初二第二学期期末试题数学
八下数学期末考试试卷
八下数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的,请将正确答案的字母填入括号内。
)1. 下列哪个选项是二次根式?A. 3x^2B. √xC. 2xD. x/32. 以下哪个函数是一次函数?A. y = 2x^2B. y = 3x + 1C. y = 4/xD. y = x^33. 计算下列哪个表达式的值等于1?A. (-2)^2B. (-2)^3C. (-2)^4D. (-2)^54. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形5. 一个圆的半径是3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米6. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 17B. 14C. 11D. 87. 以下哪个选项是不等式?A. 3x + 2 = 7B. 2x - 5 > 3C. 4x^2 - 9 = 0D. 5y - 6 ≤ 98. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 229. 一个三角形的三个内角之和是多少?A. 90°B. 180°C. 360°D. 450°10. 以下哪个选项是正比例函数?A. y = 2x + 3B. y = -4xC. y = 5/xD. y = x^2二、填空题(本大题共5小题,每小题4分,共20分。
请将答案直接写在横线上。
)11. 一个数的相反数是-5,那么这个数是________。
12. 如果一个等腰三角形的底角是40°,那么它的顶角是________。
13. 计算 (2/3)^2 的结果是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是________立方厘米。
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
2023北京海淀区初二(下)期末数学试题及答案
2023北京海淀初二(下)期末数 学考生须知:1.本试卷共8页,共3道大题,26道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4考试结束,请将本试卷交回.一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.1. x 的取值范围是( )A. 0x > B. 0x < C. 0x ≥ D. 0x ≤2. 用长度相等的火柴棒首尾相连拼接直角三角形,若其中两条直角边分别用6根和8根火柴棒,则斜边需用火柴棒的根数为( )A. 12B. 10C. 8D. 63. 下列化简正确的是( )3=13= C. 3==4. 在平面直角坐标系xOy 中,点()12,A y ,()23,B y 在函数3y x =-的图像上,则( )A. 12y y > B. 12y y = C. 12y y < D. 以上都有可能5. 如图,A ,B 两点被池塘隔开,小林在池塘外选定一点C ,然后测量出CA ,CB 的中点D ,E 的距离,若5m DE =,则A ,B 两点间的距离为( )A. 5mB. 7.5mC. 10mD. 15m6. 一次函数y ax b =+的自变量和函数值的部分对应值如下表所示:x 05y35则关于x 的不等式ax b x +>的解集是( )A. 5x <B. 5x >C. 0x <D. 0x >7. 如图,12AB =,45A ∠=︒,点D 是射线AF 上的一个动点,DC AB ⊥,垂足为点C ,点E 为DB的中点,则线段CE 的长的最小值为( )A. 6B. D. 8. 某校足球队队员年龄分布如图所示,下面关于该队年龄统计数据的法正确的是( )A. 平均数比16大B. 中位数比众数小C. 若今年和去年的球队成员完全一样,则今年方差比去年大D. 若年龄最大的选手离队,则方差将变小二、填空题(本大题共18分,每小题3分)9. 在ABCD Y 中,若140A C ∠+∠=︒,则B ∠=__________︒.10. 如图,数轴上点A ,B ,C ,D 所对应的数分别是1-,1,2,3,若点E 对应的数是E 落在__________之间.(填序号)①A 和B ②B 和C ③C 和D11. 如图,大正方形是由四个全等的直角三角形和面积分别为1S ,2S 的两个正方形所拼成的.若直角三角形的斜边长为2,则12S S +的值为__________.12. 在一次演讲比赛中,甲的演讲内容、演讲能力、演讲效果成绩如下表所示:项目演讲内容演讲能力演讲效果成绩908090若按照演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩,则该选手的综合成绩为__________.13. 在矩形ABCD 中,BAD ∠的角平分线交BC 于点E ,连接ED ,若5ED =,3CE =,则线段AE 的长为__________.14. 已知直线:(0)l y kx b k =+≠,将直线l 向上平移5个单位后经过点(3,7),将直线l 向下平移5个单位后经过点(7,7),那么直线l 向__________(填“左”或“右”)平移__________个单位后过点(1,7).三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15. 计算:(1);(2.16. 如图,将平行四边形ABCD 的对角线BD 向两个方向延长,分别至点E 和点F ,且使BE DF =.求证:四边形AECF 是平行四边形.17. 已知一次函数21y x =-+.(1)在下图所示的平面直角坐标系中,画出该一次函数的图象;(2)该一次函数图象与x 轴交点坐标为__________.当0y <时,自变量x 的取值范围是__________.18. 如图,小明在方格纸中选择格点作为顶点画ABCD Y 和BCE .(1)请你在方格纸中找到点D ,补全ABCD Y ;(2)若每个正方形小格的边长为1,请计算线段CE 的长度并判断AD 与CE 的位置关系,并说明理由.19. 快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:型号长宽小号20cm 18cm中号25cm20cm大号30cm 25cm已知甲、乙两件礼品底面都是正方形,底面积分别为280cm ,2180cm ,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由.20. 已知一次函数的图像经过点(2,4)A ,(1,1)B -.(1)求这个一次函数的解析式;(2)若正比例函数(0)y mx m =≠的图像与线段AB 有公共点,直接写出m 的取值范围.21. 如图,在ABC 中,AB AC =,点D ,E ,F 分别为BC ,AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)若6AB =,10BC =,求四边形AEDF 的面积.22.的矩形叫做“黄金矩形”.黄金矩形给我们以协调、匀称的美感.若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的黄金矩形ABMN ,小松同学的作法如下:①作AB 的垂直平分线分别交AB ,CD 于点E ,F ;②连接AF ,作BAF ∠的角平分线,交BC 于点M ;③过点M 作MN AD ⊥于点N ;矩形ABMN 即为所求.(1)根据上述作图过程,补全图形;(2)小松证明四边形ABMN 是黄金矩形的思路如下:作MP AF ⊥于点P ,连接MF ,设BM x =,根据角平分线的性质,可知MP BM x ==.根据条件,可求得AF 的长度为__________,AP 的长度为__________.在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.由此可列关于x 的方程为__________.解得BM x ==__________.所以BM AB =,矩形ABMN 为黄金矩形.23. 甲、乙两名选手参加25米手枪速射资格赛.资格赛规则为每名选手完成60发射击,得分按整数计.例如:9.7环计9分,每发最高得10分,满分600分.甲、乙各射击60发的成绩如下表所示:得分频数选手678910甲332121乙331227已知甲、乙两名选手在资格赛中9分段的详细数据如下:甲的9分段频数分布表分组(环)频数9.09.2x ≤<29.29.4x ≤<39.49.6x ≤<29.69.8x ≤<59.810x ≤<9根据以上信息,整理分析两名选手得分数据如下:选手平均数中位数众数甲8.99,10乙9(1)补全上述表格中的信息;(2)进入决赛后,资格赛成绩不带入决赛,每名选手最多完成40发,每发按照“击中”或“脱靶”统计,9.6环及以上计为击中,9.6环以下计为脱靶、只有击中才累计环数,按照总环数高低进行排名.若甲、乙两名选手均进入决赛,请你推断哪位选手更可能获胜,并说明理由.24. 实数a 与b 满足b =.(1)写出a 与b 的取值范围;(2是有理数.①当a 是正整数时,求b 的值;②当a 是整数时,将符合条件的a 的值从大到小排列,请直接写出排在第3个位置和第11个位置的数.25. 在正方形ABCD 中,点E 在射线BD 上,点M 在BC 的延长线上,CN 为DCM ∠的角平分线,点F 为射线CN 上一点,且CE FE =.