确定一次函数的表达式
确定一次函数解析式的五种方法
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
北师大版八年级数学上册4.4__确定一次函数表达式
V/(米/秒)
(1)请写出 v 与 t 的
关系式; (V=2.5t) O
t/秒
(2)下滑3秒时物体的 速度是多少?
引例
V/(米/秒)
某物体沿一个斜坡
下滑,它的速度v (米/ 秒)与其下滑时间t (秒) 的关系如右图所示:
(1)请写出 v 与 t 的
关系式;(V=2.5t)
O
t/秒
(2)下滑3秒时物体的 速度是多少?(7.5米/秒)
2、一次函数的图像是什么形状?
答:是一条直线.
3、如何根据一次函数y=kx+b(k≠0)中k、b的正负
来确定函数图象所在的象限?
一次函数 y kx b(k 0)
b 0
k 0
b 0 b 0
k 0
b0 b 0
图
y
y
y
y
y
象
ox
ox o x
ox
ox
b 0
y ox
性 k>0时y随x的增大而增大 ,图象必经过三、一 象限 质 k<0时y随x的增大而 减小 ,图象必经过二、四象限
§4.4确定一次函数表达式
学习目标
(1)了解两个条件确定一个一次 函数;一个条件确定一个正比例函 数. (2)能由两个条件求出一次函数 的表达式,一个条件求出正比例函 数的表达式,并解决有关现实问题.
1、什么是正比例函数和一次函数?
答:若两个变量x,y间的关系式可以表示成
y=kx+b(k, b为常数,k≠0)的形式,则称y是x 的一次函数.特别地,当 b=0时,称y是x的正比例 函数.
思维拓展
1.已知正比例函数y=k1x的图象与 一次函数y=k2x-9的图象的交点坐 标为P(3,-6). (1)求两函数解析式. (2)求两函数图象与x轴围成的三 角形面积.
确定一次函数的表达式
确定一次函数的表达式
求出一次函数的表达式是数学练习题中常见的提问方式,下面介绍一下确定一次函数的表达式的三种方法。
用待定系数法确定一次函数解析式
待定系数法是确定一次函数的表达式最常用的方法,解题步骤包括“一设、二列、三解、四写”,具体内容如下:
1、根据题中所给的已知条件写出含有待定系数的函数关系式;
2、将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
3、解方程得出未知系数的值;
4、将得到的待定系数代回所求的函数关系式中就可以得到该函数的解析式。
用图像平移法确定一次函数表达式
一次函数的图像在平移时的规律为:直线在平移的倾斜率不变,即k的值保持不变。
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k≠0)的图像;当b<0时,把正比例函数y=kx(k≠0)的图像向下平移∣b∣个单位,就得到一次函数:y=kx+b(k≠0)的图像。
根据直线的对称性确定一次函数表达式
关于y轴对称的两条直线为y=kx+b(k≠0)和y=-kx+b
(k≠0);关于x轴对称的两条直线为y=kx+b(k≠0)和y=-kx-b (k≠0);关于原点对称的两条直线为y=kx+b(k≠0)和y=kx-b (k≠0)。
以上为同学们介绍了确定一次函数的表达式的三种方法,同学们都掌握了吗?其中待定系数法的应用是较为广泛的,同学们一定要学好,利用图像来确定一次函数的表达式属于较为灵活的方法,可以用在选择填空中快速确定答案。
确定一次函数的表达式
V /(米/秒) 米秒
8 7 6 5 4 3 2 1
未命名.gsp
·
t /秒 秒
0
1 2 3
4
5
6 7 8
想一想
确定正比例函数的表达式需要几 个条件?确定一次函数的表达式? 确定正比例函数的表达式需要一个 条件 确定一次函数的表达式需要两个条件
一、确定正比例函数的表达式的方法: 确定正比例函数的表达式的方法: 1、根据题意,设表达式:y=kx 、根据题意,设表达式: 2、根据给出的数据求出k的值 、根据给出的数据求出 的值 3、根据求出的 值,写出一般表达式 、根据求出的k值 二、确定一次函数的表达式的方法: 确定一次函数的表达式的方法: 1、根据题意,设表达式:y=kx+b 、根据题意,设表达式: 2、根据给出的数据求出k、b的值 、根据给出的数据求出 、 的值 3、根据求出的 、b的值,写出一般表 的值, 、根据求出的k、 的值 达式
∴这个一次函数的表达式为y=x-2 这个一次函数的表达式为
