数学分析试卷及答案6套精品

合集下载

数学分析试卷及答案6套

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+收敛.四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. x e dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4. 1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数 n u x =的最大值.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22Cxdy ydxx y-+⎰,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。

2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。

3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。

4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。

5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。

( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。

( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)xy yx f x y f x y =。

( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。

( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。

( ) 三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AOI e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

、计算三重积分22()Vx y dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。

、计算第一型曲面积分 SI dS =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。

答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。

答案:13. 设函数f(x)=ln(x),则f'(x)=_________。

答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11。

令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。

因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求极限lim(x→0)(x^2sinx/x^3)。

答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。

3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。

数学分析有答案的套题

数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。

数学分析试卷及答案6套

数学分析试卷及答案6套

f ( x1 ) f ( x2 ) .
g ( x) ,x 0 九. (12 分)设 f ( x) x 且 g (0) g (0) 0 , g (0) 3 , 求 f (0) . 0, x 0
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
lim
h 0
1 h

x
a
[ f (t h) f (t )] dt f ( x) f (a).
六 (10 分 ) 求椭圆区域 R : (a1 x b1 y c1 ) 2 (a2 x b2 y c2 ) 2 1 (a1b2 a2b1 0) 的 面积 A . 七 (10 分) 设 F (t ) f ( x 2 y 2 z 2 ) dx dy dz ,其中 V : x 2 y 2 z 2 t 2 (t 0) ,
四. (12 分)证明函数 f ( x)
五. (12 分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10 分)证明任一齐次多项式至少存在一个实数零点. 七. (12 分)确定 a, b 使 lim ( x 2 x 1 ax b) 0 .
x
1 5 八. (14 分)求函数 f ( x) 2 x 3 9 x 2 12 x 在 [ , ] 的最大值与最小值. 4 2
x x0
x x0
1 1 . f ( x) b
三. (10 分)设 an 0 ,且 lim
an l 1 , 证明 lim an 0 . n n a n 1
四. (10 分 ) 证 明 函 数 f ( x) 在 开 区 间 ( a, b) 一 致 连 续 f ( x) 在 ( a, b) 连 续 , 且

微积分(数学分析)证明题及参考答案.doc

微积分(数学分析)证明题及参考答案.doc

统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。

2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。

10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。

数学分析试卷及答案6套

数学分析试卷及答案6套

数学分析试卷及答案6套第一套试卷一、选择题(共20题,每题4分,共80分)1. 若函数f(x) = 3x^2 + 2x - 1,求f(-1)的值是多少?A. -4B. 4C. 0D. 12. 函数f(x) = ln(x^2 + 1)在区间(-∞, 0)上的最小值是多少?A. ln(1)B. ln(0)C. ln(-1)D. 不存在最小值3. 已知函数f(x)在区间[0, 5]上连续,且f(0) = 2, f(5) = 1,证明在该区间上存在一个点c,使得f(c) = 3.(请写出证明过程)4. 求不等式2x - 5 < 3x + 2的解集。

A. x < -7B. x > -7C. x > -3D. x < -35. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b),证明在该区间上至少存在两个不同的点c和d,使得f(c) = f(d).(请写出证明过程)..................第一套答案一、选择题1. B2. A3. (证明过程略)4. A5. (证明过程略)二、填空题(共5题,每题4分,共20分)1. 若e^x = 2,则x = ln(2);2. 设a, b为实数,若a^2 + 2ab + b^2 = 0,则a = -b;3. lim(x→∞) (x^2 - 2x - 3)/(3x + 1) = 1;4. 若函数f(x) = x^2 + 3x - 2,则f(-1) = -6;5. 若f(x) = √(2x + 1),则f'(x) = 1/√(2x + 1)。

三、解答题(共3题,每题20分,共60分)1. 设函数f(x) = x^3 - 2x + 1在区间[-2, 2]上的一个驻点为c,请求该驻点c的值以及f(c)的极值。

(请写出解题过程)2. 求函数f(x) = x^3 - 3x + 1的所有零点。

(请写出解题过程)3. 若函数f(x) = 3x^4 + 4x^3 - 12x^2 + 4在区间[0, 3]上的导函数f'(x)恰有一个零点c,并且f(c) = 2,求函数f(x)在该区间上的最大值。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

数学分析试题及答案

数学分析试题及答案

(二十一)数学分析期终考试题一 叙述题:(每小题5分,共15分) 1 开集和闭集2 函数项级数的逐项求导定理3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分)1、⎰-9131dx x x2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积3、求幂级数n n n x n ∑∞=+12)11(的收敛半径和收敛域4、11lim 22220-+++→→y x y x y x5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分)1、已知⎪⎩⎪⎨⎧==≠+++=0,0001sin )(),(222222y x y x y x y x y x f ,验证函数的偏导数在原点不连续,但它在该点可微2、讨论级数∑∞=-+12211ln n n n 的敛散性。

3、讨论函数项级数]1,1[)1(11-∈+-∑∞=+x n x n x n n n 的一致收敛性。

四 证明题:(每小题10分,共20分)1 若⎰+∞adx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞→x f x2 设二元函数),(y x f 在开集2R D ⊂内对于变量x 是连续的,对于变量y 满足Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。

参考答案一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

2 设函数项级数∑∞=1)(n n x u 满足(1)),2,1)(( =n x u n 在[a ,b]连续可导a)∑∞=1)(n nx u在[a ,b]点态收敛于)(x Sb)∑∞=1')(n x un在[a ,b]一致收敛于)(x σ则)(x S =∑∞=1)(n n x u 在[a ,b] 可导,且∑∑∞=∞==11)()(n n n n x u dxdx u dx d3、有界函数)(x f 在[a ,b]上可积的充分必要条件是,对于任意分法,当0)(max 1→∆=≤≤i ni x λ时Darboux 大和与Darboux 小和的极限相等二、1、令31x t -=(2分)7468)1(31233913-=--=-⎰⎰-dt t t dx x x (5分) 2、222221,x a b y x a b y --=-+=,(2分)所求的体积为:b a dx y y aa 2222212)(ππ=-⎰-(5分) 3、解:由于e n n n n n n nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e 1(4分),当e x 1=时,)(01)1()1()11(2∞→≠→±+n e n n n n ,所以收敛域为)1,1(ee - (3分)4、2)11(lim )11)(11()11)((lim11lim2200222222220222200=+++=+++-++++++=-+++→→→→→→y x y x y x y x y x y x y x y x y x y x (7分)5、解: 设极坐标方程为4)2,1,2(.0)2,1,2(,2)2,1,2(-=-=-=-z y x f f f (4分)136)2,1,2(=-l f (3分)三、1、解、⎪⎩⎪⎨⎧=+≠+++-+=000)1c o s 11(s i n 22222222222y x y x yx y x y x x f x (4分)由于22221c o s 1yx y x ++当趋于(0,0)无极限。

