是一元一次方程,不符合题意;D、x+=2不是整式方程,不是一元一次方程,选项不符合题意.故选:B.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,系数化为1,得t=1D.方程=,去分母,得5(x﹣1)=2x解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,错误;C、方程t=,系数化为1,得t=,错误;D、方程=,去分母,得5(x﹣1)=2x,正确,故选:D.9.计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣2017解:(﹣1)2017=﹣1.故选:B.10.已知x m﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1B.﹣1C.﹣2D.2解:根据题意得:m﹣1=1,解得:m=2,故选:D.11.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.12.代数式mx﹣2x+y+8的值与x的取值无关,那么m的值是()A.﹣8B.0C.2D.8解:∵mx﹣2x+y+8=(m﹣2)x+y+8,∴当代数式mx﹣2x+y+8的值与字母x的取值无关时,m﹣2=0.解得:m=2,故选:C.二、填空题(本题共6个小题,每小题3分,共18分)13.单项式﹣2ab2的系数是﹣2.解:单项式﹣2ab2的系数是﹣2,故答案为﹣2.14.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为 5.4×106万元.解:5 400 000=5.4×106万元.故答案为5.4×106.15.将数1.4920精确到十分位为 1.5.解:数1.4920精确到十分位为1.5.故答案为1.5.16.如果|m﹣1|+(n﹣2018)2=0,那么mn的值为2018.解:∵|m﹣1|+(n﹣2018)2=0,∴m﹣1=0,n﹣2018=0,解得:m=1,n=2018,故mn=2018.故答案为:2018.17.某商品每件的售价是192元,销售利润是60%,则该商品每件的进价120元,解:设该商品每件的进价为x元,根据题意可得:(1+60%)x=192,解得:x=120,故答案为:120.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=﹣2×1+3×5=13,则方程x⊕4=0的解为x=6.解:∵x⊕4=﹣2x+3×4=﹣2x+12,∴方程x⊕4=0可化为:﹣2x+12=0,解得x=6.故答案为:x=6.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.(8分)计算:(1)(﹣10)÷(﹣)×5(2)(﹣1)10×2+(﹣2)3÷4解:(1)(﹣10)÷(﹣)×5=10×5×5=250;(2)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2+(﹣2)=0.20.(8分)解方程:(1)5(x﹣8)=10;(2).解:(1)去括号得:5x﹣40=10,移项得:5x=40+10,合并同类项得:5x=50,系数化为1得:x=10,(2)去分母得:4(2x﹣1)﹣3(2x﹣6)=12,去括号得:8x﹣4﹣6x+18=12,移项得:8x﹣6x=12﹣18+4,合并同类项得:2x=﹣2,系数化为1得:x=﹣1.21.(8分)先化简,再求值:(x2﹣2x3+1)﹣(﹣1﹣2x3+2x2),其中x=2.解:原式=x2﹣2x3+1+1+2x3﹣2x2=﹣x2+2,当x=2时,原式=﹣4+2=﹣2.22.(8分)已知:x﹣2y﹣2=0.(1)x﹣2y=2.(2)求:+(5+4x﹣6y)+2(y﹣x+1)的值.解:(1)∵x﹣2y﹣2=0,∴x﹣2y=2.故答案为2;(2)∵x﹣2y=2,∴原式=5+4x﹣6y+2y﹣2x+2=7+2x﹣4y=7+2(x﹣2y)=7+2×2=11.23.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).解:(1)广场空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,代入(1)得到的式子,得400×100﹣π×102=40000﹣100π(米2).答:广场面积为(40000﹣100π)米2.24.(8分)(1)一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做多少天完成?(2)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做A种零件,多少天做B种零件,才能使得所有零件都刚好配套?解:(1)设余下的工作再由甲独做x天完成,根据题意可得:,解得:x=4,答:余下的工作再由甲独做4天完成;(2)设x天制作A种零件,可得方程:2×50x=20(30﹣x),解得:x=5,30﹣5=25,答:甲30天时间安排5天做A种零件,25天做B种零件,才能使得所有零件都刚好配套.25.(9分)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.解:(1)解方程2x=4得x=2,把x=2代入mx=m+1得2m=m+1,解得m=1;(2)关于x的两个方程2x=a+1与3x﹣a=﹣2得x=,x=,∵关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,∴=,解得a=﹣7;(3)解关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)得x=,x=,∵关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,∴=,∴mn﹣3m﹣3=0,mn=3(m+1),∵m,n是正整数,∴m=3,n=4或m=1,n=6.26.(9分)数轴上两点A、B,其中A、B对应的数分别是a、b(b>0).(1)若A点表示数﹣4,点B表示数7,求线段AB的长;(2)若A点表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3)若P、Q点分别同时从点A、B向右运动,点P速度为x个单位秒,点Q速度为b 个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a、b取何值,才使得P、Q两点对应的数m、n 始终满足.解:(1)AB=|﹣4﹣7|=11;(2)设出发t秒后,P与Q第二次相遇,根据题意得,8t﹣t=AB,即8t﹣t=31﹣(﹣4),解得,t=5,∴第二次相遇点表示的数为:31﹣5=26;(3)设运动时间为t秒,由题意得,m=a+4t,n=b+bt,∵数m、n 始终满足,∴数m、n 始终满足,即2a﹣b+(8﹣b)t=6对于任意的t值都成立,∴,解得,.第11页(共11页)。

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析

2018-2019学年江苏省南京市鼓楼区七年级下学期期中数学试卷一、选择题1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a92.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y23.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为.8.命题“同位角相等,两直线平行”的逆命题是:.9.(+2a)2=4a2+4a+1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.12.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.13.计算:=.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的(按运算顺序填序号).16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴(同位角相等,两直线平行)∠2=∠CBD()∠1=∠2(已知)∠1=∠CBD()∴()∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC()24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:+,得3x+4y=10,④+,得5x+y=11,⑤与联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=cm(用含a、b的代数式表示)OA=cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)参考答案一、选择题(共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡的相应位置上)1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a9【分析】根据幂的乘方的运算方法,求出(a2)3的结果是多少即可.解:(a2)3=a6.故选:A.2.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y2【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.解:A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2﹣xy=x(x﹣y),不能利用平方差进行分解,故此选项错误;C、x2﹣9=(x+3)(x﹣3),能利用平方差进行分解,故此选项正确;D、﹣x2﹣y2,不能利用平方差进行分解,故此选项错误;故选:C.3.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 【分析】根据平行线的判定方法即可解决问题.解:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行),故选:B.4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等【分析】根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=﹣y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°【分析】根据方位角的概念,画图正确表示出方位角,即可求解.解:由题意可知∠ABC=30°+15°=45°故选:C.6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.【分析】解二元一次方程组求出x、y,得到x+y=﹣1,根据幂的乘方法则、同底数幂的乘法法则计算即可.解:,解得,,∴x+y=﹣1,则22x•4y=22x•22y=22(x+y)=2﹣2=,故选:D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为 1.4×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 014=1.4×10﹣8,故答案为1.4×10﹣8.8.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【分析】把一个命题的题设和结论互换就得到它的逆命题.解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.9.(1+2a)2=4a2+4a+1.【分析】根据因式分解的完全平方公式:a2+2ab+b2=(a+b)2可知1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,再由整式乘法与因式分解的关系,问题得解.解:∵1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,∴(1+2a)2=1+4a+4a2,故答案为:1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=﹣2.【分析】根据平方差公式计算即可.解:因为a+b=2,a﹣b=﹣1,则a2﹣b2=(a+b)(a﹣b)=2×(﹣1)=﹣2,故答案为:﹣2.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为20cm2.【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2012.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.【分析】设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.解:设白鸡有x只,黑鸡有y只,依题意得:.故答案是:.13.计算:=.【分析】根据积的乘方的运算方法,求出算式的值是多少即可.解:=[×]××1=1×=故答案为:.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=26°.【分析】利用平行线的性质,角平分线的定义求出∠AGH即可解决问题.解:∵HN平分∠CHG,∴∠CHG=2∠CHN=64°,∵AB∥CD,∴∠AGH+∠CHG=180°,∴∠AGH=116°,∵MG⊥GH,∴∠MGH=90°,∴∠AGM=116°﹣90°=26°,故答案为26°.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).【分析】在(a4•a5)2=(a4)2•(a5)2=a8•a10=a18的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,第三步用到了同底数幂的乘法,据此判断即可.解:在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).故答案为:③②①.16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为或.【分析】(1)经过第一次操作可知剩下的长方形一边长为a,另一边长为2﹣a;(2)若第二次操作后,剩下的长方形恰好是正方形,则所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,(3)根据第2次剩下的长方形分两种情况讨论,若第三次操作后,剩下的长方形恰好是正方形,由此可得出关于a的一元一次方程,解之即可得出结论.解:第1次操作,剪下的正方形边长为a,剩下的长方形的长宽分别为a、2﹣a,由1<a<2,得a>2﹣a第2次操作,剪下的正方形边长为2﹣a,所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,①当2a﹣2<2﹣a,即a<时,则第3次操作时,剪下的正方形边长为2a﹣2,剩下的长方形的两边分别为2a﹣2、(2﹣a)﹣(2a﹣2)=4﹣3a,则2a﹣2=4﹣3a,解得a=;②2a﹣2>2﹣a,即a>时则第3次操作时,剪下的正方形边长为2﹣a,剩下的长方形的两边分别为2﹣a、(2a ﹣2)﹣(2﹣a)=3a﹣4,则2﹣a=3a﹣4,解得a=;故答案为或.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)【分析】(1)先计算乘除,再合并即可得;(2)根据多项式乘多项式的运算法则计算可得;(3)先利用平方差公式计算,再利用完全平方公式计算可得.解:(1)原式=﹣3a3+a3=﹣2a3;(2)原式=2x2+6xy﹣xy﹣3y2=2x2+5xy﹣3y2;(3)原式=(a﹣b)2﹣1=a2﹣2ab+b2﹣1.18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=【分析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2=x2﹣9﹣2x2﹣6x+x2﹣2x+1=﹣8x﹣8,当x=﹣时,原式=﹣8×(﹣)﹣8=4﹣8=﹣4.19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y【分析】(1)利用提公因式法因式分解;(2)先提公因式,再利用完全平方公式进行因式分解.解:(1)2a(m+n)﹣b(m+n)=(m+n)(2a﹣b);(2)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=1或3【分析】(1)利用加减消元法解出方程组;(2)根据把x、y的值代入二元一次方程,得到a、b的关系,根据题意求出a、b,计算即可.解:(1)①+②,得4x=4,解得,x=1,把x=1代入①,得,y=2,所以原方程组的解为;(2)由题意得,a+2b=5,则,,∴a b=1或3,故答案为:1或3.21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'PA﹣∠PAB=180°故答案为:C22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?【分析】结论:AB∥CD,只要证明∠BAF=∠ACG即可.解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)【分析】根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)故答案为:BD∥EF;两直线平行,同位角相等;等量代换;GF∥BC;内错角相等,两直线平行;平行于同一直线的两直线平行.24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=﹣2.【分析】(1)根据每一步得到的方程反推其计算的由来,得到二元一次方程组后用代入消元或加减消元法解出x和y,再代回原方程组求z.(2)把(m+n)看作整体,解关于(m+n)、p、q的三元一次方程组.解:(1)方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组解得:把代入①得:2+1+z=2,解得:z=﹣1,∴原方程组的解是故答案为:①,②,②,③,⑤,④.(2)②﹣①×2得:p﹣3q=8④,③﹣①×3得:﹣5p﹣2q=﹣6⑤,由④与⑤组成方程组解得:,代入①得:m+n=4∴m+n﹣2p+q=﹣2故答案为:﹣2.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=(a+b)cm(用含a、b的代数式表示)OA=(2a+b)cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).【分析】(1)根据题意可以用代数式表示出O2C和OA,本题得以解决;(2)根据(1)中的结果和图形,可以用代数式表示出阴影部分的面积.解:(1)∵半径O1A=acm,半径O2C比半径O1A大bcm,∴O2C=(a+b)cm,∴OA==(2a+b)cm,故答案为:(a+b),(2a+b);(2)π•(2a+b)2﹣π•a2﹣π•(a+b)2=π•(2a2+2ab)=3×(2a2+2ab)=(6a2+6ab)cm2,即阴影部分的面积是(6a2+6ab)cm2.26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(a+b)(c+d)=ac+ad+bc+bd(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(a+b)2=a2+2ab+b2(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有15项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)【分析】(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2﹣n,继续平方后化简可得结论.解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为:①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(2)已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为:15;②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2﹣2n,∵xz+xy+yz=2m2﹣n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2﹣n)2,∴x2y2+y2z2+x2z2=4m4﹣4m2n+n2﹣2xyz(x+y+z)=4m4﹣4m2n+n2﹣2p•2m=4m4﹣4m2n+n2﹣4pm.。