(1)如图,当点E 在线段BD 上时,补全图形,求证:2180BEC CEF ∠+∠=︒;(2)在(1)的条件下,用等式表示线段CF ,DE ,BE 之间的数量关系,并证明;(3)若4AB =,3BE DE =,直接写出线段CF 的长.26. 在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x -=-且0112y y y y -=-,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)-,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P -,;②2(20)P ,;③3(4,4)P -;④4(5,6)P -.(2)点A ,B 都在直线y x =-上,已知点A 的横坐标为2-,(0)M t ,,(11)N t +,.①如图1,当1t =-时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标;②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.参考答案一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.题号12345678答案CBDACADD二、填空题(本大题共18分,每小题3分)9. 110︒10.③.11. 4.12. 8613. .14.左,4.三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15.(1)解:-+=-+=(2=42=-2=16.证明:如图,连接AC ,设AC 与BD 交于点O .四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,…………………1分又BE DF = ,OE OF ∴=.…………………3分∴四边形AECF 是平行四边形.…………………4分17. (1)解:当0x =时,2011y =-⨯+=,当0y =时,021=-+x ,∴12x =.如图,…………………2分(2)∵0y =时,12x =,∴一次函数图象与x 轴交点坐标为1,02⎛⎫ ⎪⎝⎭.…………………3分由图象可知,当0y <时,自变量x 的取值范围是12x >.故答案为:1,02⎛⎫ ⎪⎝⎭,12x >.…………………4分18. (1)解:如图所示,即为所求;(2)解:如图所示,过点C 作CH AB ⊥于H ,记AD 与CE 相交于点F 理由如下:∵∴CE BC ====∵10BE =,∴222CE BC BE +=∴90BCE ∠=︒,…………………3分∵四边形ABCD 是平行四边形,∴AD BC ∥,∴90AFE ∠=︒∴AD CE ⊥.…………………4分19. =…………………1分=,…………………2分∴甲、乙两件礼品的边长之和为=,∵2025=<<<,61820<=<…………………3分∴应选择中号的纸箱.…………………4分20. (1)解:设一次函数解析式为(0)y kx b k =+≠∵一次函数的图像经过点(2,4)A ,(1,1)B -,,∴241k b k b +=⎧⎨-+=⎩,…………………1分解得,12k b =⎧⎨=⎩,…………………2分∴一次函数解析式为2y x =+.(2)12m m ≤-≥或21.(1)∵AB AC =,点D 为BC 的中点∴AD BC⊥∴90ADB ADC ∠=∠= …………………1分∵点E ,F 分别为AB ,AC 的中点,∴DE 是ABC 的中位线,12AF AC =,∴12DE AC AF ==,同理可得12DF AB AE ==,∴DE AF AE DF ===,∴四边形AEDF 是菱形;(2)解:设AD EF 、交于O ,同理可证EF 是ABC 的中位线,∴152EF BC ==,∵6AB =,∴3AE =,∵四边形AEDF 是菱形,∴12.52AD EF OE EF ==⊥,,2AD OA =,在Rt AEO △中,由勾股定理得OA ==∴AD =,∴12AEDF S AD EF =⋅=菱形.22.(1)解:如图所示,即为所求;(2)证明:作MP AF ⊥于点P ,连接MF ,设BM x =,则2CM x =-,根据角平分线的性质,可知MP BM x ==,∵EF 是AB 的垂直平分线, ∴112DF CF AD ===,∴AF ==∵AM AM BM PM ==,,∴()Rt Rt HL ABM APM △≌△,∴2AP AB ==,∴2PF AF AP =-=-,在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.∴)()2222212x x -+=+- .解得1BM x ==-.所以BM AB =,∴矩形ABMN 为黄金矩形.23. (1)解:∵每名选手完成60发射击,∴甲得分为8的频数为:6033212112----=,乙得分为9的频数为:6033122715----=,∴甲乙射击的图如下所示, 得分频数选手678910甲12乙15…………………1分选手平均数中位数众数甲9乙910…………………4分(2)解:乙更可能获胜,理由如下:①从“击中”个数来看,甲在资格赛中射出9.6环以上共35次,乙在资格赛中射出9.6环及以上共38次,乙比甲多;②从累计环数来看,若将甲9.69.8x ≤<分段的按9.8分计,9.810x ≤<分段的按10分计,甲的最高累计环数为9.851091021349,⨯+⨯+⨯=而将乙9.69.8x ≤<分段的按9.6分计,9.810x ≤<分段的按9.8分计,乙的最低累计环数为9.639.881027377.2⨯+⨯+⨯=,乙的最低累计环数比甲的最高累计环数还高…………………5分24. (1)解:由题可知:40a b -≥⎧⎨≥⎩解得:40a b ≤≥,;…………………2分(2)①∵a 是正整数时,∴a 可以取1234,,,,这时b 0,,是有理数,∴b =或0b =;…………………4分是有理数,∴b 当a 是正整数时,则41a a ==,,由①可知第3个数b =11个数b =,即4124300a a -=-=,,解得:8296a a =-=-,.…………………5分25. (1)解:如图所示,即为所求;…………………1分∵四边形ABCD 是正方形,∴4590DBC BCD DCM =︒==︒∠,∠∠,∵CN 为DCM ∠的角平分线,∴1452FCM DCM ==︒∠∠,∴FCM DBC =∠∠,∴BD CF ,∴BEC ECF ∠=∠,∵CE FE =,∴ECF EFC ∠=∠,∵180ECF EFC CEF ∠+∠+∠=︒,∴2180ECF CEF ∠+∠=︒,∴2180BEC CEF ∠+∠=︒;(2)解:BE CF DE =+,证明如下:如图所示,在BD 上截取BH CF =,连接CH DF 、,∵CN 为DCM ∠的角平分线,∴1452DCF DCM ==︒∠,∵四边形ABCD 是正方形,∴45DBC BC CD ∠=︒=,,∴CBH DCF =∠∠,∴()SAS CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴180BDF DFC ∠+∠=︒,∵180DHC BHC +=︒∠∠,∴EHC EDF =∠∠,∵2180BEC CEF ∠+∠=︒,180BEC CEF DEF ∠+∠+=︒∠,∴CEH FED =∠∠,∴()AAS CEH FED △≌△,∴HE DE =,∵BE BH HE =+,∴BE CF DE =+;(3)解:如图3-1所示,当点E 在BD 上时,∵在正方形ABCD 中,4AB =,∴490BC CD BCD ===︒,∠,∴BD ==∵3BE DE =,∴3144BE BD DE BD ====,由(2)的结论可知BE CF DE =+,∴CF BE DE =-=;如图3-2所示,当点E 在BD 延长线上时,在射线BE 上截取BH CF =,连接CH DF 、,同理可证明CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴FDE CFD =∠∠,DEC ECF HEF EFC ==∠∠,∠∠∴FDE CHE =∠∠;∵EC EF =,∴ECF EFC ∠=∠,∴DEC HEF =∠∠,∴DEF HEC=∠∠∴()AAS DEF HEC △≌△,∴HE DE =,∵BH BE EH =+,∴CF BE DE =+,∵3BE DE BD ==,,∴BE DE ==∴CF =;综上所述,CF =CF =.26. (1)解:m 的两个端点坐标分别为(1,2)和(3,2)-①1(16)P -,:∵1113,622(2)--=--=--∴1(16)P -,是等差点;②2(20)P ,:∵2113,-¹-且2331-¹-∴2(20)P ,不是等差点;③3(4,4)P -:∵4113-¹-,且4331-¹-∴3(4,4)P -不是等差点;④4(5,6)P -:∵5331-=-且6(2)(2)2---=--∴4(5,6)P -是等差点.故答案为①④.(2)解:①∵点A 直线y x =-上,横坐标为2-,∴(2,2)A -当1t =-时,(1,0)M -,(0,1)N 设直线MN 解析式为(0)y kx b k =+≠,则01k b b -+=⎧⎨=⎩,解得11k b =⎧⎨=⎩,∴直线MN 解析式为1y x =+,联立y x =-,得1y x y x =+⎧⎨=-⎩,解得0.50.5x y =-⎧⎨=⎩∴交点即等差点坐标为(0.5,0.5)-;设点(,)B a a -,则0.5(2),a a --=--或0.5(2)(2)a ---=--,解得 1.25a =-或 3.5a =-∴( 1.25,1.25)B -或( 3.5,3.5)-;②如图,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,可知(2,2)A -,(2,2),(2,2),(2,2)B C D ---,(0)M t ,,(11)N t +,,分别在x 轴、直线1y =上,如图,根据等差点定义知,正方形上两点()()2,2,2,1.5-的一个等差点为(6,1)-,点(11)N t +,位于1(6,1)N -时,t 取最小值,16t +=-,7t =-;如图,正方形上两点(2,2),(2,1)-的一个等差点为(6,0),点(0)M t ,位于4(6,0)M 时,t 取最大值,6t =;正方形ACBD 的边上(包括顶点)任取两点连接的线段的等差点不可能出现在正方形内部,故2t ≤-,或12t +≥,即1t ≥,综上,72t -≤≤-或16t ≤≤.。