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案一、填空题(每小题2分,共10分).________dx x)lnx (f ,)(.12=+=⎰⎰则若c x dx x f .________)x (F ,)(.21cos 2='=⎰-则若dt ex F x t=+-⎰-dx x x x )cos 21(.3112 . .______.41013时收敛满足条件当广义积分p xdxp ⎰-._______u lim )u 12u 1.51nn=+-∞→∞=∑n n n 收敛,则(若 二、单选题(每小题2分,共10分)的一个原函数是则的导函数是若)(,cos )(.1x f x x f ( )(A )x sin 1+; (B )x sin 1-; (C )x cos 1+; (D )x cos 1-. 2.函数)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上( ) (A )连续 ; (B )有界; (C ) 无间断点; (D)有原函数.3.下列反常积分收敛的是( ) (A)⎰∞+321dx x ; (B) ⎰∞+3ln dx x x ; (C) ⎰∞+3sin dx xx ; (D) ⎰∞+3ln 1dx x . 4.下列级数收敛的是( )(A)∑∞=11n ne ; (B))11ln(1∑∞=+n n ; (C) ∑∞=2ln 1n n ; (D) )1)1((21n n n n --∑∞=.5.)1ln()(x x f +=的幂级数展开式为( )(A )]1,1(3232-∈•••+++x x x x ; (B )]1,1(3232-∈•••-+-x x x x ; (C ))1,1[3232-∈•••----x x x x ; (D ))1,1[3232-∈•••+-+-x x x x . 三、计算题(每小题8分,共48分);cos 1sin .1dx xx x ⎰++N);n (xdx tan I .2n n ∈=⎰的递推表达式求不定积分0);(,31x .3a >=-⎰∞+a x x d 求设π4.求函数项级数∑∞=1n xnx 的收敛域;5.求幂级数∑∞=+0)12(n n x n 的和函数;.x 9)(.62的幂级数展开成将函数x xx f +=四、讨论与应用题(每小题8分,共16分)1.求由轴y x y ,12-=与23x y =所围成的平面图形的面积,并求此图形绕x 轴旋转一周所成旋转体的体积..)1cos1()1(.211的敛散性讨论级数pn n n ∑∞=--- 五、证明题(每小题8分,共16分)(从以下三题可任选两道题做)1.设)(x f 在[0,1] 连续,试证⎰⎰=πππ00)(sin )2/()(sin dx x f dx x xf .2.设函数序列)}({x f n 在区间],[b a 上一致收敛于)(x f ,且)(x g 在区间],[b a 上有界,证明: 函数序列)}()({x g x f n 在区间],[b a 上一致收敛于)()(x g x f .3.证明若∑∞=12n nx收敛,则∑∞=-11n n nx 发散. 答案一.1.c x +2ln ; 2. x e x sin cos 2-; 3. 1sin 4; 4.32<p ; 5. 1.二.1.D 2.B 3.A 4.D 5.B. 三.1.解:原式dx xdx x x⎰⎰+=2tan 2cos 22 (2分)dx xdx x xd ⎰⎰+=2tan )2(tan (5分)Cx x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . (8分)2.解:dx x x I n n )1(sec tan 22-=⎰- (2分)⎰---=21)(tan tan n n I x xd (4分)),4,3,2(tan 1121 =--=--n I x n n n . (6分)其中.cos ln ,10C x I C x I+-=+= (8分)3.解:令t x =-1,则tdt dx t x 2,12=+=,当+∞→a x :时,+∞→-1:a t (2分)故原式⎰∞+-+=1212a dt t (4分)31arctan 2arctan 21ππ=--==∞+-a t a . (6分)从而,4=a (8分) 4.解:由∑∑∞=∞==111n x n x n x n x. (2分)知,当1>x时, ∑∞=11n x n收敛,因此∑∞=1n xnx 也收敛; (4分)当1≤x时,∑∞=11n x n 发散,因此∑∞=1n xnx 也发散(0≠x ); (6分) 当0=x 时,原级数收敛;故原幂级数的收敛域为0=x 及),1(+∞. (8分)5.解:.)12(lim x x n n n n =+∞→;,1x 级数收敛时当<;)12n (,1x 0n 发散原级数化为时当∑∞=+=;)12n ()1(,1x 0n n 发散原级数化为时当∑∞=+--=故原幂级数的收敛域为)1,1(+-. (4分))1x 1()x 1(x 1x 11)x 1(2x x 11)x 1x (2x x 11)x 2x(x 11)dx nx (2x x 2nx x )12n ()x (s 221n n 1n x 01-n 0n nn n 0n n <<--+=-+-=-+'-=-+'=-+'=+=+=∑∑⎰∑∑∑∞=∞=∞=∞=∞=令 . (8分)6.解:nn n x x x x x f 202)3()1(91)3(191)(∑∞=-=+= (4分))1(21203)1(++∞=∑-=n n n nx (6分)).3,3(,9)1(121--=-∞=∑nn n nx (8分)五.1.解:1>联立可解得与由223x y x 1y =-= 1/2x =故所求图形的面积为31)34(]3)1[(2/1032/1022=-=--=⎰x x dx x x S (4分)2>所求旋转体的体积为dx x dx x V 222/102/1022)3()1(⎰⎰--=ππ (5分)ππ12031)5832(2/1053=--=x x x . (8分) 2.解.2pp n n 121~n 1cos1u -=由于.,n 121,21p 2p1n 故原级数绝对收敛收敛时当∑∞=> (4分) .,n 121)1(,n 121,21p 2p1n 1n 2p 1n 故条件收敛莱布尼茨交错级数条件满足而级数发散时当∑∑∞=-∞=-≤ 故原级数在21p ≤时条件收敛. (8分) 六.1.证明:则令,x t -=π (2分)⎰⎰-=πππ00)sin ()t ()sin (x dt t f dx x f (4分)⎰⎰-=πππ00xf(sinx)dx )sin (dx x f (6分) ⎰⎰=πππ00)sin ()2/()sin (x dx x f dx x f 故. (8分)2.证明:因为)(x g 在闭区间],[b a 上有界.不放设],[,)(b a x M x g ∈∀≤ (2分)又函数序列)}({x f n 在闭区间],[b a 上一致收敛,故对0)(,0>∃>∀εεN 当N n >时,对],[b a x ∈∀,都有Mx f x f n ε<-)()( (6分)于是当N n >时,对],[b a x ∈∀,都有ε<-)()()()(x g x f x g x f n 函数序列)}()({x g x f n 在闭区间],[b a 上一致收敛)()(x g x f . (8分)3.证明:由于)1(2122n x n x n n +≤ (4分),又因为∑∑∑∞=∞=∞=+=+12122121)1(n n n n n nx n x 收敛,故∑∞=12n nn x 收敛,从而,∑∞=1n n n x 绝对收敛. (6分).,11故原级数发散发散而∑∞=n n(8分)一、填空题(每小题3分,共15分)1.已知)(x f 为x 2sin 的原函数,且21)0(=f ,则⎰=dx x f )( 。