2019年江苏南京中考数学试题(解析版)

2019年江苏南京中考数学试题(解析版)

2019年南京市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共6小题,每小题2分,合计12分.{题目}1.(2019年江苏南京)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元,用科学记数法表示13000是( )A .0.13×105B .1.3×104C .13×103D .130×102{答案}B{解析}本题考查了科学记数法.13000=1.3×10000=1.3×104.因此本题选B . {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年江苏南京)计算(a 2b )3的结果是( )A .a 2b 3B .a 5b 3C .a 6bD .a 6b 3{答案}D{解析}本题考查了幂的运算.(a 2b )3=(a 2)3b 3=a 6b 3.因此本题选D .{分值}2{章节:[1-14-1]整式的乘法}{考点:幂的乘方}{考点:积的乘方}{类别:常考题}{难度:1-最简单}{题目}3.(2019年江苏南京)面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 {答案}B{解析}本题考查了算术平方根的意义.面积为4=2.因此本题选B . {分值}2{章节:[1-6-1]平方根}{考点:算术平方根的应用}{类别:易错题}{难度:2-简单}{题目}4.(2019年江苏南京)实数a ,b ,c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ){答案}A{解析}本题考查了实数的大小比较、不等式的性质.∵a >b ,∴表示数a 的点在表示数b 的点的右边.∵a >b 且ac <bc ,∴c <0,即表示数c 的点在原点的左边.因此本题选A . {分值}2{章节:[1-9-1]不等式}{考点:数轴表示数}{考点:实数的大小比较}{考点:不等式的性质}{类别:常考题}{类别:思想方法}A .B .C .D .{难度:2-简单}{题目}5.(2019年江苏南京)下列整数中,与10( )A .4B .5C .6D .7{答案}C{解析}本题考查了实数的估算.∵9<13<16,∴3<4,-4<-3,10-4<10<10-3,即6<107.这说明10在6与7之间.∵3.52<13,∴3.5106.5.这说明106.∴与10最接近的整数是6.因此本题选C .{分值}2{章节:[1-6-3]实数}{考点:无理数的估值}{考点:有理数部分与无理数部分}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年江苏南京)如图,△A ′B ′C ′是由△ABC 经过平移得到的,△A ′B ′C ′还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④{答案}D{解析}本题考查了图形变换及相互间的关系.连接AA ′,在AA ′上任取一点A 1.(1)如图1(1),分别取AA 1和A 1A ′的中点O 1,O 2,将△ABC 绕点O 1旋转180°得△A 1B 1C 1,将△A 1B 1C 1绕点O 2旋转180°得△A ′B ′C ′;(2)如图1(2),分别作AA 1和A 1A ′的垂直平分线l 1,l 2,△ABC 关于l 1对称的三角形是△A 2B 2C 2,△A 2B 2C 2关于l 2对称的三角形是△A ′B ′C ′.结论①②不正确.故选D .因此本题选D .{分值}2{章节:[1-23-2-1]中心对称} C A B B ′ C ′ A ′ 图1(2) l 1 l 2 C 2 B 2 A 2图1(1)CAB ′A ′第6题图{考点:平移的性质}{考点:轴对称的性质}{考点:旋转的性质}{考点:几何选择压轴}{类别:发现探究}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题2分,合计20分.{题目}7.(2019年江苏南京)-2的相反数是______;12的倒数是______.{答案}2,2{解析}本题考查了相反数、倒数的概念.a的相反数是-a,nm的倒数是mn.因此本题答案是2,2.{分值}2{章节:[1-1-2-3]相反数}{章节:[1-1-4-2]有理数的除法}{考点:相反数的定义}{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}8.(2019年江苏南京)______.{答案}0{解析}本题考查了二次根式的计算.原式==0.因此本题答案是0.{分值}2{章节:[1-16-3]二次根式的加减}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}9.(2019年江苏南京)分解因式(a-b)2+4ab的结果是______.{答案}(a+b)2{解析}本题考查了乘法公式和因式分解.原式=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.因此本题答案是(a+b)2.{分值}2{章节:[1-14-3]因式分解}{考点:完全平方公式}{考点:因式分解-完全平方式}{类别:常考题}{难度:2-简单}{题目}10.(2019年江苏南京)已知2x的方程x2-4x+m=0的一个根,则m=______.{答案}1{解析}本题考查了一元二次方程根与系数的关系或者根的定义.设原方程的另一根为x1,则由根与系数的关系得(2+x1=4,(2x1=m.解得x1=2,m=1.因此本题答案是1.{分值}2{章节:[1-21-1]一元二次方程}{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:一元二次方程的定义}{考点:根与系数关系}{类别:常考题}{难度:3-中等难度}{题目}11.(2019年江苏南京)结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a ∥b .{答案}∠1+∠3=180°{解析}本题考查了平行线的判定.图中∠2、∠3、∠4分别是∠1的同位角、同旁内角和内错角.因此同旁内角互补应表示为∠1+∠3=180°.因此本题答案是∠1+∠3=180°.{分值}2{章节:[1-5-2-2] 平行线的判定}{考点:同旁内角互补两直线平行}{考点:几何说理}{类别:常考题}{难度:1-最简单}{题目}12.(2019年江苏南京)无盖圆柱杯子的展开图如图所示,将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm .{答案}5{解析}本题考查了勾股定理的应用.当筷子倾斜放置时,∵以9和12=15,20-15=5,∴木筷露在杯子外面的部分至少有5cm .因此本题答案是5.{分值}2{章节:[1-17-1]勾股定理}{考点:几何体的展开图}{考点:勾股定理的应用}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年江苏南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生第12题图 ab c1 2 34 第11题图{答案}7200{解析}本题考查了利用样本估计总体的思想.视力不低于4.8的人数=80+93+127=300.由样本估计总体的思想,可知求所结果=300500×12000=7200(人). 因此本题答案是7200.{分值}2{章节:[1-10-1]统计调查}{考点:抽样调查}{考点:用样本估计总体}{类别:常考题}{难度:1-最简单}{题目}14.(2019年江苏南京)如图,P A ,PB 是⊙O 的切线,A ,B 为切点,点C ,D 在⊙O 上,若∠P =102°,则∠A +∠C =______°.{答案}219{解析}本题考查了圆周角定理的推论、切线长定理.连接AB ,则∠DAB +∠C =180°.由切线长定理可知P A =PB ,∴∠P AB =12×(180°-∠P )=39°. ∴∠P AD +∠C =∠P AB +∠DAB +∠C =180°+39°=219°.因此本题答案是219.{分值}2{章节:[1-24-2-2]直线和圆的位置关系}{考点:圆内接四边形的性质}{考点:切线长定理}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年江苏南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为______.{答案{解析}本题考查了垂直平分线的性质和相似三角形.∵DN 垂直平分BC ,∴DB =DC .∴∠B =∠DCB .M N DCAB 第15题图第14题图∵CD 平分∠ACB ,∴∠ACD =∠DCB ,∴∠ACD =∠B .又∠A =∠A ,∴△ACD ∽△ABC . ∴AC AB =AD AC,即AC 2=AD ·AB . ∴AD =2,BD =3,∴AB =5.∴AC{分值}2{章节:[1-27-1-1]相似三角形的判定}{考点:垂直平分线的性质}{考点:相似三角形的判定(两角相等)}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年江苏南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______.{答案}4<BC{解析}本题考查了三角函数、轨迹等知识.∠A =∠B 时,△ABC 是等边三角形,此时BC =AB =AC =4.∵∠A >∠B ,∴BC >4.如图2,作△ABC 的外接圆O ,则当BC 是直径BC ′时,BC 的值最大.此时BC ′=sin 60AB. 综上所述,BC 的长的取值范围是4<BC. 因此本题答案是4<BC. {分值}2{章节:[1-24-2-1]点和圆的位置关系}{考点:等边对等角}{考点:解直角三角形}{考点:点与圆的位置关系}{考点:几何填空压轴}{类别:发现探究}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11小题,合计88分.{题目}17.(2019年江苏南京)计算:(x +y )(x 2-xy +y 2).{解析}本题考查了整式的乘法.运用多项式乘多项式的法则进行计算.{答案}解:(x +y )(x 2-xy +y 2)=x 3-x 2y +xy 2+x 2y -xy 2+y 3=x 3+y 3.{分值}7′图2{章节:[1-14-1]整式的乘法}{难度:2-简单}{类别:常考题}{考点:多项式乘以多项式}{题目}18.(2019年江苏南京)解方程:1x x --1=231x -. {解析}本题考查了解分式方程.(1)去分母;(2)解整式方程;(3)验根.{答案}解:方程两边乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.所以,原分式方程的解为x =2.{分值}7{章节:[1-15-3]分式方程}{难度:2-简单}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:解含两个分式的分式方程}{考点:分式方程的检验}{题目}19.(2019年江苏南京)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F ,求证:△ADF ≌△CEF .{解析}本题考查了.先证四边形DBCE 是平行四边形,再用“角边角”或“角角边”证△ADF 与△CEF 全等.{答案}证明:∵DE ∥BC ,CE ∥AB ,∴四边形DBCE 是平行四边形.∴BD =CE .∵D 是AB 的中点,∴AD =DB .∴AD =CE .∵CE ∥AB ,∴∠A =∠ECF ,∠ADF =∠E .∴△ADF ≌△CEF .{分值}7{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{考点:两组对边分别平行的四边形是平行四边形}{题目}20.(2019年江苏南京)下图是某市连续5天的天气情况.F DE CAB 第19题图(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.{解析}本题考查了方差的应用、数据的分析.{答案}解:(1)这5天的日最高气温和日最低气温的平均数分别是x 高=15(23+25+23+25+24)=24,x低=15(21+22+15+15+17)=18.方差分别是2 s 高=15[(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2]=0.8,2 s 低=15[(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2]=8.8.由2s高<2s低可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,下列解法供参考.例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.{分值}8{章节:[1-20-2-1]方差}{难度:3-中等难度}{类别:常考题}{考点:方差的实际应用}{考点:用样本估计总体}{题目}21.(2019年江苏南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.{解析}本题考查了用列举法求概率.{答案}解:(1)甲同学随机选择两天,所有可能出现的结果共有6种,即(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二,星期三)、(星期二,星期四)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件A)的结果有3种,即(星期一,星期二)、(星期二,星期三)、(星期二,星期四),所以P(A)=36=12.(2)23.[解析]乙同学随机选择连续的两天,所有可能出现的结果共有3种,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件B )的结果有2种,即(星期一,星期二)、(星期二,星期三),所以P (B )=23. {分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:两步事件不放回}{题目}22.(2019年江苏南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD ,求证:P A =PC .{解析}本题考查了“三组量”之间的关系或垂径定理等知识.{答案}证法1:如图3(1),连接AC .∵AB =CD ,∴»AB =»CD. ∴»AB +»BD =»CD +»BD ,即»AD =»CB. ∴∠C =∠A .∴P A =PC .证法2:如图3(2),过点O 分别作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N .连接OA ,OC ,OP . ∵OM ⊥AB ,ON ⊥CD ,∴AM =12AB ,CN =12=CD . ∵AB =CD ,∴AM =CN .在Rt △OAM 和Rt △OCN 中,∠OMA =ONC =90°,根据勾股定理,得OMON又OA =OC ,AM =CN ,∴OM =ON .又OP =OP ,∴Rt △OPM ≌Rt △OPN .∴PM =PN .∴PM +AM =PN +CN ,即P A =PC .{分值}7{章节:[1-24-1-2]垂直于弦的直径}{章节:[1-24-1-3]弧、弦、圆心角}{难度:3-中等难度}{类别:常考题}图3(2)图3(1) 第22题图{考点:全等三角形的判定HL}{考点:垂径定理}{考点:圆心角、弧、弦的关系}{题目}23.(2019年江苏南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.{解析}本题考查了一次函数与不等式的关系、数形结合思想等.{答案}解:(1)当k =-2时,y 1=-2x +2.根据题意,得-2x +2>x -3.解得x <53. (2)-4≤k ≤1且k ≠0.[解析]如图4,直线y 2=x -3上横坐标是1的点D 的纵坐标是-2.①当直线y 1=kx +2经过点D (1,-2)时,k =-4.此时符合题意;②当直线y 1=kx +2与直线y 2=x -3平行时,k =1.此时符合题意;③当直线y 1=kx +2与直线y 2=x -3的交点P 在射线DC 上时,符合题意,此时k 的取值范围是-4<k <1且k ≠0.综上所述,k 的取值范围是-4≤k ≤1且k ≠0.{分值}8{章节:[1-19-3]一次函数与方程、不等式}{难度:4-较高难度}{类别:思想方法}{类别:易错题}{考点:一次函数的图象}{考点:一次函数的性质}{考点:两直线相交或平行问题}{考点:一次函数与一元一次不等式}{题目}24.(2019年江苏南京)如图,山顶有一塔AB ,塔高33m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A ,B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.){解析}本题考查了三角函数的实际应用.{答案}解:如图5,延长AB 交CD 于点H ,则AH ⊥CD .第24题图图4在Rt △ACH 中,∠ACH =27°,∵tan27°=AH CH , ∴AH =CH ·tan27°.在Rt △BCH 中,∠BCH =22°,∵tan22°=BH CH, ∴BH =CH ·tan22°.∵AB =AH -BH ,∴CH ·tan27°-CH ·tan22°=33.解得CH ≈300.∴AH =CH ·tan27°≈153.在Rt △ADH 中,∠D =45°,∵tan45°=AH HD, ∴HD =AH =153.∴EF =CD -CE -FD =CH +HD -CE -FD=300+150-80-50=323.答:隧道EF 的长度约为323m .{分值}12{章节:[1-28-2-2]非特殊角}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}25.(2019年江苏南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后和扩充区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?{解析}本题考查了一元二次方程的应用.{答案}解:设扩充后广场的长为3x m ,则宽为2x m .根据题意,得3x ·2x ·100+30(3x ·2x -50×40)=642000.解得x 1=30,x 2=-30(不合题意,舍去).所以3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m .{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—面积问题}{题目}26.(2019年江苏南京)如图①,在Rt △ABC 中,∠C =90°,AC =3,BC =4.求作菱形DEFG,第25题图图5使点D在边AC上,点E,F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.{解析}本题考查了菱形的判定、相似三角形、分类讨论思想等.第(2)问,思考点D在CA边上由点C向点D移动时,以点D为圆心,DG长为半径画弧,弧与AB 边是否有交点、有几个交点;当DG增大时,还要考虑点F是否在AB边上.{答案}证明:(1)∵DG=DE,DE=EF,∴DG=EF.∵DG∥EF,∴四边形DEFG是平行四边形.又DE=EF,∴□DEFG是菱形.(2)当0≤CD<3637或43<CD≤3时,菱形的个数为0;当CD=3637或98<CD≤43时,菱形的个数为1;当3637<CD≤98时,菱形的个数为2.[解析]AB5,AB边上的高CM=AB ACBCg=125.设DG=x,则由△CDG∽△CAB可知CD=35 x.①如图6(1),当DE⊥AB时,由相似三角形的性质,得DG AB =CNCM,即5x=125125x-.解得x=6037.此时CD=3637.②如图6(2),当DG=DE2=DA=x时,由△CDG∽△CAB,得CD CA =DGAB,即33x-=5x.解得x=158.此时CD=98.BCAGFDE图6(1)MNF)CGD图6(3)C1GD122图6(2)C图①小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.CA BGFDE图②第26题图③如图6(3),当点F 与点B 重合时,DG =DE =EB =x .由△ADE ∽△ACB ,得DE CB =AE AB ,即4x =55x . 解得x =209.此时CD =43. 综上所述,当0≤CD <3637或43<CD ≤3时,菱形的个数为0;当CD =3637或98<CD ≤43时,菱形的个数为1;当3637<CD ≤98时,菱形的个数为2. {分值}9{章节:[1-27-1-1]相似三角形的判定}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{考点:线段尺规作图}{考点:菱形的判定}{考点:由平行判定相似}{题目}27.(2019年江苏南京)[概念认识]城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x 1,y 1和B (x 2,y 2),用以下方式定义两点间的距离:d (A ,B )=|x 1-x 2|+|y 1-y 2|.[数学理解](1)①已知点A (-2,1),则d (O ,A )=______;②函数y =-2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是______.(2)函数y =4x(x ≥0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3. (3)函数y =x 2-5x +7(x ≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标.[问题解决](4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)第27题图 图④第27题图 M N{解析}本题考查了一次函数、反比例函数、二次函数的图象和性质;一元二次方程根的判别式;转化思想;数学应用意识等.{答案}解:(1)①3;②(1,2).[解析]①d (O ,A )=|-2-0|+|1-0|=2+1=3;②设点B 的坐标为(t ,-2t +4)(0≤t ≤2),则|t -0|+|-2t +4-0|=3,即|t |+2|t -2|=3.∵0≤t ≤2,∴t -2<0.∴t +2(2-t )=3.解得t =1.此时-2t +4=2.∴点B 的坐标为(1,2).(2)假设函数y =4x(x >0)的图象上存在点C (x ,y ),使d (O ,C )=3. 根据题意,得|x -0|+|4x-0|=3. 因为x >0,所以4x >0,|x -0|+|4x -0|=x +4x. 所以x +4x=3. 方程两边乘x ,得x 2+4=3x .整理,得x 2-3x +4=0.因为a =1,b =-3,c =4,b 2-4ac =(-3)2-4×1×4=-7<0,所以方程x 2-3x +4=0无实数根.所以函数y =4x(x >0)的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ).根据题意,得d (O ,D )=|x -0|+|x 2-5x +7-0|=|x |+|x 2-5x +7|.因为x 2-5x +7=(x -52)2+34,又x ≥0, 所以d (O ,D )=x +x 2-5x +7=x 2-4x +7=(x -2)2+3.所以当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图5,以M 为原点,MN 所在直线为x 轴建立平面直角坐标系xOy .将函数y =-x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止.设交点为E ,过点E 作EH ⊥MN ,垂足为H .修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l 2与x 轴相交于点G .因为∠EFH =45°,所以EH =FH ,d (O ,E )=OH +EH =OF .同理d (O ,P )=OG .因为OG ≥OF ,所以d (O ,P )≥d (O ,E ).因此,上述方案修建的道路最短.{分值}11{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{章节:[1-26-1]反比例函数的图像和性质}{难度:5-高难度}{类别:高度原创}{类别:发现探究}{类别:新定义}{考点:平面直角坐标系}{考点:根的判别式}{考点:一次函数的图象}图7{考点:反比例函数的图象}{考点:二次函数y=ax2+bx+c的性质} {考点:几何综合}。

2018—2020年江苏省数学中考试题分类(11)——图形的初步认识与三角形(含解析)

2018—2020年江苏省数学中考试题分类(11)——图形的初步认识与三角形(含解析)