数学八年级下册数学期末试卷测试卷附答案
数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
初二数学下册期末考试题及答案
初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。
$y=\frac{11}{6x}$ B。
江苏省无锡2024届数学八年级第二学期期末达标检测试题含解析
江苏省无锡2024届数学八年级第二学期期末达标检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,在长方形ABCD 中,点M 为CD 中点,将MBC △沿BM 翻折至MBE △,若∠=AME α,ABE β∠=,则α与β之间的数量关系为( )A .3180αβ+=︒B .20βα-=︒C .80αβ+=︒D .3290βα-=︒2.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =253.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E , AB=5,BC=3,则EC 的长( )A .2B .3C .4D .2.54.如图,在ABC ∆中,90C =∠,30A ∠=,AB 的垂直平分线分别交,AB AC 于点,D E ,若4AE =,则EC 的长是( )A .4B .3C .2D .15.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点,若OE=3cm ,则AB 的长为( )A.3cm B.6cm C.9cm D.12cm6.如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=AD C.S△AEO=S△AOF D.S△ABC=2S△AEF7.如图,已知一条直线经过点、点,将这条直线向左平移与轴、轴分别交于点、点.若,则直线的函数解析式为()A.B.C.D.8.若两个相似多边形的面积之比为1∶3,则对应边的比为()A.1∶3 B.3∶1 C.1:3D.3:19.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.下列关于矩形对角线的说法中,正确的是()A .对角线相互垂直B .面积等于对角线乘积的一半C .对角线平分一组对角D .对角线相等二、填空题(每小题3分,共24分) 11.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是 cm .12.四边形ABCD 为菱形,该菱形的周长为16,面积为8,则∠ABC 为_____度.13.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.14.每本书的厚度为0.62cm ,把这些书摞在一起总厚度h (单位:cm )随书的本数n 的变化而变化,请写出h 关于n 的函数解析式_____.15.因式分解:x 2﹣9y 2= .16.如图,在平面直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为.将矩形沿对角线翻折,点落在点的位置,且交轴于点,那么点的坐标为______.17.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a 的取值范围是________.18.已知关于x 的方程113=--ax a x有解2x =,则a 的值为____________. 三、解答题(共66分)19.(10分)如图,AD 是等腰△ABC 底边BC 上的中线,点O 是AC 中点,延长DO 到E ,使OE =OD ,连接AE ,CE ,求证:四边形ADCE 的是矩形.20.(6分)计算:(1)81223+-- (2)(37)(37)2(22)-++-21.(6分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且1AD =.将OAD ∆绕着点O 逆时针旋转得到OCE ∆.(1)求证:OE OD ⊥;(2)在x 轴上找一点P ,使得PD PE +的值最小,求出点P 的坐标.22.(8分)如图,四边形中,,,,是边的中点,连接并延长与的延长线相交于点.(1)求证:四边形是平行四边形;(2)若,求四边形的面积.23.(8分)已知,5a b +=,6ab =,求33a b ab +的值.24.(8分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:小明 小英 思想表现91 98 学习成绩96 96 工作能力98 9125.(10分)如图,点D 在等边三角形ABC 的边BC 上,延长CA 至E ,使AE BD =,连接DE 交AB 于F . 求证:DF EF =.26.(10分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG 的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【题目详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵AD BCD C DM CM=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD ∴∠DME=∠AMB∴∠EBM=∠CBM=12(90°-β)∴∠MBA=12(90°-β)+ β=12(90°+β)∴∠MAB=∠MBA=12(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=12(90°+β)∴∠DME+∠AME=∠ABE+∠MBE ∵∠AME=α,∠ABE=β,∴90°-β+α=β+12(90°-β)∴3β-2α=90°故选D.【题目点拨】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.2、D【解题分析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.3、A【解题分析】根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.【题目详解】解:∵四边形ABCD是平行四边形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故选A.【题目点拨】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.4、C【解题分析】连接BE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠ABE=∠A,然后根据三角形的内角和定理求出∠CBE,再根据30°角所对的直角边等于斜边的一半求出CE.【题目详解】如图,连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,在△ABC中,∠CBE=180°-∠A-∠ABE-∠C=180°-30°-30°-90°=30°,∴CE=12BE=12×4=2,故选C.【题目点拨】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.5、B【解题分析】根据平行四边形对角线互相平分的性质可得OA=OC,又因点E是BC的中点,所以OE是△ABC的中位线,再由三角形的中位线定理可得AB的值.【题目详解】解:在平行四边形ABCD中,对角线AC、BD交于点O,∴OA=OC∴点O是AC的中点又∵点E是BC的中点∴OE是△ABC的中位线∴AB=2OE=6cm故选:B【题目点拨】本体考查了平行四边形的性质、三角形的中位线定理,掌握平行四边形的性质,三角形的中位线定理是解题的关键.6、D【解题分析】根据三角形中位线定理以及直角三角形斜边上的中线等于斜边的一半逐项分析即可.【题目详解】解:∵EF是Rt△ABC的中位线,∴EF 12BC ,∵AD是斜边BC边上的中线,∴AD=12 BC,∴EF=AD,故选项B正确;∵AE=BE,EO∥BD,∴AO=OD,故选项A正确;∵E,O,F,分别是AB,AD,AC中点,∴EO=12BD,OF=12DC,∵BD=CD,∴OE=OF,又∵EF∥BC,∴S△AEO=S△AOF,故选项C正确;∵EF∥BC,∴△ABC∽△AEF,∵EF是Rt△ABC的中位线,∴S△ABC:S△AEF=4:1,即S△ABC=4S△AEF≠2S△AEF,故选D错误,故选:D.