数学分析试题及答案

数学分析试题及答案

数学分析试题及答案4(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除(十四) 《数学分析Ⅱ》考试题一 填空(共15分,每题5分):1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ;2 设=--='→5)5()(lim,2)5(5x f x f f x 则54;3 设⎩⎨⎧>++≤=0,)1ln(,0,sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。

二 计算下列极限:(共20分,每题5分)1 n n n1)131211(lim ++++∞→ ; 解: 由于,n n n n 11)131211(1≤++++≤ 又,1lim =∞→nn n故 。

1)131211(lim 1=++++∞→nn n2 3)(21limn nn ++∞→;解: 由stolz 定理,3)(21limn n n ++∞→33)1()(lim --=∞→n n nn )1)1()(1(lim-+-+--=∞→n n n n n n nn)1)1(2))(1(()1(lim--+---+=∞→n n n n n n n n n.32)1)11(2111lim2=--+-+=∞→nn nn 3 ax a x a x --→sin sin lim;解: ax ax a x --→sin sin lim ax ax a x ax --+=→2sin 2cos2lim.cos 22sin2coslim a a x a x a x ax =--+=→ 4 xx x 1)21(lim +→。

解: xx x 10)21(lim +→.)21(lim 22210e x xx =⎥⎦⎤⎢⎣⎡+=→ 三 计算导数(共15分,每题5分):1 );(),1ln(1)(22x f x x x x f '++-+=求解: 。