2018—2020年江苏省数学中考试题分类(11)——图形的初步认识与三角形一.选择题(共19小题)1.(2020•泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是() A.B.C.D.3.(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.4.(2020•宿迁)如图,直线a,b被直线c所截,//∠的度数为()a b,150∠=︒,则2A.40︒B.50︒C.130︒D.150︒5.(2020•南通)如图,已知//∠=︒,则C∠的度数是()EAB CD,54A∠=︒,18A.36︒B.34︒C.32︒D.30︒6.(2020•常州)如图,直线a、b被直线c所截,//∠的度数是()a b,1140∠=︒,则2A .30︒B .40︒C .50︒D .60︒ 7.(2019•南通)如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若70C ∠=︒,则AED ∠度数为( )A .110︒B .125︒C .135︒D .140︒ 8.(2019•常州)如图,在线段PA 、PB 、PC 、PD 中,长度最小的是( )A .线段PAB .线段PBC .线段PCD .线段PD 9.(2019•苏州)如图,已知直线//a b ,直线c 与直线a ,b 分别交于点A ,B .若154∠=︒,则2∠等于( )A .126︒B .134︒C .136︒D .144︒ 10.(2019•宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,//DE BC ,则BFC ∠等于( )A .105︒B .100︒C .75︒D .60︒ 11.(2020•南通)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A .6B .22C .23D .32 12.(2020•宿迁)在ABC ∆中,1AB =,5BC =,下列选项中,可以作为AC 长度的是( ) A .2 B .4 C .5 D .6 13.(2020•常州)如图,AB 是O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH AB ⊥,垂足为H ,点M 是BC 的中点.若O 的半径是3,则MH 长的最大值是( )A .3B .4C .5D .6 14.(2020•徐州)若一个三角形的两边长分别为3cm 、6cm ,则它的第三边的长可能是( ) A .2cm B .3cm C .6cm D .9cm 15.(2019•无锡)如图,在正方形网格(每个小正方形的边长都是1)中,若将ABC ∆沿A D -的方向平移AD 长,得(DEF B ∆、C 的对应点分别为E 、)F ,则BE 长为( )A .1B .2C .5D .3 16.(2019•徐州)下列长度的三条线段,能组成三角形的是( ) A .2,2,4 B .5,6,12 C .5,7,2 D .6,8,10 17.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则ABC ∆的重心是( )A .点DB .点EC .点FD .点G 18.(2019•扬州)已知n 是正整数,若一个三角形的三边长分别是2n +、8n +、3n ,则满足条件的n 的值有( ) A .4个 B .5个 C .6个 D .7个 19.(2019•盐城)如图,点D 、E 分别是ABC ∆边BA 、BC 的中点,3AC =,则DE 的长为( )A .2B .43C .3D .32二.填空题(共18小题) 20.(2019•常州)如果35α∠=︒,那么α∠的余角等于 ︒. 21.(2019•苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm 的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 cm (结果保留根号).22.(2019•扬州)如图,在ABC ∆中,5AB =,4AC =,若进行以下操作,在边BC 上从左到右依次取点1D 、2D 、3D 、4D 、⋯;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点1E 、1F ;过点2D 作AB 、AC 的平行线分别交AC 、AB 于点2E 、2F ;过点3D 作AB 、AC 的平行线分别交AC 、AB 于点3E 、3F ⋯,则1122201920191122201920194()5()D E D E D E D F D F D F ++⋯++++⋯+= .23.(2019•扬州)将一个矩形纸片折叠成如图所示的图形,若26ABC ∠=︒,则ACD ∠= ︒.24.(2020•宿迁)如图,在ABC ∆中,AB AC =,BAC ∠的平分线AD 交BC 于点D ,E 为AB 的中点,若12BC =,8AD =,则DE 的长为 .25.(2020•常州)如图,在ABC ∆中,45B ∠=︒,62AB =,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为 .26.(2020•徐州)如图,30MON ∠=︒,在OM 上截取13OA =.过点1A 作11A B OM ⊥,交ON 于点1B ,以点1B 为圆心,1B O 为半径画弧,交OM 于点2A ;过点2A 作22A B OM ⊥,交ON 于点2B ,以点2B 为圆心,2B O 为半径画弧,交OM 于点3A ;按此规律,所得线段2020A B 的长等于 .27.(2020•徐州)如图,在Rt ABC ∆中,90ABC ∠=︒,D 、E 、F 分别为AB 、BC 、CA 的中点,若5BF =,则DE = .28.(2020•常州)如图,在ABC ∆中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC ∆是等边三角形,则B ∠= ︒.29.(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10=尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.30.(2020•南京)如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若139∠=︒,则AOC ∠= .31.(2020•苏州)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = .32.(2020•泰州)如图,将分别含有30︒、45︒角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65︒,则图中角α的度数为 .33.(2019•南通)如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =,若25BAE ∠=︒,则ACF ∠= 度.34.(2019•镇江)如图,直线//a b ,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠= ︒.35.(2019•苏州)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D .若2PD =,1CD =,则该扇形的半径长为 .36.(2019•南京)在ABC ∆中,4AB =,60C ∠=︒,A B ∠>∠,则BC 的长的取值范围是 . 37.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm .三.解答题(共8小题) 38.(2020•镇江)如图,AC 是四边形ABCD 的对角线,1B ∠=∠,点E 、F 分别在AB 、BC 上,BE CD =,BF CA =,连接EF . (1)求证:2D ∠=∠;(2)若//EF AC ,78D ∠=︒,求BAC ∠的度数.39.(2020•常州)已知:如图,点A 、B 、C 、D 在一条直线上,//EA FB ,EA FB =,AB CD =. (1)求证:E F ∠=∠;(2)若40A ∠=︒,80D ∠=︒,求E ∠的度数.40.(2020•盐城)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt ABC ∆中,90C ∠=︒,22AB =AC2.8 2.7 2.6 2.3 2 1.5 0.4BC 0.4 0.8 1.2 1.6 2 2.4 2.8AC BC +3.2 3.5 3.8 3.9 4 3.9 3.2 (Ⅱ)根据学习函数的经验,选取上表中BC 和AC BC +的数据进行分析:①BC x =,AC BC y +=,以(,)x y 为坐标,在图①所示的坐标系中描出对应的点: ②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x =____时,y 最大;(Ⅳ)进一步精想:若Rt ABC ∆中,90C ∠=︒,斜边2(AB a a =为常数,0)a >,则BC =____时,AC BC +最大. 推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线; 问题2,补全观察思考中的两个猜想:(Ⅲ) ;(Ⅳ) ; 问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B E F G A --------是一个感光元件的截面设计草图,其中点A ,B 间的距离是4厘米,1AG BE ==厘米.90E F G ∠=∠=∠=︒.平行光线从AB 区域射入,60BNE ∠=︒,线段FM 、FN 为感光区域,当EF 的长度为多少时,感光区域长度之和最大,并求出最大值.41.(2020•徐州)如图,AC BC ⊥,DC EC ⊥,AC BC =,DC EC =,AE 与BD 交于点F . (1)求证:AE BD =; (2)求AFD ∠的度数.42.(2020•泰州)如图,在O 中,点P 为AB 的中点,弦AD 、PC 互相垂直,垂足为M ,BC 分别与AD 、PD 相交于点E 、N ,连接BD 、MN .(1)求证:N 为BE 的中点.(2)若O 的半径为8,AB 的度数为90︒,求线段MN 的长.43.(2020•苏州)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求证:AB CD BC +=.问题2:如图②,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求AB CDBC+的值.44.(2020•无锡)如图,已知//AB CD ,AB CD =,BE CF =. 求证:(1)ABF DCE ∆≅∆; (2)//AF DE .45.(2020•南京)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.2018—2020年江苏省数学中考试题分类(11)——图形的初步认识与三角形一.选择题(共19小题)1.(2020•泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【解答】解:观察展开图可知,几何体是三棱柱.故选:A.2.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【解答】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.3.(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.4.(2020•宿迁)如图,直线a,b被直线c所截,//∠的度数为()a b,150∠=︒,则2A.40︒B.50︒C.130︒D.150︒【解答】解://a b,∴∠=∠=︒.2150故选:B.5.(2020•南通)如图,已知//∠=︒,则C∠的度数是()EAAB CD,54∠=︒,18A.36︒B.34︒C.32︒D.30︒【解答】解:(方法一)过点E作//EF AB,则//EF CD,如图1所示.EF AB,//∴∠=∠=︒,AEF A54∠=∠-∠=︒-︒=︒.541836CEF AEF AEC又//EF CD,∴∠=∠=︒.C CEF36(方法二)设AE与CD交于点O,如图2所示.AB CD,//DOE A∴∠=∠=︒.54又DOE C E∠=∠+∠,C DOE E∴∠=∠-∠=︒-︒=︒.541836故选:A.6.(2020•常州)如图,直线a、b被直线c所截,//∠的度数是()∠=︒,则2a b,1140A.30︒B.40︒C.50︒D.60︒【解答】解:13180∠=︒,∠+∠=︒,1140∴∠=︒-∠=︒-︒=︒3180118014040a b,//∴∠=∠=︒.2340故选:B . 7.