【题目点拨】本题考查了三角形中位线定理的运用、直角三角形斜边上的中线的性质以及全等三角形的判断和性质,证明EO,OF 是三角形的中位线是解题的关键.7、A【解题分析】先求出直线AB的解析式,再根据BD=DC计算出平移方式和距离,最后根据平移的性质求直线CD的解析式.【题目详解】设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴解得,∴直线AB的解析式为y=−2x+2;∵BD=DC,∴△BCD为等腰三角形又∵AD⊥BC,∴CO=BO(三线合一),∴C(-1,0)即B点向左平移两个单位为C,也就是直线AB向左平移两个单位得直线CD∴平移以后的函数解析式为:y=−2(x+2)+2,化简为y=-2x-2故选A.【题目点拨】本题考查一次函数图象与几何变换,解决本题要会根据图像上的点求一次函数解析式和利用平移的性质得出平移后函数解析式,能根据BD=DC计算出平移方向和距离是解决本题的关键.8、C【解题分析】直接根据相似多边形的性质进行解答即可.【题目详解】∵两个相似多边形的面积之比为1:3,13.3故选C.【题目点拨】本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.9、C【解题分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【题目详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选C.【题目点拨】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10、D【解题分析】根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.【题目详解】解:矩形的对角线相等,故选:D.【题目点拨】此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.二、填空题(每小题3分,共24分)11、10103.【解题分析】试题分析:点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,2222106B C CD--'=8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=103,在Rt△BEF中,222210101010BC BE⎛⎫+=+=⎪cm.故答案是10103.考点:翻折变换(折叠问题).12、30或150【解题分析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.13、3 5【解题分析】先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.【题目详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为35,故答案为35.【题目点拨】本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14、h=0.62n依据这些书摞在一起总厚度h (cm )与书的本数n 成正比,即可得到函数解析式.【题目详解】每本书的厚度为0.62cm ,∴这些书摞在一起总厚度h (cm )与书的本数n 的函数解析式为0.62h n =.故答案为:0.62h n =.【题目点拨】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.15、()()x 3y x 3y +-.【解题分析】因为()2222x 9y x 3y -=-,所以直接应用平方差公式即可:()()22x 9y x 3y x 3y -=+-. 16、(0,).【解题分析】先证明EA=EC (设为x );根据勾股定理列出x 2=12+(3-x )2,求得x=,即可解决问题.【题目详解】由题意知:∠BAC=∠DAC ,AB ∥OC ,∴∠ECA=∠BAC ,∴∠ECA=∠DAC ,∴EA=EC (设为x );由题意得:OA=1,OC=AB=3;由勾股定理得:x 2=12+(3-x )2,解得:x=,∴OE=3-=,∴E 点的坐标为(0,).故答案为:(0,).【题目点拨】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.17、4a >-由方程有两个不相等的实数根,可得△>0,建立关于a 的不等式,解不等式求出a 的取值范围即可.【题目详解】∵关于x 的一元二次方程240x x a +-=有两个不相等的实数根,∴△=16+4a >0,解得,4a >-.故答案为:a>-4.【题目点拨】本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18、1【解题分析】分式方程去分母转化为整式方程,把x =2代入整式方程计算即可求出a 的值.【题目详解】去分母得:a ﹣x =ax ﹣3,把x =2代入得:a ﹣2=2a ﹣3,解得:a =1.故答案为:1.【题目点拨】本题考查了分式方程的解,始终注意分母不为0这个条件.三、解答题(共66分)19、详见解析【解题分析】根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可.【题目详解】证明:∵点O 是AC 中点,∴AO =OC ,∵OE =OD ,∴四边形ADCE 是平行四边形,∵AD 是等腰△ABC 底边BC 上的高,∴∠ADC =90°,∴四边形ADCE 是矩形.本题考查了矩形的判定和性质,等腰三角形的性质,综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.20、(1) (2)【解题分析】(1)先求出绝对值,再把各二次根式化为最简二次根式,然后合并同类二次根式;(2)先根据平方差公式和乘法法则进行计算,然后合并同类二次根式.【题目详解】解:(1==(2)(3++-=223-+=972-+=【题目点拨】本题考查了二次根式的混合运算和绝对值,先把各二次根式化为最简二次根式,根据绝对值定义求解出绝对值,在进行二次根式的乘除运算,然后合并同类二次根式,同时也考察了平方差公式.21、(1)见解析;(2)点P 坐标为()2,0【解题分析】(1)根据直角坐标系的特点证明COE COD ∠+∠=90°即可;(2)作点D 关于x 轴对称点F ,连接EF 交x 轴于点P ,即为所求,再根据待定系数法确定函数关系式求出直线EF 的解析式,再求出P 点.【题目详解】(1)∵OCE ∆是由OAD ∆旋转而来,∴COE AOD ∠=∠.又90AOD COD ∠+∠=0,∴90COE COD DOE ∠+∠==∠,即OE OD ⊥.(2)如图所示,作点D 关于x 轴对称点F ,连接EF 交x 轴于点P .∵点D 和点F 关于x 轴成轴对称,∴PD PF =.∴PD PE PF PE +=+.且P ,E ,F 三点在一条直线上的时候PF PE +最小即PD PE +取得最小值.∵1AD =,3BC =,∴()3,1F -,()1,3E -,设直线EF 的表达式为()0y kx b k =+≠.E ,F 两点坐标代入得,31,3.k b k b +=⎧⎨-+=⎩ 解得12.k b =-⎧⎨=⎩将∴2y x =-+.∵点P 为直线EF 与x 轴的交点.∴令0y =,即20x -+=得2x =故点P 坐标为()2,0此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.22、(1)见解析;(2)四边形的面积.【解题分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.【题目详解】解:(1)证明:∵,∴,∴,又∵是边的中点,∴,在与中,,∴,∴∴四边形是平行四边形;(2)∵,∴,∴四边形的面积.【题目点拨】本题考查了平行四边形的判定与性质,平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.23、78.原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.【题目详解】()33222()2a b ab ab a b ab a b ab ⎡⎤+=+=+-⎣⎦把5a b +=,6ab =代入得:()3326526a b ab ∴+=⨯-⨯3378a b ab ∴+=【题目点拨】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.24、小明会被聘选为班长.【解题分析】分别求出两人的加权平均数,再进行比较,即可完成解答。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
初二数学下册期末考试试卷(含-答案)人教版
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
2024届广东省珠海市数学八年级第二学期期末综合测试试题含解析