数学分析试题库--计算题、解答题--答案

数学分析试题库--计算题、解答题--答案

数学分析题库(1-22章)四.计算题、解答题求下列极限解:1.∞=+=--+=--∞→∞→∞→)2(lim 2)2)(2(lim 24lim2n n n n n n n n n 2. 111lim(1)1223(1)n n n →∞++++⋅⋅+111111lim(1)122311lim(1)11n n n n n →∞→∞=+-+-++-+=-=+3.111cos lim cos 1lim00===-→→x e x e x x x x 4.这是型,而 )1()1ln()1()1(]111)1ln(1[)1(][])1[(2121)1ln(11x x x x x x x x x x x ex xxx x x+++-+=+⋅++-+='='++故 原极限=12(1)ln(1)lim(1)(1)xx x x x x x x →-++++ 2001ln(1)1lim2311lim 261x x x e x x e x x →→-+-=⋅+-=⋅⋅=∞++53)1(lim )1()1)(1(lim 11lim 212131=++=-++-=--→→→n n n n n n n n n n n 6 211lim(1)nn n n →∞++22(1)121lim(1)1n n n n n n n n +⋅+→∞=++因1)1(lim 2=+∞→nn n n , ∞=+∞→1lim 2n n n 故原极限=e e =1. 7. 用洛必达法则333sin 3cos 2lim 3cos sin 21lim66=--=-→→xx x x x x ππ8. 00111lim()lim 1(1)x x x x x e xx e x e →→---=--0011lim lim 122x x x x x x x x e e xe e xe e →→-===+-+ 9. xx xx x sin tan lim--→;解法1:200tan sec 1lim lim sin 1cos x x x x x x x x →→--=--2201cos lim cos 1cos x x x x →-=-()201cos limcos 2 x x x →+==解法2:2002030tan sec 1lim lim sin 1cos 2sec tan lim sin 2limcos 2x x x x x x x x x xx xxx→→→→--=--===10. 10lim(sin 2cos )xx x x →+解 因00sin 2cos 12cos 2sin limlim 21x x x x x xx →→+--==, (3分)故原式1sin 2cos 1sin 2cos 10lim(1sin 2cos 1)x x x x xx x x +-+-→=++-=2e求下列函数的导数sin 11.cos 12.ln(ln )13.14.sin .x xy e x y x y xy x ====求的各阶导数解 11x e x e y xxsin cos -=' 12 xx x x y ln 11ln 1=⋅=' 13)sin ln (cos )(sin ln sin xxx x x ey x xx +='=' 14 . cos sin()2y x x π'==+()sin sin(2)2cos sin(3)2sin()2n y x x y x x y x n πππ''=-=+⋅''=-=+⋅=+ 15 x e x e y xx2cos 22sin +=' 16 )1sin (ln cos 1xx x x y +-⋅+='17 )tan )ln(cos (cos )(cos ][sin )ln(cos sin x x x x e y x x x +='='18 ),2,1(),2)1(sin()( =⋅++=n n x yn π.19.1tan 22113sec ln 3x x x x x++-; 20.求下列函数的高阶微分:设x e x v x x u ==)(,ln )(,求)(),(33vud uv d解 因为xx x x x e x x xx e x e x e x e x v u v u C v u C v u dx uv d )ln 332(ln 13132)(2323231333++-=⋅+⋅+-⋅+='''+'''+'''+'''=所以 3233333)ln 332()()(dx x xx x e dx dx uv d uv d x ++-== )ln 332()(ln 13)(132)(ln )(23233333x x xx e e x e x e x e x e x dx d v u dx d x xx x x x -++=-⋅+⋅⋅+--⋅+=⋅=------所以 3233)ln 332()(dx x x xx e vud x-++=- 21. ;)(arctan 23x y = 解:332362arctan (arctan )6 arctan 1y x x x x x''==+22. ;xx y x =解: 令1xy x =,1ln ln y x x =两边对两边对x 求导有11ln 1y x y '=+,()ln x x x x x x x '=+ ln ln x y x x =两边对x 求导有(ln )x y x x y''= 1121 ()ln (ln ) (ln )ln ((ln )ln ) (ln ln )xxx x x x x x x x x x x x x x x x x x x x y x x x x x x x x x x x ---''=+=++'=++=++23. 求由参量方程⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt所确定的函数的二阶导数:22dx y d 解法1:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin cos sin cos sin t t t t dy e t e t t t dx e t e t t t++==-- 求22d y dx 即求参量方程cos sin ,cos sin cos ;t dy t tdx t t x e t +⎧=⎪-⎨⎪=⎩的导数 222223(cos sin )(cos sin )()2(cos sin )(cos sin )(cos sin )t t t t t t dyd d y t t dx dx dxe t t e t t -++-===-- 解法2:⎪⎩⎪⎨⎧==;sin ,cos t e y t e x tt由含参量方程的求导法则有cos sin cos sin tan()cos sin cos sin 4t t t t dy e t e t t t t dx e t e t t t π++===+-- 求22d y dx 即求参量方程tan(),4cos ;t dyt dx x e t π⎧=+⎪⎨⎪=⎩的导数2232()sec ()4sec ()4cos()4t t dy d t d ydx t dxdx t πππ-+===++24.设3xy x e =, 试求(6)y.解 基本初等函数导数公式,有32333()()3,()6,()6,()=0, 4,5,6,k x x x x x x k ''''''==== ()(e )e ,1,2,,6x k x k ==,应用莱布尼兹公式(6n =)得(6)32e 63e 156e 206e x x x x y x x x =+⋅+⋅+⋅32(1890120)e x x x x =+++.25.试求由摆线方程(sin ),(1cos )x a t t y a t =-⎧⎨=-⎩所确定的函数()y f x =的二阶导数.解d ((1cos ))sin cot ,d ((sin ))1cos 2y a t t t x a t t t '-==='--22421cot csc d 1222csc .d ((sin ))(1cos )42t t y t x a t t a t a '⎛⎫- ⎪⎝⎭===-'-- 26 .求2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式.解 因为233ln(1)()23x x x x o x +=-++,所以2()ln(1)f x x =+到6x 项的带佩亚诺型余项的麦克劳林公式为46226ln(1)()23x x x x o x +=-++.28.解 (1))0(0sinlim )(lim 0f x x x f mx x ===→→,故对任意正整数m ,f 在0=x 连续. (2)⎩⎨⎧≤>==-=--='-→→→1101sin lim 01sinlim 0)0()(lim)0(1000m m x x x x x x f x f f m x m x x 不存在,故当1>m 时,f 在0=x 可导. (3)先计算f 的导函数.00≠∀x ,000000000000)1sin 1(sin 1sin)(lim1sin 1sin 1sin 1sin lim 1sin 1sinlim)(000x x x x x x x x x x x x x x x x x x x x x x x x x f mmm x x mm m m x x m m x x --+-=--+-=--='→→→200102000010000000100211cos1sin 11cos 1sin 2sin 2cos2lim 1sin )(lim 00x x x mx x x x x mx x x xx xx xx x x x x x x x x m m m m mx x m m m x x ---→---→-=⋅-=--+++++=⎩⎨⎧≤>=-=-='-→--→→220)1cos 1sin (lim )1cos 1sin(lim )(lim 20210m m x x mx x x x x mx x f m x m m x x 不存在由(2)知,0)0(='f ,于是当2>m 时,有)0(0)(lim 0f x f x '=='→,所以当2>m 时,f '在0=x 连续.29.