(2019•南通)如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若70C ∠=︒,则AED ∠度数为( )A .110︒B .125︒C .135︒D .140︒ 【解答】解://AB CD , 180C CAB ∴∠+∠=︒, 70C ∠=︒, 110CAB ∴∠=︒, AE 平分CAB ∠,1552CAE CBA ∴∠=∠=︒,7055125AED C CAE ∴∠=∠+∠=︒+︒=︒, 故选:B . 8.(2019•常州)如图,在线段PA 、PB 、PC 、PD 中,长度最小的是( )A .线段PAB .线段PBC .线段PCD .线段PD 【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B . 故选:B . 9.(2019•苏州)如图,已知直线//a b ,直线c 与直线a ,b 分别交于点A ,B .若154∠=︒,则2∠等于( )A .126︒B .134︒C .136︒D .144︒【解答】解:如图所示: //a b ,154∠=︒, 1354∴∠=∠=︒,218054126∴∠=︒-︒=︒. 故选:A .10.(2019•宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,//DE BC ,则BFC ∠等于( )A .105︒B .100︒C .75︒D .60︒ 【解答】解:由题意知45E ∠=︒,30B ∠=︒, //DE CB ,45BCF E ∴∠=∠=︒, 在CFB ∆中,1801803045105BFC B BCF ∠=︒-∠-∠=︒-︒-︒=︒, 故选:A . 11.(2020•南通)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A .6B .22C .23D .32 【解答】解:如图,过点C 作CK l ⊥于点K ,过点A 作AH BC ⊥于点H , 在Rt AHB ∆中,60ABC ∠=︒,2AB =, 1BH ∴=,3AH =,在Rt AHC ∆中,45ACB ∠=︒,2222(3)(3)6AC AH CH ∴=+=+=,点D 为BC 中点, BD CD ∴=,在BFD ∆与CKD ∆中,90BFD CKD BDF CDKBD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BFD CKD AAS ∴∆≅∆, BF CK ∴=,延长AE ,过点C 作CN AE ⊥于点N , 可得AE BF AE CK AE EN AN +=+=+=, 在Rt ACN ∆中,AN AC <,当直线l AC ⊥时,最大值为6, 综上所述,AE BF +的最大值为6. 故选:A . 12.(2020•宿迁)在ABC ∆中,1AB =,5BC =,下列选项中,可以作为AC 长度的是( ) A .2 B .4 C .5 D .6 【解答】解:在ABC ∆中,1AB =,5BC =, ∴5151AC -<<+,51251-<<+,451>+,551>+,651>+, AC ∴的长度可以是2,故选项A 正确,选项B 、C 、D 不正确; 故选:A . 13.(2020•常州)如图,AB 是O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH AB ⊥,垂足为H ,点M 是BC 的中点.若O 的半径是3,则MH 长的最大值是( )A .3B .4C .5D .6 【解答】解:CH AB ⊥,垂足为H , 90CHB ∴∠=︒,点M 是BC 的中点.12MH BC ∴=,BC 的最大值是直径的长,O 的半径是3, MH ∴的最大值为3, 故选:A . 14.(2020•徐州)若一个三角形的两边长分别为3cm 、6cm ,则它的第三边的长可能是( ) A .2cm B .3cm C .6cm D .9cm 【解答】解:设第三边长为xcm ,根据三角形的三边关系可得: 6363x -<<+, 解得:39x <<, 故选:C . 15.(2019•无锡)如图,在正方形网格(每个小正方形的边长都是1)中,若将ABC ∆沿A D -的方向平移AD 长,得(DEF B ∆、C 的对应点分别为E 、)F ,则BE 长为( )A .1B .2C .5D .3【解答】解:如图所示:22125BE =+=. 故选:C .16.(2019•徐州)下列长度的三条线段,能组成三角形的是( ) A .2,2,4 B .5,6,12 C .5,7,2 D .6,8,10 【解答】解:224+=,2∴,2,4不能组成三角形,故选项A 错误, 5612+<,5∴,6,12不能组成三角形,故选项B 错误, 527+=,5∴,7,2不能组成三角形,故选项C 错误, 6810+>,6∴,8,10能组成三角形,故选项D 正确, 故选:D . 17.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则ABC ∆的重心是( )A .点DB .点EC .点FD .点G 【解答】解:根据题意可知,直线CD 经过ABC ∆的AB 边上的中线,直线AD 经过ABC ∆的BC 边上的中线, ∴点D 是ABC ∆重心. 故选:A . 18.(2019•扬州)已知n 是正整数,若一个三角形的三边长分别是2n +、8n +、3n ,则满足条件的n 的值有( ) A .4个 B .5个 C .6个 D .7个 【解答】解:①若283n n n +<+,则 28383n n nn n +++>⎧⎨+⎩,解得104n n <⎧⎨⎩,即410n <,∴正整数n 有6个:4,5,6,7,8,9; ②若238n n n +<+,则 23838n n n n n ++>+⎧⎨+⎩, 解得24n n >⎧⎨⎩,即24n <,∴正整数n 有2个:3和4;③若328n n n +<+,则不等式组无解; 综上所述,满足条件的n 的值有7个, 故选:D . 19.(2019•盐城)如图,点D 、E 分别是ABC ∆边BA 、BC 的中点,3AC =,则DE 的长为( )A .2B .43 C .3 D .32【解答】解:点D 、E 分别是ABC ∆的边BA 、BC 的中点, DE ∴是ABC ∆的中位线,11.52DE AC ∴==.故选:D .二.填空题(共18小题) 20.(2019•常州)如果35α∠=︒,那么α∠的余角等于 55 ︒. 【解答】解:35α∠=︒, α∴∠的余角等于903555︒-︒=︒ 故答案为:55. 21.(2019•苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm 的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 522cm (结果保留根号).【解答】解:21010100()cm ⨯= 10052)8cm = 答:该“七巧板”中7块图形之一的正方形边长为522.故答案为:522. 22.(2019•扬州)如图,在ABC ∆中,5AB =,4AC =,若进行以下操作,在边BC 上从左到右依次取点1D 、2D 、3D 、4D 、⋯;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点1E 、1F ;过点2D 作AB 、AC 的平行线分别交AC 、AB 于点2E 、2F ;过点3D 作AB 、AC 的平行线分别交AC 、AB 于点3E 、3F ⋯,则1122201920191122201920194()5()D E D E D E D F D F D F ++⋯++++⋯+= 40380 .【解答】解:11//D F AC ,11//D E AB , ∴111D F BF AC AB =,即1111D F AB DE AC AB -=, 5AB =,4BC =, 11114520D E DF ∴+=,同理22224520D E D F +=,⋯,20192019201920194520D E D F +=,1122201920191122201920194()5()20201940380D E D E D E D F D F D F ∴++⋯++++⋯+=⨯=; 故答案为40380. 23.(2019•扬州)将一个矩形纸片折叠成如图所示的图形,若26ABC ∠=︒,则ACD ∠= 128 ︒.【解答】解:延长DC ,由题意可得:26ABC BCE BCA ∠=∠=∠=︒, 则1802626128ACD ∠=︒-︒-︒=︒. 故答案为:128.24.(2020•宿迁)如图,在ABC ∆中,AB AC =,BAC ∠的平分线AD 交BC 于点D ,E 为AB 的中点,若12BC =,8AD =,则DE 的长为 5 .【解答】解:AB AC =,AD 平分BAC ∠, AD BC ∴⊥,6BD CD ==, 90ADB ∴∠=︒,22228610AB AD BD ∴=+=+=,AE EB =,152DE AB ∴==,故答案为5. 25.(2020•常州)如图,在ABC ∆中,45B ∠=︒,62AB =,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为 4或2 .【解答】解:如图,过点B 作BT BF ⊥交ED 的延长线于T ,过点B 作BH DT ⊥于H .DG BF ⊥,BT BF ⊥,//DG BT∴, AD DB =,AE EC =, //DE BC ∴,∴四边形DGBT 是平行四边形,BG DT ∴=,DG BT =,45BDH ABC ∠=∠=︒, 32AD DB ==, 3BH DH ∴==,90TBF BHF ∠=∠=︒,90TBH FBH ∴∠+∠=︒,90FBH F ∠+∠=︒, TBH F ∴∠=∠,1tan tan 3BT DG F TBH BF BF ∴∠=∠===,∴13TH BH =, 1TH ∴=,134DT TH DH ∴=+=+=, 4BG ∴=.当点F 在ED 的延长线上时,同法可得312DT BG ==-=.故答案为4或2.26.(2020•徐州)如图,30MON ∠=︒,在OM 上截取13OA =.过点1A 作11A B OM ⊥,交ON 于点1B ,以点1B 为圆心,1B O 为半径画弧,交OM 于点2A ;过点2A 作22A B OM ⊥,交ON 于点2B ,以点2B 为圆心,2B O 为半径画弧,交OM 于点3A ;按此规律,所得线段2020A B 的长等于 192 .【解答】解:111B O B A =,112B A OA ⊥, 112OA A A ∴=,22B A OM ⊥,11B A OM ⊥, 1122//B A B A ∴,112212B A A B ∴=,22112A B A B ∴=,同法可得233221122A B A B A B ==,⋯, 由此规律可得192020112A B A B =, 1113tan3031A B OA =︒=⨯=, 1920202A B ∴=,故答案为192. 27.(2020•徐州)如图,在Rt ABC ∆中,90ABC ∠=︒,D 、E 、F 分别为AB 、BC 、CA 的中点,若5BF =,则DE = 5 .【解答】解:如图,在Rt ABC ∆中,90ABC ∠=︒,F 为CA 的中点,5BF =, 210AC BF ∴==.又D 、E 分别为AB 、BC 的中点, DE ∴是Rt ABC ∆的中位线,152DE AC ∴==.故答案是:5.28.(2020•常州)如图,在ABC ∆中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC ∆是等边三角形,则B ∠= 30 ︒.【解答】解:EF 垂直平分BC ,BF CF ∴=, B BCF ∴∠=∠,ACF ∆为等边三角形, 60AFC ∴∠=︒,30B BCF ∴∠=∠=︒. 故答案为:30. 29.(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10=尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55 尺高.【解答】解:设折断处离地面x 尺, 根据题意可得:2223(10)x x +=-, 解得: 4.55x =.答:折断处离地面4.55尺. 故答案为:4.55. 30.(2020•南京)如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若139∠=︒,则AOC ∠= 78︒ .【解答】解:解法一:连接BO ,并延长BO 到P ,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,AO OB OC ∴==,90BDO BEO ∠=∠=︒,180DOE ABC ∴∠+∠=︒,1180DOE ∠+∠=︒,139ABC ∴∠=∠=︒,OA OB OC ==,A ABO ∴∠=∠,OBC C ∠=∠,AOP A ABO ∠=∠+∠,COP C OBC ∠=∠+∠,23978AOC AOP COP A ABC C ∴∠=∠+∠=∠+∠+∠=⨯︒=︒;解法二:连接OB , 线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,AO OB OC ∴==,AOD BOD ∴∠=∠,BOE COE ∠=∠,1180DOE ∠+∠=︒,139∠=︒,141DOE ∴∠=︒,即141BOD BOE ∠+∠=︒,141AOD COE ∴∠+∠=︒,360()()78AOC BOD BOE AOD COE ∴∠=︒-∠+∠-∠+∠=︒;故答案为:78︒.31.