2024届广东省珠海市数学八年级第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分) 1.若代数式1x x+ 在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x ≥-C .0x ≠D .1x ≥-且0x ≠2.如图,先将矩形ABCD 沿三等分线折叠后得到折痕PQ ,再将纸片折叠,使得点A 落在折痕PQ 上E 点处,此时折痕为BF ,且AB =1.则AF 的长为( )A .4B .559C .955D .53.如图,在平行四边形ABCD 中,用直尺和圆规作的∠BAD 平分线交BC 于点E ,若AE=8,AB=5,则BF 的长为( )A .4B .5C .6D .84.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加. A .甲B .乙C .甲、乙都可以D .无法确定5.若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则(3)(3)a b -+的值等于( )A .1-B .2-C .2D .46.如图,腰长为2的等腰直角三角形ABC 绕直角顶点A 顺时针旋转45︒得到AB C ''∆,则图中阴影部分的面积等于( )A .422-B .2C .22D .222-7.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长8.一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .9.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
八年级下册期末数学试题附答案
八年级下册期末数学试题附答案数学如何不经常的练习以及活动大脑思维的话,那学习起来会非常的困难,下面是小编给大家带来的八年级下册期末数学试题,希望能够帮助到大家!八年级下册期末数学试题(附答案)(满分:150分,时间:120分钟)一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.1.不等式的解集是( )A B C D2.如果把分式中的x和y都扩大2倍,那么分式的值( )A 扩大2倍B 不变C 缩小2倍D 扩大4倍3. 若反比例函数图像经过点,则此函数图像也经过的点是( )A B C D4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )A 8,3B 8,6C 4,3D 4,65. 下列命题中的假命题是( )A 互余两角的和是90°B 全等三角形的面积相等C 相等的角是对顶角D 两直线平行,同旁内角互补6. 有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( )A B C D7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是 ( )A B C D8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 ( )A 1B 2C 2.5D 3二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.9、函数y= 中,自变量的取值范围是 .10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米.11.如图1,,,垂足为 .若,则度.12.如图2,是的边上一点,请你添加一个条件:,使 .13.写出命题“平行四边形的对角线互相平分”的逆命题:_________________________________________________________________________.14.已知、、三条线段,其中,若线段是线段、的比例中项,则 = .15. 若不等式组的解集是,则 .16. 如果分式方程无解,则m= .17. 在函数 ( 为常数)的图象上有三个点(-2, ),(-1, ),( , ),函数值,,的大小为 .18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为 .三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤.19.(8分)解不等式组,并把解集在数轴上表示出来.20.(8分)解方程:21.(8分)先化简,再求值:,其中 .22.(8分) 如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M 的对应点M′的坐标( , ).23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y= 上的概率.25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1. 过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数的图象与x轴相交于点C,求∠ACO的度数;(3)结合图象直接写出:当 > >0 时,x的取值范围.26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD= ,CE= ,CA= (点A、E、C在同一直线上).已知小明的身高EF是,请你帮小明求出楼高AB.27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:A(单位:千克) B(单位:千克)甲 9 3乙 4 10(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元) 与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似 ;(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证 ;(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.八年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 D B D A C C A D二、填空题(本大题共10小题,每题3分,共30分)9、x≠1 10、20 11、40 12、或或13、对角线互相平分的四边形是平行四边形。
江苏苏州市昆山市、太仓市、常熟市、张家港市2024年八年级下学期期末数学试题含参考答案
2023~2024学年第二学期阶段性学业水平阳光测评初二数学2024.06(满分130分,时长120分钟)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案用2B 铅笔涂在答题卷相应的位置上.1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 下列事件中,属于必然事件的是( ) A. 打开电视机,正在播放广告 B. 下雨天,每个人都打着雨伞 C. 若x y >,则22x y −>− D. 若实数0a ≠,则0a >3. 若分式32a a −+的值为0,则a 的值为( ) A. 2B. -2C. 3D. -34. 下列运算正确的是( )A.+ B.C.3=−D.2=5. 用配方法解一元二次方程210x −+=,方程变形后正确的是( ) A. ()223x +=B. ()224x −=C. ()223x −=D. ()225x −=6. 一次函数2y kx =+(k 为常数,且0k ≠)图像上两点()1,A m −,()3,B n ,且m n >,下列关于反比例函数ky x=图像性质的说法中,正确的是( ) A. 图像关于y 轴对称B. 图像在第一、第三象限C. y 随x 的增大而增大D. 当0x <时,0y >7. 如图,在四边形ABCD 中,AD BC ∥,AD BC =,点E ,F 在对角线BD 上,连接AE ,AF ,CE ,CF ,则添加下列条件,仍不能判断....四边形AECF 是平行四边形的是( )第7题图 A. BE DF =B. AEB CFD ∠=∠C. AE CF =D. AE BD ⊥,CF BD ⊥8. 如图,四边形ABCD 是矩形,点E 是BC 边上一点,连接AE ,DE ,且EA 平分BED ∠,若43AB BE =,则ADE △与ABE △的面积比为( )第8题图 A.2532B. 2518C. 53D. 43二、填空题:本大题共8小题,每小题3分,共24分.请将答案填在答题卷相应的位置上.......... 9. 某校开展“保护视力,预防近视”活动,为了解八年级600名学生的视力状况,从中随机抽取了80名学生进行问卷调查,此次调查中,样本容量是______.10. 若关于x 的方程220x x m +−=的一个根是3x =,则m 的值为______.11. 化简:()2x yx xy x−−÷=______. 12. 如图,在ABC △中,90C ∠=°,将Rt ABC △绕顶点A 顺时针旋转一定角度得到Rt AB C ′′△,此时点C 的对应点C ′恰好落在AB 边上,连接BB ′,若35BB C ′′∠=°,则BAC ∠=______°.第12题图13. 反比例函数6y x=图像与一次函数4y x =−的图像交于点(),a b ,则11a b −的值为______.14. 如图,在ABC △中,点D 是BC 边的中点,AE 平分BAC ∠,AE BE ⊥于点E .若14AB =,8AC =,则DE 的长为______.第14题图15. 如图,点()2,A m 在反比例函数()0ky x x=>的图像上,将直线OA 向上平移2个单位长度后交y 轴于点B ,交反比例函数()0kyx x=>的图像于点C ,若2AO BC =,则k 的值等于______.第15题图16. 如图,在Rt ABC △中,90ACB ∠=°,分别以AB ,AC ,BC 为边长向外侧作正方形ABDE ,正方形ACGF ,正方形BCHI ,连接EF ,GH ,DI .若正方形AFGC 的面积为9,正方形BCHI 的面积为16,则六边形DEFGHI 的面积为______.