在弹性限度内,弹簧的长度 (厘米) 在弹性限度内,弹簧的长度y(厘米) 是所挂物体质量x(千克)的一次函数。 是所挂物体质量 (千克)的一次函数。一 根弹簧不挂物体时长14.5厘米;当所挂物 厘米; 根弹簧不挂物体时长 厘米 体的质量为3千克时 弹簧长16厘米 千克时, 厘米。 体的质量为 千克时,弹簧长 厘米。写 之间的关系式, 出y与x之间的关系式,并求当所挂物体的 与 之间的关系式 质量为4千克时弹簧的长度 千克时弹簧的长度。 质量为 千克时弹簧的长度。 14.5=b ① 解:设y=kx+b,根椐题意得 根椐题意得 16=3k+b ② 代入② 把b=14.5代入②,得 k=0.5 代入 所以在弹性限度内: 所以在弹性限度内:y=0.5x+14.5 当x=4时,y=0.5 × 4+14.5=16.5 x=4时
三法确定一次函数表达式
三法确定一次函数表达式确定一次函数表达式的方法有三种,分别是点斜式、截距式和一般式。
一、点斜式:点斜式是通过已知直线上一点的坐标和该直线的斜率来确定一次函数表达式的方法。
已知直线上一点的坐标为(x1,y1),斜率为m,则该直线的点斜式表达式为:y-y1=m(x-x1)其中,m为直线的斜率,定义为直线上任意两点的纵坐标之差与横坐标之差的比值。
例如,已知直线上一点的坐标为(2,3),斜率为2,则直线的点斜式为:y-3=2(x-2)二、截距式:截距式是通过已知直线在坐标轴上的截距来确定一次函数表达式的方法。
已知直线与x轴的交点为(a,0),与y轴的交点为(0,b),则该直线的截距式表达式为:x/a+y/b=1其中,a为直线与x轴的截距,b为直线与y轴的截距。
例如,已知直线与x轴的截距为3,与y轴的截距为4,则直线的截距式为:x/3+y/4=1三、一般式:一般式是通过已知直线上两点的坐标来确定一次函数表达式的方法。
已知直线上两点的坐标为(x1,y1)和(x2,y2),则该直线的一般式表达式为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)其中,(x1,y1)和(x2,y2)为直线上的两个点的坐标。
例如,已知直线上两点的坐标分别为(2,3)和(4,7),则直线的一般式为:(y-3)/(x-2)=(7-3)/(4-2)以上三种方法都可以用来确定一次函数表达式,选择使用哪种方法取决于已知的条件。
点斜式适用于已知斜率和一点的情况,截距式适用于已知与坐标轴的截距的情况,一般式适用于已知两点的情况。
根据实际情况选择合适的方法,可以快速准确地确定一次函数表达式。
确定一次函数的表达式
确定一次函数的表达式确定一次函数表达式主要是确定出正比例函数y=kx 中的k ,以及一次函数y=kx+b 中的k, b 的值。
(一) 自主探究:根据定义确定一次函数表达式。
即利用一次函数y=kx+b 中k ≠0,且自变量x 的次数为“1”确定字母取值。
例1、 已知函数54)3(12-++=+m x m y m 是一次函数,求其解析式。
(二) 辨析研讨:用待定系数法求一次函数表达式。
1.已知一次函数y=kx +5过点P (-1,2),则k =____.2.若一次函数的图象经过点(1,2),则函数的表达式可能是 (写出一个即可).3. 若一次函数的图象经过点(1,2),且与y=2x 平行,求一次函数的表达式。
4. 若一次函数的图象经过点(1,2),(-1,6),求一次函数的表达式。
用待定系数法求一次函数表达式:(1) 定义:先设所求函数关系式(其中含有未知常数,系数)再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法。
其中未知系数也叫待定系数。
(2) 你能说说用待定系数法求一次函数表达式的步骤吗?巩固练习:1.2.如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,求一次函数的表达式。
(三)自主探究:根据问题实际意义直接写出表达式。
1.试试你的身手1、若正比例函数y=kx (k ≠0)经过点(-1,2)则该正比例函数的解析式为 。
2、直线y=kx+b 过点(1,2)且与直线y=x+5平行,则直线的表达式为 。
3、经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是 。
4、已知21y y y +=,其中1y 与x 成正比例,2y 与x-2成正比例,当x=-1时y=2;当x=2时y=5。
求y 与x 的函数关系式。
5、已知一次函数y=kx+b (k ≠0),当x=-4时,y 的值是9;当x=2时,y 的值是-3,求此函数的表达式。
6、已知一次函数的图像经过A(-1,3)和点B (2,-3)。
6.4 确定一次函数的表达式
6.4确定一次函数的表达式
【基础须知】
一、确定一次函数解析式的基本思想
1.由于一次函数的表达式y=kx+b中含有两个字母k和b,因此要确定一个一次函数,即把k和b的值确定下来即可.