(2020•苏州)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = 1 .【解答】解:设AE ED x ==,CD y =,2BD y ∴=,AD BC ⊥,90ADB ADC ∴∠=∠=︒,在Rt ABD ∆中,22244AB x y ∴=+,221x y ∴+=,在Rt CDE ∆中,2221EC x y ∴=+=0EC >1EC ∴=.另解:依据AD BC ⊥,2BD CD =,E 是AD 的中点,即可得判定CDE BDA ∆∆∽,且相似比为1:2, ∴12CE AB =, 即1CE =.故答案为:132.(2020•泰州)如图,将分别含有30︒、45︒角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65︒,则图中角α的度数为 140︒ .【解答】解:如图,30B ∠=︒,65DCB ∠=︒,306595DFB B DCB ∴∠=∠+∠=︒+︒=︒,4595140D DFB α∴∠=∠+∠=︒+︒=︒,故答案为:140︒.33.(2019•南通)如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =,若25BAE ∠=︒,则ACF ∠= 70 度.【解答】解:在Rt ABE ∆与Rt CBF ∆中,AE CF AB BC =⎧⎨=⎩, Rt ABE Rt CBF(HL)∴∆≅∆.25BAE BCF ∴∠=∠=︒;AB BC =,90ABC ∠=︒,45ACB ∴∠=︒,254570ACF ∴∠=︒+︒=︒;故答案为:70.34.(2019•镇江)如图,直线//a b ,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠= 40 ︒.【解答】解:BCD ∆是等边三角形,60BDC ∴∠=︒,//a b ,260BDC ∴∠=∠=︒,由三角形的外角性质和对顶角相等可知,1240A ∠=∠-∠=︒,故答案为:40.35.(2019•苏州)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D .若2PD =,1CD =,则该扇形的半径长为 5 .【解答】解:连接OP ,如图所示.OA OB =,90AOB ∠=︒,45OAB ∴∠=︒.PC OA ⊥,ACD ∴∆为等腰直角三角形,1AC CD ∴==.设该扇形的半径长为r ,则1OC r =-,在Rt POC ∆中,90PCO ∠=︒,3PC PD CD =+=,222OP OC PC ∴=+,即22(1)9r r =-+,解得:5r =.故答案为:5.36.(2019•南京)在ABC ∆中,4AB =,60C ∠=︒,A B ∠>∠,则BC 的长的取值范围是 8343BC< . 【解答】解:作ABC ∆的外接圆,如图所示:BAC ABC ∠>∠,4AB =,当90BAC ∠=︒时,BC 是直径最长,60C ∠=︒,30ABC ∴∠=︒,2BC AC ∴=,34AB AC ==,433AC ∴=, 833BC ∴=; 当BAC ABC ∠=∠时,ABC ∆是等边三角形,4BC AC AB ===,BAC ABC ∠>∠,BC ∴长的取值范围是8343BC <; 故答案为:8343BC <. 37.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 5 cm .【解答】解:由题意可得:杯子内的筷子长度为:2212915+=,则筷子露在杯子外面的筷子长度为:20155()cm -=.故答案为:5.三.解答题(共8小题)38.(2020•镇江)如图,AC 是四边形ABCD 的对角线,1B ∠=∠,点E 、F 分别在AB 、BC 上,BE CD =,BF CA =,连接EF .(1)求证:2D ∠=∠;(2)若//EF AC ,78D ∠=︒,求BAC ∠的度数.【解答】证明:(1)在BEF ∆和CDA ∆中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,()BEF CDA SAS ∴∆≅∆,2D ∴∠=∠;(2)2D ∠=∠,78D ∠=︒,278D ∴∠=∠=︒,//EF AC ,278BAC ∴∠=∠=︒.39.(2020•常州)已知:如图,点A 、B 、C 、D 在一条直线上,//EA FB ,EA FB =,AB CD =.(1)求证:E F ∠=∠;(2)若40A ∠=︒,80D ∠=︒,求E ∠的度数.【解答】证明:(1)//EA FB ,A FBD ∴∠=∠,AB CD =,AB BC CD BC ∴+=+,即AC BD =,在EAC ∆与FBD ∆中,EA FB A FBD AC BD =⎧⎪∠=∠⎨⎪=⎩,()EAC FBD SAS ∴∆≅∆,E F ∴∠=∠;(2)EAC FBD ∆≅∆,80ECA D ∴∠=∠=︒,40A ∠=︒,180408060E ∴∠=︒-︒-︒=︒,答:E ∠的度数为60︒.40.(2020•盐城)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt ABC ∆中,90C ∠=︒,22AB =,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC2.8 2.7 2.6 2.3 2 1.5 0.4 BC0.4 0.8 1.2 1.6 2 2.4 2.8 AC BC +3.2 3.5 3.8 3.9 4 3.9 3.2 (Ⅱ)根据学习函数的经验,选取上表中BC 和AC BC +的数据进行分析:①BC x =,AC BC y +=,以(,)x y 为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x =____时,y 最大;(Ⅳ)进一步精想:若Rt ABC ∆中,90C ∠=︒,斜边2(AB a a =为常数,0)a >,则BC =____时,AC BC +最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ) 2 ;(Ⅳ) ;问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B E F G A --------是一个感光元件的截面设计草图,其中点A ,B 间的距离是4厘米,1AG BE ==厘米.90E F G ∠=∠=∠=︒.平行光线从AB 区域射入,60BNE ∠=︒,线段FM 、FN 为感光区域,当EF 的长度为多少时,感光区域长度之和最大,并求出最大值.【解答】解:问题1:函数图象如图所示:问题2:(Ⅲ)观察图象可知,2x =时,y 有最大值. (Ⅳ)猜想:2BC a =. 故答案为:2,2BC a =.问题3:设BC x =,AC BC y +=,在Rt ABC ∆中,90C ∠=︒22224AC AB BC a x ∴=-=-,224y x a x ∴=+-,224y x a x ∴-=-,222224y xy x a x ∴-+=-,2222240x xy y a ∴-+-=,关于x 的一元二次方程有实数根,∴△222442(4)0y y a =-⨯⨯-,228y a ∴,0y >,0a >,22y a ∴,当22y a =时,2224240x ax a -+=2(22)0x a ∴-=,122x x a ∴==,∴当2BC a =时,y 有最大值.问题4:延长AM 交EF 的延长线于C ,过点A 作AH EF ⊥于H ,过点B 作BK GF ⊥于K 交AH 于Q .在Rt BNE ∆中,90E ∠=︒,60BNE ∠=︒,1BE cm =,tan BE BNE EN∴∠=, 3)NE cm ∴=, //AM BN ,60C ∴∠=︒,90GFE ∠=︒,30CMF ∴∠=︒,30AMG ∴∠=︒,90G ∠=︒,1AG cm =,30AMG ∠=︒,∴在Rt AGM ∆中,tan AG AMG GM ∠=, 3()GM cm ∴=,90G GFH ∠=∠=︒,90AHF ∠=︒,∴四边形AGFH 为矩形,AH FG ∴=,90GFH E ∠=∠=︒,90BKF ∠=︒∴四边形BKFE 是矩形,BK FE ∴=,3434332FN FM EF FG EN GM BK AH BQ AQ KQ QH BQ AQ +=+--=+--=+++-=++-, 在Rt ABQ ∆中,4AB cm =,由问题3可知,当22BQ AQ cm ==时,AQ BQ +的值最大,此时(122)EF cm =+,22BQ AQ ∴==时,FN FM +的最大值为43(422)cm +-,此时(122)EF cm =+. 41.(2020•徐州)如图,AC BC ⊥,DC EC ⊥,AC BC =,DC EC =,AE 与BD 交于点F .(1)求证:AE BD =;(2)求AFD ∠的度数. 【解答】解:(1)AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒,ACE BCD ∴∠=∠,在ACE ∆和BCD ∆中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,AE BD ∴=;(2)设BC 与AE 交于点N ,90ACB ∠=︒,90A ANC ∴∠+∠=︒,ACE BCD ∆≅∆,A B ∴∠=∠,ANC BNF ∠=∠,90B BNF A ANC ∴∠+∠=∠+∠=︒,90AFD B BNF ∴∠=∠+∠=︒.42.(2020•泰州)如图,在O中,点P为AB的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若O的半径为8,AB的度数为90︒,求线段MN的长.【解答】(1)证明:AD PC⊥,∴∠=︒,EMC90点P为AB的中点,=,∴PA PBADP BCP∴∠=∠,∠=∠,CEM DEN∴∠=∠=︒=∠,DNE EMC DNB90=,PA PB∴∠=∠,BDP ADP∴∠=∠,DEN DBNDE DB∴=,∴=,EN BN∴为BE的中点;N(2)解:连接OA,OB,AB,AC,AB的度数为90︒,∴∠=︒,90AOB==,8OA OB∴=AB82由(1)同理得:AM EM=,EN BN=,∆的中位线,MN∴是AEB1422MN AB ∴==. 43.(2020•苏州)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求证:AB CD BC +=.问题2:如图②,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求AB CD BC+的值.【解答】证明:(1)90B APD ∠=∠=︒,90BAP APB ∴∠+∠=︒,90APB DPC ∠+∠=︒,BAP DPC ∴∠=∠,又PA PD =,90B C ∠=∠=︒,()BAP CPD AAS ∴∆≅∆,BP CD ∴=,AB PC =,BC BP PC AB CD ∴=+=+;(2)如图2,过点A 作AE BC ⊥于E ,过点D 作DF BC ⊥于F ,由(1)可知,EF AE DF =+,45B C ∠=∠=︒,AE BC ⊥,DF BC ⊥,45B BAE ∴∠=∠=︒,45C CDF ∠=∠=︒,BE AE ∴=,CF DF =,2AB AE =,2CD DF =,2()BC BE EF CF AE DF ∴=++=+, ∴2()2AB CD AE DF BC ++==. 44.(2020•无锡)如图,已知//AB CD ,AB CD =,BE CF =. 求证:(1)ABF DCE ∆≅∆;(2)//AF DE .【解答】证明:(1)//AB CD , B C ∴∠=∠,BE CF =,BE EF CF EF ∴-=-,即BF CE =,在ABF ∆和DCE ∆中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,()ABF DCE SAS ∴∆≅∆;(2)ABF DCE ∆≅∆,AFB DEC ∴∠=∠,AFE DEF ∴∠=∠,//AF DE ∴.45.(2020•南京)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.【解答】证明:在ABE ∆与ACD ∆中A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABE ACD ASA ∴∆≅∆.AD AE ∴=.BD CE ∴=.。