第16题图三、解答题:本大题共11小题,共82分,把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.17.(本题满分4分)18.(本题共2小题,每小题4分,满分8分) 解方程:(1)31122x x x=−−− (2)()2326x x −=−19.(本题满分6分)已知关于x 的一元二次方程22210x mx m −+−=. (1)求证:m 取任意实数、该方程总有两个实数根;(2)设该方程的两根分别为1x 、2x ,且满足12123x x x x +=,求m 的值. 20.(本题满分6分)某地一旅游风景区,有关收费信息公告如下:旅游人数 收费标准 不超过30人 人均收费80元超过30人每增加1人,人均收费降低1元,但人均收费不低于60元某校八年级(1)班组织学生到该风景区开展研学活动,一共支付了2800元.则该班参加这次研学活动的学生有多少人? 21.(本题满分6分)已知:如图,在ABCD 中,过点B 作BE AC ∥,交DC 的延长线于点E ,连接AE ,交BC 于点O ,且AE AD =.求证:四边形ABEC 是矩形.(第21题) 22.(本题满分8分)如下图所示,在10×10的正方形网格中,每个小正方形的边长为1,三角形均为格点三角形(即顶点均在格点上)图1 图2(第22题)(1)如图1,ABC △绕某一点按逆时针方向旋转一定角度得到A B C ′′′△,则点P ,Q ,M ,N 四个点中为旋转中心是点______;(2)如图2,以点O 为位似中心,把ABC △按相似比2:1放大,得到DEF △(其中点A ,B ,C 的对应点分别为点D ,E ,F ).①在图2中画出DEF △;②DEF △的面积为______. 23.(本题满分8分)某校积极开展“阳光体育”课外活动,为了解八年级学生最喜欢的球类运动项目,现从八年级随机抽取部分学生进行问卷调查,每位同学从以下五个球类运动项目:A . 乒乓球;B . 羽毛球;C . 排球;D . 足球;E . 篮球中选择一种最喜欢的项目(每人须选择一项,且只能从中选一项),并将调查结果绘制成如下两幅不完整的统计图表.最喜欢的球类项目统计表1项目 A B C D E 名称 乒乓球 羽毛球 排球 足球 篮球 人数m361218n解答以下问题:(1)m =______,n =______;(2)扇形统计图2中E . 篮球运动项目的圆心角的度数为______°;(3)如果该校八年级学生共800名,试估计八年级学生中最喜欢B . 羽毛球运动项目的人数. 24.(本题满分8分)如图,一次函数132y x =+的图像与x 轴交于点A ,与反比例函数()0ky x x =>的图像交于点()2,B m ,过点B 作BC x ⊥轴,垂足为点C ,点P 是反比例函数()0ky x x=>的图像上的一点,且PBC ABC ∠=∠.(第24题)(1)求反比例函数的表达式; (2)求点P 的坐标. 25.(本题满分8分)如图,在ABC △中,BC 的垂直平分线分别交AB 、BC 于点D ,E .连接CD ,AE 交于点F ,且AC AE =.(第25题)(1)求证:ABC FCE ∽△△;(2)若6BC =,2DE =,求FCE △的面积. 26.(本题满分10分)如图,在平面直角坐标系中,四边形OACB 是矩形,顶点A 在y 轴上,顶点B 在x 轴上,顶点C 的坐标为()8,6,双曲线()180yx x>分别交AC ,BC 于点D ,E .(第26题)(1)点D 的坐标为______;(2)若点P 是对角线OC 上一点.①连接AP ,将线段AP 绕点A 逆时针旋转90°后得到线段AQ .若点Q 恰好在双曲线()180y x x>上,求此时点P 坐标;②连接DE ,DP ,若DPC DEC ∠=∠,请画出图形探究并求OP 的长. 27.(本题满分10分)如图,四边形ABCD 是矩形,点P 为CD 边上一动点(与点C ,D 不重合),连接AP ,过点A 作AQ AP ⊥交CB 的延长线于点Q ,连接PQ ,交AB 于点E .设AB m =,AD n =.(第27题)(1)当4m =,2n =时.①若点P 是CD 中点时,求BQ 的长; ②若AEP △是等腰三角形,求PD 的长;(2)取PQ 的中点M ,连接AM ,BM ,BP ,若在点P 运动过程中存在某一位置,使得四边形AMBP 是平行四边形,则m ,n 之间的数量关系为______.参考答案一、选择题1-5:ADCBC 6-8:DCB二、填空题9. 80 10. 15 11. 2x 12. 70 13.23− 14. 3 15.8316. 74。
人教版八年级下册数学期末考试试题及答案
人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。
2023-2024学年福建省厦门双十中学八年级下学期期末数学试题
2023-2024学年福建省厦门双十中学八年级下学期期末数学试题1.如图,中,,则()A.B.C.D.2.下列二次根式中,为最简二次根式的是().A.B.C.D.3.如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得、的中点分别是点D、E,且,则A、B间的距离是()A.B.C.D.4.在下列各图象中,表示函数的图象大致是()A.B.C.D.5.在日常生活中,对某些技能的训练,新手的表现通常不太稳定.以下是四名学生进行8次射击训练之后的成绩统计图,请根据图中信息估计最可能是新手的是()A.B.C.D.6.下列运算正确的是()A.B.C.D.7.硫酸钠()是一种主要的日用化工原料,主要用于制造洗涤剂和牛皮纸制浆工艺.硫酸钠的溶解度y ()与温度t ()之间的对应关系如图所示,则下列说法正确的是()A.当温度为时,硫酸钠的溶解度为B.硫酸钠的溶解度随着温度的升高而增大C .当温度为时,硫酸钠的溶解度最大D.要使硫酸钠的溶解度大于,温度只能控制在8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的横坐标为()A.B.C.D .9.如图,点O 为矩形的对角线的交点,,点E 从点B 出发(不含点B )沿向点C 运动,移动到点C 停止,延长交于点F,则四边形形状的变化依次为()A .平行四边形菱形平行四边形矩形B .平行四边形正方形菱形矩形C .平行四边形菱形正方形矩形D .平行四边形正方形平行四边形矩形10.等腰三角形中,,记,周长为,定义为这个三角形的坐标.如图所示,直线,,将第一象限划分为4个区域.下面四个结论中,所有正确结论的序号是()①对于任意等腰三角形,其坐标不可能位于区域I中;②对于任意等腰三角形,其坐标可能位于区域IV中;③若三角形是等腰直角三角形,其坐标位于区域III中;A.①③B.①②③C.②③D.①11.二次根式有意义,则的取值范围是________.12.直线向上平移2个单位长度后得到的直线的解析式为______.13.学校为了促进学生积极参加体育运动,决定给篮球队24名运动员购买运动鞋,下表是24名运动员鞋码统计表,根据统计表信息,这24名运动员鞋码的众数是______.鞋码2526人数1487414.弹簧的长度与所挂物体的质量的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是_____.15.如图,在矩形中,,,E是边的中点,F是上一点,连接,将沿折叠,使点D落在矩形内的点G处,若点G恰好在矩形的对角线上,则的长为________.16.如图,若点是某个正方形的两个对角顶点,则称互为“正方形关联点”,这个正方形被称为的“关联正方形”,已知点,点在直线上,正方形是点的“关联正方形”,顶点到直线的距离分别为,则的最小值为_____.17.计算:(1).(2).18.如图,菱形中,E、F分别为边上的点,且,连接,求证:.19.已知一次函数.(1)在平面直角坐标系中画出该函数的图像.(2)当自变量取何值时,函数与的值相等?这个函数值是多少?20.平行四边形中,对用线,相交于点,点在边上,且.(1)求作点.(要求:尺规作图,保留作图痕迹,不写作法)(2)若,,,求的度数.21.九年级一班邀请A、B、C、D、E五位评委对甲、乙两位同学的才艺表演打分,并组织全班50名同学对两人民意测评投票,绘制了如下的统计表和不完整的条形统计图:五位评委的打分表A B C D E甲8991939486乙8889909892并求得了五位评委对甲同学才艺表演所打分数的平均分和中位数:(分);中位数是91分.(1)五位评委对乙同学才艺表演所打分数的平均分为,中位数为;(2)=,并补全条形统计图;(3)为了从甲、乙二人中只选拔出一人去参加艺术节演出,班级制定了如下的选拔规则:选拔规则:选拔综合分最高的同学参加艺术节演出,其中,综合分才艺分测评分才艺分五位评委所打分数中去掉一个最高分和去掉一个最低分,再算平均分;测评分“好”票数分“较好”票数分“一般”票数分;①当时,通过计算说明应选拔哪位同学去参加艺术节演出?②通过计算说明的值不能是多少?22.在一条笔直的公路上有两地,小明骑自行车从地去地,小刚骑电动车从地去地,然后立即原路返回到地,如图是两人离地的距离(千米)和行驶时间(小时)之间的函数图像.请根据图像回答下列问题:(1)求小明离地的距离关于行驶时间之间的函数解析式;(2)若两人间的距离不超过千米时,能够用无线对讲机保持联系,求两人从途中相遇后到地的过程中,无法用无线对讲机保持联系的总时间是多少小时?23.在平面直角坐标系中,点是直线在第二象限内的一点,点B在轴正半轴上,且.线段平移得到线段,点A的对应点是点D,点B的对应点是点,,,交于点G.(1)当时,求点B坐标.