解 因为23)(,2)(x x g x x f ='=',故当0=x 时,0)0(,0)0(='='g f ,不满足柯西中值定理的条件,所以在区间[-1, 1]上不能用柯西中值定理. 30.证明 (1)对任何0≠x ,有)0(01sin)(24f xx x f =≥=,故0=x 是极小值点. (2)当0≠x 时,有)1cos 1sin 2(1sin 21cos 1sin 21sin 4)(2223xx x x x x x x x x x f -=-=',作数列 221ππ+=n x n ,421ππ+=n y n ,则0→n x ,0→n y .即在0=x 的任何右邻域)0(0+U 内,既有数列}{n x 中的点,也有数列}{n y 中的点.并且0)(>'n x f ,0)(<'n y f ,所以在)0(0+U 内f '的符号是变化的,从而f 不满足极值的第一充分条件.又因为001sin lim)0(240=-='→x x x f x ,00)1cos 1sin 2(1sin 2lim )0(20=--=''→xx x x x x f x ,所以用极值的第二充分条件也不能确定f 的极值.31.答:能推出f 在),(b a 内连续.证明如下:),(0b a x ∈∀,取},m i n {2100x b a x --=ε,于是],[0εε-+∈b a x ,由题设,f 在],[εε-+b a 上连续,从而在0x 连续.由0x 的任意性知,f 在),(b a 内连续.32.试求函数32|2912|y x x x =-+在[1,3]-上的最值和极值. 解32222|2912||(2912)|(2912),10,(2912),03,y x x x x x x x x x x x x x x =-+=-+⎧--+-≤≤⎪=⎨-+<≤⎪⎩在闭区间[1,3]-上连续, 故必存在最大最小值.2261812,618126(1)(2),10,6(1)(2),03,x x y x x x x x x x x ⎧-+-⎪'=⎨-+⎪⎩----≤<⎧=⎨--<≤⎩ 令0y '=,得稳定点为1,2x =. 又因(0)12,f -'=-(0)12,f +'= 故y 在0x =处不可导. 列所以0x =和2x =为极小值点, 极小值分别为(0)0f =和(2)4f =,1x =为极大值点, 极大值为(1)5f =.又在端点处有(1)23f -=,(3)9f =, 所以函数在0x =处取最小值0,在1x =-处取最大值23.33.求函数155345++-=x x x y 在[1,2]-上的最大最小值: 解:令()y f x =43222252015 5(43) 5(1)(3)y x x x x x x x x x '=-+=-+=-- 令0y '=解得函数在[1,2]-的稳定点为120,1x x ==, 而(1)10,(0)1,(1)2,(2)7f f f f -=-===-,所以函数在[1,2]-的最大值和最小值分别为 max min (1)2,(1)10f f =-=-. 34. 确定函数25363223+--=x x x y 的凸性区间与拐点: 解:令()y f x =26636,y x x '=--126,y x ''=-1260,y x ''=-=解得12x =, 当1(,)2x ∈-∞时,0y ''<,从而区间1(,)2-∞为函数的凹区间,当1(,)2x ∈+∞时,0y ''>,从而区间1(,)2+∞为函数的凸区间.并且1113()0,()222f f ''==,所以113(,)22为曲线的拐点.35.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =非空有界,但在有理数集内无上确界.数列{}n a 递增有上界,但在有理数集内无极限.36.设11(1,2,)nn a n n ⎛⎫=+= ⎪⎝⎭,则{}n a 是有理数列. 点集{}1,2,n a n =有界无限,但在有理数集内无不存在聚点.数列{}n a 满足柯西准则,但在有理数集内不存在极限.37.不能从H 中选出有限个开区间覆盖10,2⎛⎫ ⎪⎝⎭.因为H 中任意有限个开区间,设其中左端点最小的为12N +,则当103x N <<+时,这有限个开区间不能覆盖x .38.5232326129.6116ln 1326ln 1.x dx x x dx x x x x x x x C C ⎛⎫=-+-⎪++⎝⎭⎛⎫=-+-++ ⎪⎝⎭=+⎛⎛⎜⎜⎠⎠39.令sin ,2x a t t π=<,则()()22222cos sin cos 1cos 2211sin 2arcsin .222a a td a t a tdt t dta x t t C a C a ===+⎛⎫⎛=++=++ ⎪ ⎝⎭⎝⎰⎰⎰⎰40.()222222211131.arctan arctan arctan 1arctan 22211111arctan arctan .22221x x x xdx xd x x d x x x x x dx x x C x ⎛⎫++==-+ ⎪⎝⎭+++=-=-++⎛⎜⎠⎛⎜⎠⎰⎰41.()()23222211432.ln 111121ln 1.x dx dx x dxx x x x x x C +⎛⎫=+=++ ⎪++-+⎝⎭-+=+++⎛⎛⎛⎜⎜⎜⎜⎠⎠⎠42.令t =则有()()2222218,11t t x dx dt t t +-==--, ()()2222242211111ln2arctan 2arctan.1t dt dt t t t t tt C C t ⎛⎫==- ⎪--⎝⎭-++=-+=-⎛⎛⎜⎜⎠⎠43. 令tan 2xt =,则有22212cos ,11t x dx dt t t-==++, 22(2)111arctan 2arctan 2tan .53cos 2222141(2)d t dx dt x t C C x t t ⎡⎤===+=+⎢⎥-++⎣⎦⎛⎛⎛⎜⎜⎜⎠⎠⎠. 44.()()11111111ln ln ln ln ln 2(1)ee eeeex dx xdx xdx x x x xx x e -=-+=--+-=-⎰⎰⎰.45.()()111111202222t t t t te dt tde tee dt e e ==-=-=⎰⎰⎰.46.12111000011arcsin arcsin 12222d x xdx x x πππ-=-=+=+=-⎛⎛⎜⎜⎠⎠⎰.47.22222111111lim lim 1221nn n i J n n n n n i n →∞→∞=⎛⎫=+++=⋅ ⎪++⎝⎭⎛⎫+ ⎪⎝⎭∑.其中和式是函数21()1f x x=+在[0,1]上的一个积分和,所以11200arctan 41dx J x x π===+⎛⎜⎠. 48.()()()()().xx xaaaF x f t x t dt x f t dt tf t dt =-=-⎰⎰⎰.于是()()()()(),()()x xaaF x f t dt xf x xf x f t dt F x f x '''=+-==⎰⎰.49.以平面00()x x x a =<截椭球面,得一椭圆2222220022111y z x x b c a a +=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.所以截面积函数为221,[,]x bc x a a a π⎛⎫-∈- ⎪⎝⎭.于是椭球面的体积22413aa x V bc dx abc a ππ-⎛⎫=-= ⎪⎝⎭⎛⎜⎠.50.化椭圆为参数方程: cos ,sin ,[0,2]x a t y b t t π==∈.于是椭圆所围的面积为()2220sin cos sin A b ta t dt ab tdt ab πππ'===⎰⎰.51.(1cos ),sin ,02x a t y a t t π''=-=≤≤,于是所求摆线的弧长为22202sin 82t s a dta πππ====⎛⎜⎠⎰⎰.52.根据旋转曲面的侧面积公式2(baS f x π=⎰可得所求旋转曲面的面积为)02sin 2ln1S πππ⎤==⎦⎰.53.因为2222001111limlim lim 2222AAx xx A A A A xe dx xe dx e e +∞----→+∞→+∞→+∞⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭⎰⎰.于是无穷积分2x xedx +∞-⎰收敛,其值为12.54.因为22211111lim lim 1(1)(1)AAA A dx dx x dx x x x x x x +∞→+∞→+∞-⎛⎫==- ⎪+++⎝⎭⎛⎛⎛⎜⎜⎜⎠⎠⎠ ()111lim ln(1)ln lim ln 1ln 2ln 11ln 2.AA A x x A A x A →+∞→+∞⎛⎫⎛⎫=+--=+--+-=- ⎪ ⎪⎝⎭⎝⎭于是无穷积分21(1)dxdx x x +∞+⎰收敛,其值为1ln2-.55.因为1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦,从而级数11(1)(2)n n n n ∞=++∑的部分和为1111111111()(1)(2)2(1)(1)(2)22(1)(2)4nn k k n k k k k k k k n n ==⎡⎤⎡⎤=-=-→→∞⎢⎥⎢⎥+++++++⎣⎦⎣⎦∑∑.于是该级数收敛,其和为14. 56.因为222111cos2sin 12limlim 112n n n n n n→∞→∞-==,且级数211n n ∞=∑收敛,所以级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.57.因为1lim 1212n n n n →∞==<+,由根式判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛.58.因为()21sinlim21nn nn→∞-=,且级数11n n ∞=∑发散,故原级数不绝对收敛.