南京市联合体2018-2019学年度七年级上期中数学试题(含答案)

南京市联合体2018-2019学年度七年级上期中数学试题(含答案)

2018-2019学年度第一学期期中学情分析试卷七年级数学注意事项:1.本试卷共4页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.比-1小2的数是( ▲ ).A .3B .1C .-2D .-32.把(-2)-(+3)-(-5)+(-4)统一为加法运算,正确的是( ▲ ).A .(-2)+(+3)+(-5)+(-4)B .(-2)+(-3)+(+5)+(-4)C .(-2)+(+3)+(+5)+(+4)D .(-2)+(-3)+(-5)+(+4) 3.下列各组数中,数值相等的是( ▲ ).A .(-2)3和(-3)2B .-32和(-3)2C . -33和(-3)3D .-3×23和(-3×2)34.下列去括号正确的是( ▲ ).A .-2(a +b )=-2a +bB .-2(a +b )=-2a -bC .-2(a +b )=-2a -2bD .-2(a +b )=-2a +2b5.下列等式变形正确的是( ▲ ).A .如果mx =my ,那么x =yB .如果︱x ︱=︱y ︱,那么x =yC .如果-12x =8,那么x =-4D .如果x -2=y -2,那么x =y 6.若967×85=p ,则967×84的值可表示为( ▲ ).A .p -967B .p -85C .p -1D .8584p7.如下四种图案的地砖,要求灰、白两种颜色面积大致相同,那么下面最符合要求的是( ▲ ).8.下列四个数轴上的点A 都表示数a ,其中,一定满足︱a ︱>2的是( ▲ ).-2 -2 2 2a a a AAA A①②③④A B CDA .①③B .②③C .①④D . ②④二、填空题(每小题2分,共20分)9.-13的相反数是 ▲ ,-13的倒数是 ▲ .10.比较大小:-2.3 ▲ -2.4(填“>”或“<”或“=”). 11.单项式-4πab 2的系数是 ▲ ,次数是 ▲ .12.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150 000 000 000 m 3,其中数字150 000 000 000用科学记数法可表示为 ▲ .13.数轴上将点A 移动4个单位长度恰好到达原点,则点A 表示的数是 ▲ . 14.“减去一个数,等于加上这个数的相反数”用字母可以表示为 ▲ . 15.若5x 6y 2m 与-3x n +9y 6和是单项式,那么n -m 的值为 ▲ . 16.若a -2b =3,则2a -4b -5的值为 ▲ .17.一米长的木棒,第1次截去一半,第2次截去剩下的一半,……,如此截下去,第 ▲ 次截去后剩下的小棒长 164米. 18.若a <0,b >0,在a +b ,a -b ,-a +b ,-a -b 中最大的是 ▲ .三、解答题(本大题共8小题,共64分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤) 19.(共16分)计算:(1)(-8)+10-2+(-1); (2)12-7×(-4)+8÷(-2);(3)(12+13-16)÷(-118); (4)-14-(1+0.5)×13÷(-4)2.20.(每题3分,共6分)化简:(1)3x 2-2xy +y 2-3x 2+3xy ; (2) (7x 2-3xy )-6(x 2-13xy ).21.(5分)先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-12,b =2.22.(每题4分,共8分)解方程:(1)2x +1=8-5x ; (2)x +24-2x -36=1.23.(6分)某市出租车的计价标准为:行驶路程不超过3 km 收费10元,超过3 km 的部分按每千米1.8元收费. (1)某出租车行程为x km ,若x >3 km ,则该出租车驾驶员收到车费 ▲ 元(用含有x 的代数式表示); (2)一出租车公司坐落于东西向的宏运大道边,某驾驶员从公司出发,在宏运大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km) .①送完第4批客人后,该出租车驾驶员在公司的 ▲ 边(填“东或西”),距离公司 ▲ km 的位置; ②在这过程中该出租车驾驶员共收到车费多少元?24.(6分)如图,长为50 cm ,宽为x cm 的大长方形被分割为8小块,除阴影A ,B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm .(1)从图可知,每个小长方形较长一边长是 ▲ cm (用含a 的代数式表示). (2)求图中两块阴影A ,B 的周长和(可以用含x 的代数式表示).25.(8分)定义☆运算 观察下列运算:(+3)☆(+15) =+18 (-14)☆(-7) =+21, (-2)☆(+14) =-16 (+15)☆(-8) =-23, 0☆(-15) =+15 (+13)☆0 =+13. (1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号 ▲ ,异号 ▲ . 特别地,0和任何数进行☆运算,或任何数和0进行☆运算, ▲ .axAB(第24题)(2)计算:(+11) ☆[0 ☆(-12)] =▲.(3)若2×(2☆a)-1=3a,求a的值.26.(9分)【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3| |-6|+|3|>|-6+3||-2|+|-3|=|-2-3| |0|+|-8|=|0-8|归纳:|a|+|b| |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.2018-2019学年度第一学期七年级期中数学测试卷评分细则一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9. 13,-3 10. > 11. -4π,3 12. 1.5×1011 13. 4或-414. a -b =a +(-b ) 15. -6 16. 1 17. 6 18. -a +b 三、解答题(本大题共8小题,共64分) 19. (16分)(1)解:原式=2-2+(-1)………………………………2分=0+(-1)…………………………3分 =-1…………………………4分(2)解:原式=12-(-28)+(-4)………………………………2分=12+28-4…………………………3分 =36…………………………4分(3)解:原式=(12+13-16)×(-18)………………………………1分=(-9)+(-6) -(-3)…………………………3分 =-12…………………………4分(4)解:原式=-1-32×13÷16…………………………2分=-1-12×116…………………………3分=-3332…………………………4分20. (6分)(1)解:原式= 3x 2-3x 2-2xy +3xy + y 2 …………………………1分=xy +y 2 …………………………3分(2)解:原式=7x 2-3xy -6x 2+2xy …………………………1分=x 2-xy …………………………3分题号 1 2 3 4 5 6 7 8 答案DBCCDADB21. (5分)解:原式=15a 2b -5ab 2-ab 2-3a 2b …………………………1分=12 a 2b -6ab 2…………………………3分当a =-12,b =2时原式=12×(-12)2×2-6×(-12)×22=6+12=18.…………………………5分22. (8分)(1)解: 2x +5x =8-1…………………………2分7x =7…………………………3分 x =1…………………………4分(2)解: 3(x +2)-2(2x -3)=12 …………………………1分 3x +6-4x +6=12…………………………2分-x =0 ………………………………3分x =0………………………………4分23. (6分)(1)1.8(x -3)+10=1.8x +4.6 …………………………2分 (2)①西;9…………………………4分②13.6+10+11.8+26.2=61.6…………………………6分 答:该出租车驾驶员共收到车费61.6元24. (6分) (1)(50-3a ) …………………………2分(2)2[50-3a +(x -3a )] +2[3a +x -(50-3a )] ………………………………4分 =2(50+x -6a ) +2(6a +x -50) =4x …………………………6分 25.(8分)(1)同号两数运算取正号,并把绝对值相加;…………………………1分异号两数运算取负号,并把绝对值相加……………………2分 等于这个数的绝对值……3分(2)23 ……………………………… 5分 (3)①当a =0时,左边=2×2-1=3,右边=0,左边≠右边,所以a ≠0;…………6分②当a ﹥0时,2×(2+a )-1=3a ,a =3;……………………7分③当a ﹤0时,2×(-2+a )-1=3a ,a =-5…………………………8分 综上所述,a 为3或-5注:自圆其说,前后一致 就算对。

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷(解析版)

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷(解析版)

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷一、选择题(本大题共6小题,共12.0分) 1. 计算(a 2)3,结果正确的是( )A. a 6 B. a 5 C. 2a 3 D. a 9 2. 下列多项式中能用平方差公式分解因式的是( )A. x 2+4 B. x 2−xy C. x 2−9 D. −x 2−y 23. 如图,点E 在BC 的延长线上,下列条件中能判断AB ∥CD 的是( )A. ∠3=∠4B. ∠1=∠2C. ∠B =∠2D. ∠D =∠DCE4. 下列命题是真命题的是( )A. 相等的角是对顶角B. 若x 2=y 2,则x =yC. 同角的余角相等D. 两直线平行,同旁内角相等 5. 如图,一个人从A 点出发沿北偏东30°方向走到B 点,若这个人再从B 点沿南偏东15°方向走到C 点则∠ABC 等于( )A. 15∘B. 30∘C. 45∘D. 165∘6. 若x 、y 、a 满足方程组{x −y =2a −5x+2y=1−a,则22x •4y 的值为( )A. 1B. 2C. −12D. 14二、填空题(本大题共10小题,共20.0分)7. 据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm 芯片,14mm 即0.000 000 014m ,0.000 000 014用科学记数法表示为______. 8. 命题“同位角相等,两直线平行”的逆命题是:______. 9. (______+2a )2=4a 2+4a +1.10. 已知a +b =2,a -b =-1,则a 2-b 2=______.11. 如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2. 12. 某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y 只,根据题意可列二元一次方程组:______. 13. 计算:(23)2018×(32)2019×(−1)6=______.14. 如图,直线EF 分别交直线AB 、CD 于点G 、H ,AB ∥CD ,MG ⊥EF ,垂足为G ,HN 平分∠CHE ,∠NHC =32°,则∠AGM =______.15. 我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a 4•a 5)2=(a 4)2•(a 5)2=a 8•a 10=a 18”的运算过程中,运用了上述幂的运算中的______(按运算顺序填序号).16. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止当n =3时,a 的值为______.三、计算题(本大题共2小题,共12.0分)17. 先化简,再求值:(x +3)(x -3)-2x (x +3)+(x -1)2,其中x =−1218. 解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解:______+______,得3x +4y =10,④ ______+______,得5x +y =11,⑤ ______与______联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n -2p +q =______.四、解答题(本大题共8小题,共56.0分)19.计算:(1)3a•(-a2)+a4÷a(2)(2x-y)(x+3y)(3)(a-b+1)(a-b-1)20.把下列各式分解因式:(1)2a(m+n)-b(m+n)(2)2x2y-8xy+8y21.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=______22.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是______.数量关系是______(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为______A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA-∠PAB=180°D.∠A'B'P+∠B'PA-∠PAB=360°23.如图,CE⊥DG,垂足为G,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?24.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴______(同位角相等,两直线平行)∠2=∠CBD(______)∠1=∠2(已知)∠1=∠CBD(______)∴______(______)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(______)25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=______cm(用含a、b的代数式表示)OA=______cm(用含a、b 的代数式表示);(2)求图中阴影部分的面积(π取3).26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则______(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:______(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有______项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)答案和解析1.