(2)已知点,,若的面积为,是否存在点G,使的值最小?若不存在,请说明理由;若存在,求出点G的坐标.24.已知正方形,边长为6,边上有一个动点P.(1)如图1,当H 在边延长线上,若,连接.求证:.(2)点F 在线段上,满足,点E 在射线上,连接,记,.若,①如图2,求d与t的关系式.(无需写出取值范围).②如图3,点Q 在线段延长线上,连接,,若E 在线段上,且,求t 的值,及线段的长.25.某农场的草莓物美价廉,深受周边地区人们的喜爱.小苏经过考察,计划在距离农场路程500千米的范围内选一处建立草莓加工工厂,包含甲、乙两条生产线,甲生产线将草莓包装后直接销售,乙生产线制作草莓酱销售.经过调查与测算,工厂与农场的路程距离会直接影响草莓的采购成本价,采购成本价随两地之间路程距离变化的大致规律如表1所示.工厂与农场的距离s(千米)50100150200250300350400450500相应的采购成本p(万元/吨)2.6 2.83.0 3.2 3.4 3.6 3.84.0 4.2 4.4甲生产线中,每吨原材料的包装生产费为1万元/吨.平均销售价格、生产过程的减重率均与工厂的选址有关,分别如图1、图2所示.(备注:减重率是指在特定过程中(如采后处理、贮藏、运输、加工等)重量减少程度的指标,计算公式:)乙生产线中,每吨原材料的加工生产费为1.5万元/吨,减重率为,成品草莓酱销售价格会随季节、市场供需等而波动,小苏从去年一年中随机抽取30单交易进行调查,并绘制了这30单交易的销售价格的频数分布直方图,如图3所示.(1)草莓采购成本价随工厂与农场路程距离变化而变化的规律可大致用一个数学关系式描述,请求出该关系式.(2)若乙生产线分配到草莓原料80吨,试求出成品草莓酱的销售总额.(3)考虑到草莓的保鲜等问题,甲生产线分配到的草莓原料不多于乙生产线的3倍;工厂每季购进200吨草莓,为了获得更高的利润,请你为小苏规划工厂的选址与生产方案,并说明理由.。
2023-2024学年八年级第二学期期末考数学试卷附答案
第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。
八年级下期末数学试卷(解析版)
八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。
2024年人教版初二数学下册期末考试卷(附答案)
一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。
A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 任何数乘以1都等于它本身。
()3. 0既不是正数也不是负数。
()4. 两个锐角相加一定大于90度。
()5. 任何数都有相反数。
()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。
2. 任何数乘以______都等于它本身。
3. 两个负数相乘,结果是______。
4. 两个锐角相加一定______90度。
5. 任何数都有______数。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等边三角形的性质。
3. 简述矩形的性质。
4. 简述平行四边形的性质。
5. 简述勾股定理。
五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。
2. 已知等边三角形的周长为18,求它的面积。
3. 已知矩形的周长为20,求它的面积。
4. 已知平行四边形的面积为30,求它的周长。
5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。
六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。
2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。
初二数学下册期末考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 二次函数的图像是一个抛物线。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。
12. 一次函数y = 3x 5的图像与y轴的交点是______。
13. 二次函数y = x² 4x + 4的顶点坐标是______。
14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。
15. 两个相同的数相乘,结果是这个数的______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 什么是等腰三角形?请给出一个例子。
18. 请解释一次函数的图像是一条直线的原理。
19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学试卷一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个 1. 实数a ,b ,c ,d 在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是A .aB .bC .cD .d 2.下列交通标志中是中心对称图形的是A B C D3.下列图形中,内角和与外角和相等的是A B C4.在平面直角坐标系xOy 中,点P 的坐标为(1,1). 如果将x 轴向上平移2个单位长度,y 轴不变,得到新 坐标系,那么点P 在新坐标系中的坐标是 A .(1,-1) B .(-1,1) C .(3,1)D .(1,2)5.如图,平行四边形ABCD 中,AC ⊥AB ,点E 为BC 6表中a ,b ,c 分别是DA .6,12,0.30B . 6,10,0.25 C. 8,12,0.30 D. 6,12,0.247.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B =60°,接着活动学具成为图2所示正方形,并测得对角线AC =40cm ,则图1中对角线AC 的长为A. 20 cmB .30 cm C. 40 cmD. 8.对二次三项式241x x --变形正确的是A .2(2)5x +-B .2(2)+3x +C .2(2)5x --D .2(2)3x -+ 9.已知点(-2,a ),(3,b )都在直线2y x m =+上,对于a ,b 的大小关系叙述正确的是A .a b >B .a b <C .a b ≥D .a b ≤10.教师运动会中,甲,乙两组教师参加“两人背夹球” 往返跑比赛,即:每组两名教师用背部夹着球跑完规定 的路程,若途中球掉下时须捡起并回到掉球处继续赛跑, 用时少者胜.若距起点的距离用y (米)表示,时间用 x (秒)表示.下图表示两组教师比赛过程中y 与x 的 函数关系的图象.根据图象,有以下四个推断: ①乙组教师获胜②乙组教师往返用时相差2秒 ③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3 其中合理的是A .①②B .①③C .②④D . ①④二、填空题(本题共18分,每小题3分) 11. 因式分解:233m -= .12.如图,平行四边形ABCD 中,DE 平分∠ADC ,交BC 边于点E , 已知AD =6,BE =2,则平行四边形ABCD 的周长为 .13.已知y 是x 的一次函数,下表列出了部分y 与x 的对应值.ABCDECDB图2图1乙甲则m 的值为 .14.关于x 的一元二次方程220x x c ++=有两个不相等的实数根,写出一个满足条件的实数c 的值:c = .15.小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是: , 理由是: .16.如图,点E 为正方形ABCD 外一点,且ED =CD ,连接AE ,交BD 于点F .若∠CDE =40°,则∠DFC的度数为 .三、解答题(本题共62分,第17-19题,每小题4分,第20-29题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.解不等式组:106,2314 3.x x x x -⎧->⎪⎨⎪+>-⎩18.用适当的方法解方程:2230x x --=.19.如图,四边形ABCD 是平行四边形,对角线AC ,BD交于点O ,且△OAB 为等边三角形. 求证:四边形ABCD 为矩形.ABCDEFOABCD20.关于x 的一元二次方程()2211n x x n +++=的一个根是0,求n 的值.21.已知△ABC ,请按要求完成画图、说明画图过程及画图依据.(1)以A ,B ,C 为顶点画一个平行四边形;(2)简要说明画图过程;(3)所画四边形为平行四边形的依据是 .22.某地天空的最高点时为此地的“地方时间”12 因此,不同经线上具有不同的“地方时间”地区“地方时间”之间的差称为这两个地区的时差. 右图表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)下表是同一时刻的北京和首尔的时间,请填写完整.(2)设北京时间为x (时),首尔时间为y (时),0≤x ≤12时,求y 关于x 的函数表达式.23.已知关于x 的一元二次方程()22220ax a x a ++++=()0a ≠.(1)求证:此方程总有两个不相等的实数根; (2)若此方程的两个根都为整数,求整数a 的值.24.