但{}2sin n 单调递减,且2limsin 0n n →∞=,由莱布尼茨判别法知级数()121sin n n n ∞=-∑条件收敛. 59. 因为1111112sin sin cos cos cos cos 22222n nk k x kx k x k x x n x ==⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,当(0,2)x π∈时,sin 02x≠,于是.所以级数1sin n nx ∞=∑的部分和数列111cos cos 221sin 2sin sin 22nn k x n x S kx x x =⎛⎫-+ ⎪⎝⎭==≤∑当(0,2)x π∈时有界,从而由狄利克雷判别法知级数1sin n nxn ∞=∑收敛;同法可证级数1cos 2n nxn ∞=∑在(0,)x π∈上收敛. 又因为2sin sin 11cos 21cos 2222nx nx nx nx n n n n n-≥=⋅=-,级数112n n∞=∑发散,1cos 2n nx n ∞=∑收敛,于是级数11cos 222n nx n n ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知级数1sin n nx n ∞=∑发散.所以级数1sin n nxn ∞=∑在(0,2)x π∈条件收敛. 60. 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性. 解 记nn n n n x x v n x u ⎪⎭⎫⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛;ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ> e n x x v nn ≤⎪⎭⎫⎝⎛+=1|)(| 对 ∀∈x ] 1 , 0 [和n ∀成立. 由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛.61. )(x f n =221xn nx+, ∈x ] 1 , 0 [. 讨论函数列{)(x f n }的一致收敛性. 解 ∞→n lim )(x f n = 0, ∈x ] 1 , 0 [. |)(x f n ― 0|=)(x f n . 可求得10max ≤≤x )(x f n =,0 21) 1 (→/=n f n ) (∞→n . ⇒ 函数列{)(x f n }在区间] 1 , 0 [上非一致收敛.62. 函数列2212,0,211()22,,210, 1.n n x x n f x n n x x n n x n ⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪<≤⎪⎩,2,1=n在]1,0[上是否一致收敛?解:由于(0)0n f =,故0)0(lim )0(==∞→n n f f .当10≤<x 时,只要xn 1>,就有0)(=x f n ,故在]1,0(上有0)(lim )(==∞→x f x f n n .于是函数列(8)在]1,0[上的极限函数0)(=x f ,又由于∞→==-∈n nf x f x f n n x )21()()(sup ]1,0[ )(∞→n , 所以函数列(8)在[0,1]上不一致收敛. 63. )(x f n 2222x n xen -=在R 内是否一致收敛?解 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫⎝⎛-ne n f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛. 64. 函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n在] 1 , 0 [上是否一致收敛?解 10≤<x 时, 只要1->x n , 就有)(x f n =0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎪⎭⎫⎝⎛=-∈n n f x f x f n n x , ) (∞→n ,因此 , 该函数列在] 1 , 0 [上不一致收敛. 65. 求幂级数++++74533234333231x x x x 的收敛域 . 解 ++++74533234333231x x x x ∑∞=++=02131n n n x n x 是缺项幂级数 .∞→n lim, 31||||1⇒=+nn a a 3=R . 收敛区间为) 3 , 3 (-. 3±=x 时, 通项0→/. 因此 , 该幂级数的收敛域为) 3 , 3 (-.66. 计算积分⎰-=12dx e I x , 精确到0001.0.解 =-2x e∑∞=-02,!) 1(n nnn x ) , (∞+∞-∈x . 因此,⎰⎰∑=⎪⎪⎭⎫ ⎝⎛-=∞=-11002!) 1(2dx n x dx en n n x ∑⎰∞==-0102!) 1(n n n dx n x ∑∞=+-0!)12(1) 1(n nn n .上式最后是Leibniz 型级数 , 其余和的绝对值不超过余和首项的绝对值 . 为使10001!)12(1<+n n ,可取7≥n .故从第0项到第6项这前7 项之和达到要求的精度.于是⎰-=12dx e I x 1111111352769241112013720≈-+-+-+⋅⋅⋅⋅⋅ 7468.000011.000076.000463.002381.010000.033333.01=+-+-+-=. 67. 把函数)(x f =)5ln(x +展开成)2(-x 的幂级数.解+-+-+-=+-n x x x x x n n 132) 1 (32)1ln(∑∞=--=11) 1 (n n n n x , ] 1 , 1 (-∈x .而7ln 721ln )27ln()5ln(+⎪⎭⎫⎝⎛-+=-+=+x x x =∑∞=-+--117ln 7)2()1(n n nn nx , ] 9 , 5(-∈x .68. 求幂级数∑∞=+0!1n nx n n 的和函数. 解法一 收敛域为) , (∞+∞-,设和函数为)(x S , 则有⎰⎰∑⎰∑∞=∞==+=⎪⎭⎫ ⎝⎛+=xxn x nn n dt t n n dt t n n dt t S 00000)1(!1!1)(∑∞=+=01!n x n xe n x . 因此, ∑∞=+0!1n n x n n =)(x S =x x x e x xe dt t S )1()()(0+='='⎪⎭⎫ ⎝⎛⎰, ∈x ) , (∞+∞-. 解法二 ∑∞=+0!1n nx n n =∑∞=+0!n n n nx ∑∞==0!n nn x ∑∞=+-1)!1(n x ne n x = ∑∞=+=+=+=0)1(!n x x x x ne x e xe e n x x , ∈x ) , (∞+∞-.69. 展开函数xe x xf )1()(+=.解 =+=xxxe e x f )(∑∞=+0!n nn x ∑∞=+=01!n n n x ∑∑∞=∞=-+01)!1(!n n nn n x n x =+1∑∞=1!n n n x ∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛-++=++11)!1(1!11)!1(n n nn x n n n x ∑∞==++=1!11n nx n n ∑∞=∞+<+0 || ,!1n nx x n n . 70. 在指定区间内把下列函数展开成傅里叶级数,)(x x f =(i ),ππ<<-x (ii ).20π<<x解 (1)(i )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于011()0a f x dx xdx ππππππ--===⎰⎰.当1≥n 时,有211()cos cos 11sin |sin 1cos |0n a f x nxdx x nxdxx nx nxdx n n nx x ππππππππππππππ-----===-==⎰⎰⎰ 11()sin sin 11cos |cos 2,2,n b f x nxdx x nxdxx nx nxdx n n n n n nππππππππππππ----===+⎧-⎪⎪=⎨⎪⎪⎩⎰⎰⎰当为偶数时,当为奇数时.所以在区间),(ππ-上,sin )1(2)(11nnxx f n n ∑∞=+-= (ii )函数f 及其周期延拓后的图象所示. 显然f 是按段光滑的,故由收敛定理知它可以展开成傅里叶级数. 由于20012a xdx πππ==⎰.当1≥n 时2022001cos 11sin |sin 0n a x nxdxx nx nxdxn n ππππππ==-=⎰⎰,2022001sin 11cos |cos 2n b x nxdxx nx nxdxn n πππππππ==-+=-⎰⎰.所以在区间)2,0(π上1sin ()2n nx f x n π∞==-∑. 71. 设)(x f 是以π2为周期的分段连续函数, 又设)(x f 是奇函数且满足)()(x f x f -=π试求)(x f 的Fourier 系数⎰-=πππnxdx x f b n 2sin )(12的值, ,2,1=n . 解 由)(x f 是奇函数,故nx x f 2sin )(是偶函数,再由)()(x f x f -=π,故有()b f x nx x n 2022=⎰ππsin d ()=-⎰220πππf x nx xsin d . 作变换π-=x t ,则()()()b f t n t tn 20221=--⎰πππsin d ()=-⎰220ππf t nt tsin d=-b n 2 .所以,02=n b ,.,2,1 =n72. 设)(x f 以π2为周期,在区间]2,0[π内,()f x x x x =≤<=⎧⎨⎪⎩⎪20202πππ,,,,试求)(x f 的Fourier 级数展开式。