【答案】A【解析】解:(a2)3=a6.故选:A.根据幂的乘方的运算方法,求出(a2)3的结果是多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn (m,n是正整数);②(ab)n=a n b n(n是正整数).2.【答案】C【解析】解:A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2-xy=x(x-y),不能利用平方差进行分解,故此选项错误;C、x2-9=(x+3)(x-3),能利用平方差进行分解,故此选项正确;D、-x2-y2,不能利用平方差进行分解,故此选项错误;故选:C.能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.此题主要考查了公式法分解因式,关键是掌握平方差公式分解因式的特点.3.【答案】B【解析】解:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行),故选:B.根据平行线的判定方法即可解决问题.本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.4.【答案】C【解析】解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=-y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.此题主要考查了命题与定理,正确把握相关定义是解题关键.5.【答案】C【解析】解:由题意可知∠ABC=30°+15°=45°故选:C.根据方位角的概念,画图正确表示出方位角,即可求解.本题考查了方向角,熟练掌握方向角的定义是解题的关键.6.【答案】D【解析】解:,解得,,∴x+y=-1,则22x•4y=22x•22y=22(x+y)=2-2=,故选:D.解二元一次方程组求出x、y,得到x+y=-1,根据幂的乘方法则、同底数幂的乘法法则计算即可.本题考查的是积的乘方和幂的乘方、二元一次方程组的解法,掌握积的乘方和幂的乘方法则是解题的关键.7.【答案】1.4×10-8【解析】解:0.000 000 014=1.4×10-8,故答案为1.4×10-8.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【答案】两直线平行,同位角相等【解析】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.把一个命题的题设和结论互换就得到它的逆命题.本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.【答案】1【解析】解:∵1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,∴(1+2a)2=1+4a+4a2,故答案为:1.根据因式分解的完全平方公式:a2+2ab+b2=(a+b)2可知1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,再由整式乘法与因式分解的关系,问题得解.本题考查因式分解的完全平方公式,理解因式分解的完全平方公式是解题的关键.10.【答案】-2【解析】解:因为a+b=2,a-b=-1,则a2-b2=(a+b)(a-b)=2×(-1)=-2,故答案为:-2.根据平方差公式计算即可.此题主要考查了平方差公式的应用,要熟练掌握,解答此题的关键是要明确:(a+b)(a-b)=a2-b2.11.【答案】20【解析】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:20如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.12.【答案】{x=3yx+y=200【解析】解:设白鸡有x只,黑鸡有y只,依题意得:.故答案是:.设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.考查了由实际问题抽象出二元一次方程组,解题的关键是读懂题意,找出等量关系,列出方程.13.【答案】32【解析】解:=[×]××1=1×=故答案为:.根据积的乘方的运算方法,求出算式的值是多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).14.【答案】26° 【解析】解:∵HN 平分∠CHG ,∴∠CHG=2∠CHN=64°, ∵AB ∥CD ,∴∠AGH+∠CHG=180°, ∴∠AGH=116°, ∵MG ⊥GH ,∴∠MGH=90°, ∴∠AGM=116°-90°=26°, 故答案为26°.利用平行线的性质,角平分线的定义求出∠AGH 即可解决问题.本题考查平行线的性质,角平分线的定义,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 15.【答案】①②③【解析】解:在“(a 4•a 5)2=(a 4)2•(a 5)2=a 8•a 10=a 18”的运算过程中,运用了上述幂的运算中的①②③(按运算顺序填序号). 故答案为:①②③.在(a 4•a 5)2=(a 4)2•(a 5)2=a 8•a 10=a 18的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,第三步用到了同底数幂的乘法,据此判断即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数). 16.【答案】65或32【解析】解:第1次操作,剪下的正方形边长为a ,剩下的长方形的长宽分别为a 、2-a ,由1<a <2,得a >2-a第2次操作,剪下的正方形边长为2-a ,所以剩下的长方形的两边分别为2-a 、a-(2-a )=2a-2, ①当2a-2<2-a ,即a <时,则第3次操作时,剪下的正方形边长为2a-2,剩下的长方形的两边分别为2a-2、(2-a )-(2a-2)=4-3a ,则2a-2=4-3a ,解得a=; ②2a-2>2-a ,即a >时则第3次操作时,剪下的正方形边长为2-a ,剩下的长方形的两边分别为2-a 、(2a-2)-(2-a )=3a-4, 则2-a=3a-4,解得a=; 故答案为或.(1)经过第一次操作可知剩下的长方形一边长为a ,另一边长为2-a ;(2)若第二次操作后,剩下的长方形恰好是正方形,则所以剩下的长方形的两边分别为2-a 、a-(2-a )=2a-2,(3)根据第2次剩下的长方形分两种情况讨论,若第三次操作后,剩下的长方形恰好是正方形,由此可得出关于a 的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,解题的关键是根据剪纸的操作找出.17.【答案】解:(x +3)(x -3)-2x (x +3)+(x -1)2=x 2-9-2x 2-6x +x 2-2x +1=-8x -8,当x =-12时,原式=-8×(-12)-8=4-8=-4. 【解析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.18.【答案】① ② ② ③ ⑤ ④ -2【解析】解:(1)方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组解得:把代入①得:2+1+z=2,解得:z=-1,∴原方程组的解是故答案为:①,②,②,③,⑤,④.(2)②-①×2得:p-3q=8④,③-①×3得:-5p-2q=-6⑤,由④与⑤组成方程组解得:,代入①得:m+n=4∴m+n-2p+q=-2故答案为:-2.(1)根据每一步得到的方程反推其计算的由来,得到二元一次方程组后用代入消元或加减消元法解出x和y,再代回原方程组求z.(2)把(m+n)看作整体,解关于(m+n)、p、q的三元一次方程组.本题考查了解三元一次方程组,利用整体思想解多元方程组.解题关键是理解并正确运用消元法逐步减少未知数并解方程.19.【答案】解:(1)原式=3a3+a3=4a3;(2)原式=2x2+6xy-xy-3y2=2x2+5xy-3y2;(3)原式=(a-b)2-1=a2-2ab+b2-1.【解析】(1)先计算乘除,再合并即可得;(2)根据多项式乘多项式的运算法则计算可得;(3)先利用平方差公式计算,再利用完全平方公式计算可得.本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序和运算法则计算.20.【答案】解:(1)2a(m+n)-b(m+n)=(m+n)(2a-b);(2)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2.【解析】(1)利用提公因式法因式分解;(2)先提公因式,再利用完全平方公式进行因式分解.本题考查的是因式分解,掌握提公因式法、完全平方公式是解题的关键.21.【答案】1或3【解析】解:(1)①+②,得4x=4,解得,x=1,把x=1代入①,得,y=2,所以原方程组的解为;(2)由题意得,a+2b=5,则,,∴a b=1或3,故答案为:1或3.(1)利用加减消元法解出方程组;(2)根据把x、y的值代入二元一次方程,得到a、b的关系,根据题意求出a、b,计算即可.本题考查的是二元一次方程组的解法、二元一次方程组的解,掌握解二元一次方程组的一般步骤是解题的关键.22.【答案】BB′∥CC′BB′=CC′ C【解析】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'PA-∠PAB=180°故答案为:C(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.【答案】解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.【解析】结论:AB∥CD,只要证明∠BAF=∠ACG即可.本题考查平行线的判定,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】BD∥EF两直线平行,同位角相等等量代换GF∥BC内错角相等,两直线平行平行于同一直线的两直线平行【解析】证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)故答案为:BD∥EF;两直线平行,同位角相等;等量代换;GF∥BC;内错角相等,两直线平行;平行于同一直线的两直线平行.根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.25.【答案】(a+b)(2a+b)【解析】解:(1)∵半径O1A=acm,半径O2C比半径O1A大bcm,∴O2C=(a+b)cm,∴OA==(2a+b)cm,故答案为:(a+b),(2a+b);(2)π•(2a+b)2-π•a2-π•(a+b)2=π•(2a2+2ab)=3×(2a2+2ab)=(6a2+6ab)cm2,即阴影部分的面积是(6a2+6ab)cm2.(1)根据题意可以用代数式表示出O2C和OA,本题得以解决;(2)根据(1)中的结果和图形,可以用代数式表示出阴影部分的面积.本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.26.【答案】(a+b)(c+d)=ac+ad+bc+bd(a+b)2=a2+2ab+b215【解析】解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为:①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(2)已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为:15;②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2-2n,∵xz+xy+yz=2m2-n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2-n)2,∴x2y2+y2z2+x2z2=4m4-4m2n+n2-2xyz(x+y+z)=4m4-4m2n+n2-2p•2m=4m4-4m2n+n2-4pm.(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2-n,继续平方后化简可得结论.此题考查了完全平方公式的几何背景,弄清题意画出相应的图形,利用数形结合的思想是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题
一、选择题(本大题共6小题,每小题2分,共12分) 1、下列四个数中,负数是 A. -2
B. ()2
-2
C. (
D.
2、PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为
A. -5
0.2510⨯
B. -6
0.2510⨯
C. -5
2.510⨯
D. -6
2.510⨯
3、计算()()
32
22a a ÷的结果是
A. a
B. 2
a C. 3
a D. 4
a
4、12的负的平方根介于 A. -5和-4之间 B. -4与-3之间
C. -3与-2之间
D. -2与-1之间
5、若反比例函数k
y x
=与一次函数2y x =+的图像没有..交点,则k 的值可以是 A. -2
B. -1
C. 1
D. 2
6、如图,菱形纸片ABCD 中,60A ︒
∠=,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D’F ⊥CD 时,CF
FD
的值为 A.
1
2
B.
6
C.
1
6
D.
1
8
二、填空题(本大题共10小题,每小题2分,共20分)
7x 的取值范围是
8
的结果是 9、方程
3202
x x -=-的解是 10、如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=
11、已知一次函数3y kx k =+-的图像经过点(2,3),则k 的值