2.正比例函数由于图象经过原点,所以只需求出字母k即可.
3.确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件.
二、确定一次函数表达式的步骤
1.设函数表达式y=kx+b;
2.根据已知条件列出关于k,b的方程;
3.解方程;
4.把求出的k,b值代入到表达式中即可.
三、围绕函数,主要有三种类型的运算
1.已知函数解析式及自变量的值,求自变量的值对应的因变量的值.
2.已知函数解析式和因变量的值,反过来求与已知因变量对应的自变量的值.
3.已知函数的类型,和函数的几对对应值(函数图象上几个点的坐标),求函数的解析式.
【重点梳理】
本节的重点是会根据已知条件求正比例函数和一次函数关系式.
【难点再现】
本节的难点是通过函数图象获取信息,发展形象思维.
【例题讲解】
已知直线y=kx+b经过点(1,3)和点(-1,1),求该函数的表达式.
解析:
求一次函数关系式时,通常先设出式子中的未知系数,再根据条件求出未知系数,从而求出这个关系式.
答案:
根据题意k+b=3.①
-k+b=1.②
①-②得,2k=2,
∴k=1.把k=1代入①得b=2.
∴函数关系式为y=x+2.。
确定一次函数的表达式
确定一次函数的表达式在数学的世界里,一次函数就像是一座桥梁,连接着不同的数量关系。
而确定一次函数的表达式,则是我们能够顺利通过这座桥梁,解决各种实际问题的关键钥匙。
一次函数的一般形式是 y = kx + b(其中 k、b 是常数,k ≠ 0)。
这里的 k 被称为斜率,它决定了函数图像的倾斜程度;b 则是截距,也就是函数图像与 y 轴的交点。
要确定一次函数的表达式,实际上就是要找出 k 和 b 的值。
那怎么来找呢?通常有两种常见的方法:待定系数法和利用函数图像的特征。
先说待定系数法。
假设我们知道一次函数上的两个点的坐标,比如(x₁, y₁)和(x₂, y₂),把这两个点代入函数表达式 y = kx + b 中,就可以得到一个关于 k 和 b 的方程组。
举个例子,如果已知点(1, 3)和(2, 5)在某个一次函数上,那么把(1, 3)代入函数表达式得到 3 = k×1 + b,即 k + b = 3;把(2, 5)代入得到 5 = k×2 + b,即 2k + b = 5。
接下来解这个方程组,就能求出 k 和 b 的值。
从第一个方程 k + b = 3 可以得到 b = 3 k,把它代入第二个方程2k + b = 5 中,就有 2k + 3 k = 5,解得 k = 2。
再把 k = 2 代入 b= 3 k ,得到 b = 1。
所以这个一次函数的表达式就是 y = 2x + 1。
再来说说利用函数图像的特征来确定表达式。
如果我们能从图像中直接看出函数与 y 轴的交点,那这个交点的纵坐标就是 b 的值。
而斜率 k 呢,可以通过图像上任意两个点的坐标来计算。
比如说,函数图像与 y 轴交于(0, -2),并且还经过点(2, 4)。
那么 b =-2,而斜率 k =(4 (-2))÷(2 0)= 3 。
所以这个一次函数的表达式就是 y = 3x 2 。
在实际应用中,确定一次函数的表达式非常有用。
确定一次函数表达式四法
确定一次函数表达式四法一、 定义确定法例1、己知()3221-+-=-k xk y k 是关于x 的一次函数,则这个函数的表达式为二、 待定系数法 例2、若一次函数b kx y +=的图象经过A (一1,一5)B (2,1)两点,求该一次函数的解析式.例3、己知直线b kx y +=与直线x y 3=平行且过点A (1,一5),求该直线的解析式例4、己知一次函数b kx y +=的图象经过A (3,0),且与坐标轴围成的三角形的面积为6,求这个函数的解析式.三、 方程式确定法 .例5、如图Rt △ABC 中,∠C =︒90,BC =6,AC =8,点P 是AC 上一动点AP BC AB PQ ⋅=⋅,P Q ⊥AB 于Q ,设PC =x ,P Q=y 求y 与x 之间的函数关系式,并分别指出x 与y 的取值范围.四、 算式确定法例6、某电信公司手机A 类收费标准是:月租费18元,另外,每通话1分钟收费0.7元.(1) 写出每月应缴费用y 元与通话时间x (分)之间的函数关系式(2) 如果小明的手机10月份通话时间是82分钟,它应缴费多少元?实际问题中一次函数图象例1 两摞相同规格的饭碗整齐地叠放在桌面上,请根据如图1中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y (cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x 的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.例2今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图2所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用 户该月用了多少度电?例3、小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入y (元)与销售重量x (千克)之间成正比例关系.