数学分析 测试试卷及答案

数学分析 测试试卷及答案

综合测试试卷一一、 计算题(本大题共15小题,每小题2分,共30分)1、xx x tan 01lim ⎪⎭⎫⎝⎛+→; 2、()x x x 2cot lim 0→ ;3、设a 为非零常数,则xx a x a x ⎪⎭⎫ ⎝⎛-+∞→lim ;4、⎪⎭⎫ ⎝⎛--+∞→n n n n n 3lim ; 5、xx x ex e111lim +-+→;6、⎪⎪⎭⎫⎝⎛++∞→x x x x 2sin 3553lim 2; 7、⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim ;8、()x x x sin 2031lim +→;9、⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+∞→x x x x 11ln sin 31ln sin lim ; 10、()()x x x x x x +++→1ln cos 11cossin 3lim20 ; 11、20211limx x x x --++→; 12、⎪⎭⎫ ⎝⎛-→x x x x tan 11lim 20; 13、()3021ln arctan limx xx x +-→ ;14、若0>a ,0>b 为常数,则xxx x ba 302lim ⎪⎪⎭⎫⎝⎛+→;15、⎪⎪⎭⎫⎝⎛++++++∞→n n n n n n πππcos 12cos 1cos 11lim。

. 二、单项选择题(本大题共5小题,每小题2分,共10分)16、xx x x sin sinlim10→的值为( ) A. 1; B. ∞; C.不存在; D. 0.17、=+--+→232231x x x x x lim ( )A. 3;B. 4-;C. 1;D. 1-.18、 =⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A.e 2;B. 2-e; C. 2e ; D.e2. 19、若22222=--++→x x bax x x lim ,则必有( ) A. 82==b a ,; B. 52==b a ,;C. 80-==b a ,; D. 82-==b a ,. 20、当+→0x 时,以下四式中为无穷小量的是( )A. x x 1sin ;B. x e 1; C. x ln ; D. x xsin 1.21、当+→0x 时,以下四式中为无穷大量的是( ) A. 12--x; B.xx sec sin +1; C. xe -; D. x e 1. 22、=→xx x x cos sinlim10( ) A.不存在; B. 0; C. 1; D. ∞.23、()=-→xx x cos tan lim 02π( )A.0;B. 1;C. ∞;D. 不存在. 24、=⎪⎭⎫⎝⎛--→1110x x e x lim ( )A.0;B. 21;C. ∞;D.21-. 25、()=+→xx x ex 10lim ( )A.e ;B. 1;C. 2e ; D. 2.三、计算题(本大题共3小题,每小题17分,共51分)26、623lim 2232--++-→x x xx x x ; 27、()11lim 22--+∞→x x x . 28、38231lim x x x +---→. 29、⎪⎪⎭⎫ ⎝⎛+--∞→1212lim 223x x x x x . 30、n n n n n !2lim ∞→. 31、()()()503020152332lim++-∞→x x x x . 32、设)(a f '存在,且0>)(a f ,求xx a f x a f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→)(lim 1.33、xx x x ⎪⎭⎫ ⎝⎛+∞→1lim . 34、11lim 31--→x x x . 35、xx x cos lim 00+→. 36、xx x x 10arcsin lim ⎪⎭⎫⎝⎛→. 37、()x x x x cos 1sin 1ln lim 0-+→. 38、201sin lim x x →. 39、21cos lim x x x ⎪⎭⎫ ⎝⎛∞→. 40、121lim +∞→+++p p p p n n n ,0>p .41、()1ln lim0-+→xx e x.42、dx xx an nn ⎰+∞→1sin lim.(提示:先用积分中值定理:()()a b f dx x f ba-=⎰ξ)(,[]b a ,∈ξ)综合测试试卷一参考答案一、计算题(本大题共15小题,每小题2分,共30分) 1、1; 2、21; 3、a e 2;4、2;5、1-;6、56;7、21;8、6e ;9、2;10、23;11、41-;12、31; 13、61-; 14、()23ab ; 15、22π。

(完整版)数学分析试题及答案解析,推荐文档

(完整版)数学分析试题及答案解析,推荐文档

∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

(完整版)数学分析_各校考研试题及答案

(完整版)数学分析_各校考研试题及答案

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a nn =∞→lim ;据两边夹定理有极限成立。

三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x )分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nxx x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f (x )在0可导则1->α四、设f (x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f (x )在R 上连续故存在F(u )使dF (u )=f(u )du=ydy xdx y x f ++)(22所以积分与路径无关。

(此题应感谢小毒物提供思路)五、设f(x)在[a,b ]上可导,0)2(=+b a f 且M x f ≤')(,证明2)(4)(a b M dx x f b a-≤⎰证:因f(x)在[a ,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。