12、已知下列函数 ①2
y x = ②2
y x =- ③()2
12y x =-+,其中,图象通过平移可以得到
函数2
23y x x =+-的图像的有 (填写所有正确选项的序号) 13、某公司全体员工年薪的具体情况如下表:
F
E
D'
A'D
C
B A
4
1
2
3
E
D
C
B
A
年薪/万元 30 14 9 6 4 3.5 3 员工数/人
1
1
1
2
7
6
2
则所有员工的年薪的平均数比中位数多 万元。

14、如图,将45︒的AOB ∠按图摆放在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37︒的AOC ∠放置在该尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm
(结果精确到0.1 cm ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)
15、如图,在平行四边形ABCD 中,AD=10cm ,CD=6cm ,E 为AD 上一点,且BE=BC ,CE=CD ,则DE= cm 16、(6分)在平面直角坐标系中,规定把一个三角形先沿x 轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是,(-1,-1),(-3,-1),把三角形ABC 经过连续9次这样的变换得到三角形A’B’C’,则点A 的对应点A’的坐标是
三、解答题(本大题共11题,共88分) 17、(6分)解方程组31
328
x y x y +=-⎧⎨-=⎩
18、(9分)化简代数式22112x x x x x --÷+,并判断当x 满足不等式组()21
216
x x +<⎧⎪⎨->-⎪⎩时该代数
式的符号。

C
B 43210A
O -3-2-1-1-2-3A
C B
19、(8分)如图,在直角三角形ABC 中,90ABC ∠=︒,点D 在BC 的延长线上,且BD=AB ,过B 作BE ⊥AC ,与BD 的垂线DE 交于点E , (1)求证:ABC BDE ∆≅∆
(2)三角形BDE 可由三角形ABC 旋转得到,利用尺规作出旋转中心O (保留作图痕迹,不写作法)
20、(8分)某中学七年级学生共450人,其中男生250人,女生200人。

该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分
(1)请解释“随即抽取了50名男生和40名女生”的合理性;
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示; (3)估计该校七年级学生体育测试成绩不合格的人数。

21、(7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。

(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学; (2)随机选取2名同学,其中有乙同学.
C E
D
B A
22、(8分)如图,梯形ABCD 中,AD//BC ,AB=CD ,对角线AC 、BD 交于点O ,AC ⊥BD ,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点
(1)求证:四边形EFGH 为正方形; (2)若AD=2,BC=4,求四边形EFGH 的面积。

23、(7分)看图说故事。

请你编一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系式,要求:①指出x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量
24、(8分)某玩具由一个圆形区域和一个扇形区域组成,如图,在
1O 和扇形2O CD 中,1
O 与2O C 、2O D 分别相切于A 、B ,260CO D ∠=︒,E 、F 事直线12O O 与1O 、扇形2O CD 的
两个交点,EF=24cm ,设
1O 的半径为x cm ,
E B
F O G
C
D
H A
y
x
15115
① 用含x 的代数式表示扇形2O CD 的半径; ② 若
1O 和扇形2O CD 两个区域的制作成本分别为0.45元2/cm 和0.06元2/cm ,当1O 的
半径为多少时,该玩具成本最小?
25、(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部。

月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元。

① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利) 26、(9分)“?”的思考
下框中是小明对一道题目的解答以及老师的批阅。

O 1O 2
A B F
D
E C
我的结果也正确
小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?”
结果为何正确呢?
(1)请指出小明解答中存在的问题,并补充缺少的过程:
变化一下会怎样……
(2)如图,矩形''''A B C D 在矩形ABCD 的内部,''//AB A B ,''//AD A D ,且:2:1AD AB =,设AB 与''A B 、BC 与''B C 、CD 与''C D 、DA 与''D A 之间的距离分别为,,,a b c d ,要使矩形''''A B C D ∽矩形ABCD ,,,,a b c d 应满足什么条件?请说明理由。

27、(10分)如图,A 、B 为O 上的两个定点,P 是O 上的动点(P 不与A 、B 重合),我们称APB ∠为O 上关于A 、B 的滑动角。

(1)已知APB ∠是O 上关于点A 、B 的滑动角。

① 若AB 为O 的直径,则APB ∠= ② 若O 半径为1,
APB ∠的度数
C
D
D'
C'
B'
B
A'
A
c b d
a
(2)已知2O 为
1O 外一点,以2O 为圆心作一个圆与1O 相交于A 、B 两点,APB ∠为1
O 上关于点A 、B 的滑动角,直线PA 、PB 分别交
2O 于点M 、N (点M 与点A 、点N 与点B
均不重合),连接AN ,试探索APB ∠与MAN ∠、ANB ∠之间的数量关系。

P。

相关文档
最新文档