请你根据以上信息解答下列问题:(1)求降价前销售收入y (元)与售出草莓重量x (千克)之间的函数关系式;并画出其函数图象;(2)小强共批发购进多少千克草莓?小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元?图2图1例4、某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm的正方形,现从盒中倒出果汁,盒中剩余果汁的体积y(毫升)与果汁下降高度x(cm)之间的函数关系如图所示(盒子的厚度不计).(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)若将满盒果汁倒出一部分,下降的高度为15cm,剩余的果汁还能够倒满每个容积为180毫升的3个纸杯吗?请计算说明.例5、恩施山青水秀,气候宜人.在世界自然保护区星斗山,有一种雪白的树蟋蟀,人们发现他15秒钟所叫次数与当地温度之间满足一次函数关系.下面是蟋蟀所叫次数与温度变化(1(2)在该地最热的夏天,人们测得这种蟋蟀15秒钟叫了50次,那么该地当时的最高温度大约为多少摄氏度?。
确定一次函数的表达式
确定一次函数的表达式在数学的世界里,一次函数是我们经常会遇到的重要概念。
它不仅在数学学科中有着广泛的应用,在实际生活中也能帮助我们解决许多问题,比如计算成本、预测趋势等等。
而要有效地运用一次函数,首先我们得学会确定它的表达式。
一次函数的一般形式是 y = kx + b ,其中 k 是斜率,b 是截距。
确定一次函数的表达式,关键就在于求出 k 和 b 的值。
那怎么求呢?最常见的方法就是利用给定的条件来建立方程组,然后求解。
比如说,已知一次函数经过两个点的坐标,(x₁, y₁)和(x₂, y₂)。
我们把这两个点代入函数表达式 y = kx + b 中,就能得到两个方程:y₁= kx₁+ by₂= kx₂+ b这样就组成了一个关于 k 和 b 的二元一次方程组,通过解方程组,就能求出 k 和 b 的值,从而确定一次函数的表达式。
举个例子,已知一次函数经过点(1, 3)和(2, 5)。
我们把这两个点代入表达式中:对于点(1, 3),有 3 = k × 1 + b ,即 k + b = 3 ①对于点(2, 5),有 5 = k × 2 + b ,即 2k + b = 5 ②用②①,得到:2k + b (k + b) = 5 32k + b k b = 2k = 2把 k = 2 代入①式,得到 2 + b = 3,b = 1所以,这个一次函数的表达式就是 y = 2x + 1 。
除了已知两个点的坐标这种情况,有时候我们还会遇到已知函数图像与坐标轴的交点来确定表达式。
比如,已知一次函数图像与 x 轴交于点(a, 0),与 y 轴交于点(0, b)。
那么,把这两个点代入表达式 y = kx + b 中,可得:0 = ka + b ③b = 0 × k + b ,即 b = b ④由③式可得 b = ka,将其代入④式,就可以求出 k 的值,进而求出b 的值,确定函数表达式。
另外,如果给定的条件是关于函数的斜率和一个点的坐标,那确定表达式就更简单了。
湘教版数学八年级下册_【例题与讲解】确定一次函数表达式
4 确定一次函数表达式1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y =kx (k ≠0);若不过原点,则为一次函数,可设其关系式为y =kx +b (k ≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y =kx 或y =kx +b 中,求出其中的k ,b ,即可确定出其关系式.(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y =kx (k ≠0)中只有一个未知系数k ,故只要一个条件,即一对x ,y 的值或一个点的坐标,就可以求出k 的值,确定正比例函数的表达式.②一次函数y =kx +b (k ≠0)有两个未知系数k ,b ,需要两个独立的关于k ,b 的条件,求得k ,b 的值,这两个条件通常是两个点的坐标或两对x ,y 的值.【例1】 如图,直线AB 对应的函数表达式是( ).A .y =-32x +3 B .y =32x +3 C .y =-23x +3 D .y =23x +3 解析:设直线AB 对应的函数表达式是y =kx +b (k ≠0),当x =0时,y =3,代入得b =3,当x =2时,y =0,则2k +3=0,k =-32,故y =-32x +3. 答案:A点技巧 用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.【例2-1】一次函数图象如图所示,求其解析式.分析:利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式.解:设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【例2-2】在直角坐标系中,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m, 3),求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.如何确定一次函数的表达式确定正比例函数和一次函数的解析式是一次函数这部分内容考查的一个重要知识点.