数学分析B1期末考试题及答案

数学分析B1期末考试题及答案

数学分析B1期末考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集2. 若函数f(x)在点x=a处连续,则下列哪个选项不正确?A. 极限lim(x→a) f(x) = f(a)B. f(a)存在C. f(x)在x=a的邻域内不一定有界D. f(x)在x=a的邻域内不一定连续3. 函数f(x)=x^2在区间[-1,1]上的最大值是:A. 0B. 1C. 4D. 不存在4. 若f(x)=sin(x),x∈[0,2π],则f(x)的原函数F(x)是:A. -cos(x) + CB. cos(x) + CC. -sin(x) + CD. sin(x) + C5. 函数f(x)=ln(x)的导数是:A. 1/xB. xC. ln(x)D. 1/ln(x)答案:1.D 2.C 3.B 4.A 5.A二、填空题(每题2分,共10分)6. 若函数f(x)在[a,b]上连续,则______存在。

7. 函数f(x)=x^3-3x^2+2的一阶导数为______。

8. 函数f(x)=1/x在点x=1处的导数为______。

9. 若f(x)=x^2+2x+1,则f'(1)=______。

10. 函数f(x)=sin(x)+cos(x)的周期为______。

答案:6. 原函数 7. 3x^2-6x 8. -1 9. 5 10. 2π三、简答题(每题10分,共20分)11. 证明:若函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则根据介值定理,f(x)在(a,b)内至少有一个零点。

12. 解释什么是泰勒公式,并给出e^x的泰勒公式展开。

答案:11. 证明:由于f(x)在[a,b]上连续,根据连续函数的性质,f(x)在[a,b]上是闭区间上的有界函数。

设M=f(a),m=f(b),因为Mm<0,根据介值定理,存在c∈(a,b)使得f(c)=0,即f(x)在(a,b)内至少有一个零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】分析、满足
数学分析-1样题(一)
一. (8分)用数列极限的N ε-
定义证明1n =.
二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a
g x b →=;
(2) 0()x U a ∀∈,有0
()()g x U b ∈ (3) lim ()u b
f u A →=
用εδ-定义证明, lim [()]x a
f g x A →=.
三. (10分)证明数列{}n x :
cos1cos 2
cos 1223
(1)
n n
x n n =
+++
⋅⋅⋅+收敛.
四. (12分)证明函数1
()f x x
=
在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)
叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞
-=.
八. (14分)求函数32()2912f x x x x =-+在15[,]42
-的最大值与最小值.
九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使
2
4
()()()()
f f b f a b a ζ''≥
--. 数学分析-1
样题(二)
一. (10分)
设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常
数, 证明{}n a 收敛,并求其极限.
二. (10分)设0
lim ()0x x f x b →=≠, 用εδ-定义证明0
11
lim
()x x f x b
→=.
三. (10分)设0n a >,且1
lim
1n
n n a l a →∞+=>, 证明lim 0n n a →∞
=.
四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且
lim ()x a f x +
→,lim ()x b
f x -
→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.
六. (12分)证明:若函数在连续,且()0f a ≠,而函数2
[()]f x 在a 可导,则函数()f x 在a 可导. 七. (12分)求函数()1f x x x α
αα=-+-在的最大值,其中01α<<.
八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有
12()()f x f x ''≤.
九. (12分)设()
,0()0,0
g x x f x x x ⎧ ≠⎪
=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.
数学分析-2样题(一)
一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰
2. x
e
dx -⎰
3.
ln 0

4.
20
sin 1cos x x
dx x
π+⎰
二.(10分)设()f x 是上的非负连续函数, ()0b
a
f x dx =⎰
.证明()0f x = ([,])x a b ∈.
三. (10分)证明
20
sin 0x
dx x
π
>⎰
. 四. (15分)证明函数级数
(1)n
n x x

=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.
五. (10分)将函数,0
(),0x x f x x x ππππ
+ ≤≤⎧=⎨
- <≤⎩展成傅立叶级数.
六. (10分)
设22
22
0(,)0,0
xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩
证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;
(3) (,)f x y 在(0,0)可微.
七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明
111
(1)
n n n σ
σ∞
=<+∑. 数学分析-2样题(二)
一. (各5分,共20分)求下列不定积分与定积分:
1.
(0)a >
2.
1172
8157
14
x x dx x x
++⎰
3.
1
arcsin x dx ⎰
4.
1000
π⎰
二. (各5分,共10分)求下列数列与函数极限: 1. 221lim
n
n k n
n k
→∞
=+∑
2. 2
0lim
1x
t x
x x e dt e →-⎰
三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有
()()0b
a
f x
g x dx =⎰
.证明()0f x = ([,])x a b ∈.
四. (15分)定义[0,1]上的函数列 证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数
(1)n
n n x

=+∑的和函数.
六. (10分)用εδ-定义证明
2(,)(2,1)lim (43)19x y x y →+=.
七. (12分)求函数2
2
(2)(2)(0)u ax x by y ab =-- ≠的极值.
八. (13分)设正项级数
1
n
n a

=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞
=.
数学分析-3样题(一)
一 (10分) 证明方程1
1
(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程
.z z x
y z xy x y
∂∂+=-∂∂
二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数u =.
三 (14分) 设无穷积分
() a
f x dx +∞

收敛,函数()f x 在[, )a +∞单调,证明
四 (10分) 求函数1
220
() ln() F y x y dx =+⎰
的导数(0).y >
五 (14分) 计算
六 (10分) 求半径为a 的球面的面积S .
七 (10分) 求六个平面
所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求
22
C
xdy ydx
x y -+⎰
,其中C 是光滑的不通过原点的正向闭曲线.
九 (10分) 求
dS z ∑
⎰⎰,其中∑是球面2222
x y z a ++=被平面 (0)z h h a =<<所截的顶部. 数学分析-3样题(二)
一 (10分) 求曲面2233
, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.
二 (10分) 求在两个曲面2
2
2
1x xy y z -+-=与2
2
1x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞
=,证明无穷积分
1
() f x dx +∞

与级数100
1
()n f n =∑同时收敛或同时发散.
四 (12分) 证明
ln (0).ax bx e e b
dx a b x a
--+∞
-=<<⎰
五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有
六 (10分) 求椭圆区域22
1112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积
A .
七 (10分) 设2
22()() V
F t f x
y z dx dy dz =
++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,
f 是连续函数,求'()F t .
八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 S
xyz dx dy ⎰⎰
,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

相关文档
最新文档