如图,四边形ABCD 是平行四边形,E ,F 分别为BC ,AD 的中点,(1)求证:AE=CF ;(2)延长CF 交BA 的延长线于点M ,求证:AM=AB .ABME F BD A25.绿色出行是对环境影响最小的出行方式,“共享单车” 已成为北京的一道靓丽的风景线.已知某地区从2017年 1月到5月的共享单车投放量如右图所示.(1)求1月至2月共享单车投放量的增长率; (2)求2月至4月共享单车投放量的月平均增长率.26.如图,在平面直角坐标系xOy 中,过点A (4,0)的直线1l与直线2:2l y x =-相交于点B (-4,m ).(1)求直线1l 的表达式;(2)若直线1l 与y 轴交于点C ,过动点P (0,n )且平行于2l 的直线与线段AC 有交点,求n 的取值范围.27. 有这样一个问题:探究函数11y x =-+的图象与性质.小东根据学习一次函数的经验,对函数11y x =-+的图象与性质进行了探究. 下面是小东的探究过程,请补充完整:(1)在函数11y x =-+中,自变量x 可以是任意实数;下表是y 与x 的几组对应值.① 求m 的值;② 在平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;/月投放量/万量(3)结合函数图象,写出该函数的一条性质: .28.已知将一矩形纸片ABCD 折叠,使顶点A 与C 重合,折痕为EF . (1)求证:CE =CF ;(2)若AB =8 cm ,BC =16 cm ,连接AF ,写出求四边形AFCE 面积的思路.29. 在平面直角坐标系xOy 中,点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y ,且12x x ≠,12y y ≠,若P ,Q 为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P ,Q 互为“正方形点”(即点P 是点Q 的“正方形点”,点Q 也是点P 的“正方形点”).下图是点P ,Q 互为“正方形点”的示意图.(1) 已知点A 的坐标是(2,3),下列坐标中,与点A 互为“正方形点”的坐标是 .(填序号)①(1,2);②(-1,5);③(3,2).(2)若点B (1,2)的“正方形点”C 在y 轴上,求直线BC 的表达式;(3)点D 的坐标为(-1,0),点M 的坐标为(2,m ),点N 是线段OD 上一动点(含端点),若点M ,N 互为“正方形点”,求m 的取值范围.GEFABCD数学答案二、填空题(本题共18分,每小题3分)11.()()311m m -+ 12.20; 13.-1; 14.0(答案不唯一); 15.小东,在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定; 16.110︒. 三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:解不等式①得2x >,...............................................................................2分 解不等式②得4x <,. (3)分∴原不等式组的解为24x <<. ………………………………………………………….4分18.解:2230x x --=221130x x -+--= (3)分()2140x --=……………………………………………………………………………....2分 ()214x -=12x -=±…………………………………………………………………………………….3分 12x -=或12x -=-3x =或1x =-………………………………………………………………………...…….4分19.证明:∵四边形ABCD 是平行四边形,∴ AC =2OA ,BD =2OB ,………………………………………………..…….1分∵△OAB 为等边三角形,∴ OA=OB , ……………………………………………………………..….2分 ∴ AC=BD .…………………………………………………………………...3分∴四边形ABCD 为矩形.………………………………………………….….4分20.解:∵关于x 的一元二次方程()2211n x x n +++=的一个根是0,求n 的值.∴2001n ++=, ………………………………..…………………………………….2分∴1n =±, ………………………………..…………………………………………….4分 ∵10n +≠,∴1n =.…………………………………………………………………………...…….5分 21.解:各种画法酌情给分 (1)………………………………...…….3分(2)画图过程: 1.取AC 中点D ,2.连接BD 并延长,使DE =BD ,3.连接AE ,CE .四边形ABCD 是所求平行四边形.………………………...……………………………...4分 (3)依据:对角线相等的四边形是平行四边形.………………………....………..5分 22.(1)8:30,11:15………………………...………………………………………...…..2分 (2)1y x =+,(012)x ≤≤.………………………...…………………..…...…..4分 23.(1)()2224(2)a a a ∆=+-+………………..……………………………………..1分 2248448a a a a =++-- 4= ∵40∆=>,∴方程有两个不相等的实数根.………………..…………………………...…..2分EDABC(2)2222a x a--±=,……………………...………………………………………...3分 11x =-, 2242212a a x a a a----===--.……………………...…………....4分 ∵ 方程的根均为整数,∴ 1,2a =±±. …………………………………………………………...…....5分 24.证明:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ..................................…..1分又∵E ,F 分别为BC ,AD 的中点, ∴AF=12AD ,CE=12BC , ∴AF=CE ,∴四边形AECF 是平行四边形,.................…..2分∴AE=CF .……………......................................3分(2)∵四边形AECF 是平行四边形,∴AE ∥CF , …………………………………………………………….……….4分 又∵E 为BC 的中点, ∴A 为BM 的中点.即AM=AB .……………...………………………………………………..…..5分 25.(1)()3.2 2.5 2.528%-÷=. …………………………………...……..…..2分 (3)()23.217.2x +=……………………………………………………….…..4分()21 2.25x +=1 1.5x +=±120.5, 2.5()x x ==-舍………………………………………..…………...5分26.解:(1)∵点B (-4,m )在直线2:2l y x =-上,∴8m =.………………………..………………………………………...1分 ∵点A (4,0)和B (-4,8)在直线1l 上,设1:l y kx b =+,MEFCBDA∴40,48.k b k b +=⎧⎨-+=⎩ 解得1,4.k b =-⎧⎨=⎩………………………..……..2分∴直线1l 的表达式为4y x =-+.………………………..…………...3分 (2)点C 坐标为(0,4),………………..………………………………..…...4分平行于2l 的直线过点C 时表达式为24y x =-+, 平行于2l 的直线过点D 时表达式为28y x =-+,∴n 的取值范围是 48n ≤≤.………………..…………………………..5分27.(1)①4x =时,114114y x =-+=-+=………..…………………………...1分②……………………..4分(2)1x <时y 随x 的变大而变小,1x >时y 随x 的变大而变大.……….…..5分 28.(1)证明:∵矩形纸片ABCD 折叠,顶点A 与C 重合,折痕为EF ,∴∠1=∠2,AD ∥BC ,……………………………………………………………..1分 ∴∠1=∠3, ∴∠2=∠3,∴CE =CF .………………………………………………………………….…..…...2分(2)思路:连接AF① 由矩形纸片ABCD 折叠,易证四边形AFCE 为平行四边形;② Rt △CED 中,设DE 为x ,则CE 为16-x ,CD =8,根据勾股定理列方程可求得DE ,CE 的长;③ 由CF =CE ,可得CF 的长;④ 运用平行四边形面积公式计算CF ×CD 可得四边形AFCE 的面积.……………………………….…..…...5分29.(1)①③………………….…………………………………………………………...2分(2)∵点B (1,2)的“正方形点”C 在y 轴上,∴点C 的坐标为(0,1),(0,3),∴直线BC 的表达式为1y x =+,3y x =-+.…………………….………………………….…...4分(3)过点OD 分别作与x 轴夹角为45︒的直线,∵点M 的坐标为(2,m ),点N 是线段OD点M ,N 互为“正方形点”,∴点D 的正方形点坐标是(2,3),(2,-3),点O 的正方形点坐标是(2,2),(2,-2),∴23m ≤≤或32m -≤≤-.…………………….………………………….…...6分。