那么应该怎样确定正比例函数和一次函数的解析式呢?因为正比例函数的解析式y=kx中,只有一个待定系数k,确定了k的值,也就确定了正比例函数的解析式.而一次函数的解析式y=kx+b中,有两个待定系数k和b,因此需要两个条件,此条件可以是直线上的两个点的坐标,也可以是两对变量与函数的对应值.但在实际求正比例函数和一次函数的解析式时,应该具体问题具体分析.(1)定义型若两个量y与x成正比例,可设为正比例函数形式:y=kx(其中k是常数,k≠0),再用待定系数法求比例系数k.(2)两(或一)点型把点的坐标代入所设的关系式中,根据点的坐标求解.(3)图象型解决看图获取信息的问题,不仅要注意坐标轴所表示的量是什么,还要抓住图中一些关键的点(如:起点、终点、折线中的折点)所反映出的信息.通过观察图象,发掘图象经过坐标轴上的两点,根据两点的坐标构造待定系数的方程组,求出k,b;它体现了数与形的完美结合,是解题的重要思想方法之一.点在函数图象上,就是说点的坐标满足该图象的函数解析式.只需把点的坐标代入函数解析式,然后求方程(组)的解即可.(4)平移型平移不改变k的大小,只改变b的大小.(5)实际应用型解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.这是求实际应用型问题的函数关系式的至关重要的一点.【例3-1】求一次函数y=(m-2)xm2-3-m+3的关系式.解:由一次函数的定义,得m2-3=1,且m-2≠0.解得m=-2.故所求关系式为y=-4x+5.【例3-2】直线y=kx+b经过点A(-3,0)和点B(0,2),求这条直线的表达式.分析:把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,求出k,b即可.解:把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,得0=-3k+b,2=b,得出k=23,b=2,从而得出这条直线的表达式为y=23x+2.【例3-3】已知某个一次函数的图象如图所示,则该函数的解析式为__________.解析:设一次函数解析式为y=kx+b(k≠0),∵由图可知一次函数y=kx +b的图象过点(0,2),(1,0),∴2=k×0+b,0=k×1+b,解得b=2,k=-2.∴一次函数的解析式为y=-2x+2.答案:y=-2x+2【例3-4】将直线y=2x向上平移两个单位长度,所得的直线是( ).A.y=2x+2 B.y=2x-2C.y=2(x-2) D.y=2(x+2)解析:由于直线y=kx+b可以看做由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移),所以将直线y=2x向上平移两个单位长度,所得的直线是y=2x+2.答案:A【例3-5】大拇指尽量伸开时,拇指与食指的距离称为指距,某研究表明,一般情况下,人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:(1)求出h与(2)某人身高196 cm,一般情况下他的指距是多少?解:(1)设一次函数的解析式为h=kd+b(k,b为常数,且k≠0).由题意,得160=20k+b①,169=21k+b②.②-①,得k=9,代入①,得b=-20.故一次函数的解析式为h=9d-20.(2)当h=196时,196=9d-20,得d=24.因此某人身高196 cm,一般情况下他的指距是24 cm.。
确定一次函数的表达式说课稿
确定一次函数的表达式说课稿任育霞今天我说课的题目是《确定一次函数的表达式》。
下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。
一、教材内容分析:1、本节课内容在整个教材中的地位和作用。
《确定一次函数的表达式》是义务教育课程标准新人教版教科书八年级上第14章《一次函数》第四节.本课时安排了1个学时完成,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于、的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.2、教学目标定位。
(一)知识与能力a.了解一个条件确定一个正比例函数,两个条件确定一个一次函数。
b.会用待定系数法求出一次函数和正比例函数表达式。
(二)过程与方法:a.复习一次函数做图像的方法,引出由图像来确定关系式,进而确定一次函数表达式的问题,体现了数形结合的思想。
b.通过例题讲解,根据函数的图像与函数关系式的关系,明确求一次函数表达式的方法。
(三)情感态度与价值观a.通过探究,引出一次函数表达式,培养学生的逆向思维。
b.学会求一次函数及其他函数表达式的一般方法。
3、教学重难点。
根据所给信息,利用待定系数法确定一次函数的表达式.在实际问题情景中寻找条件,确定一次函数的表达式.二、学情分析本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
一次函数表达式的确定
一次函数表达式的确定一次函数是指函数的最高次数为一次的函数,其表达式的一般形式为y=ax+b,其中a和b是常数。
一次函数的图像呈现为一条直线,其中a决定了直线的斜率(即直线的倾斜程度),b决定了直线在y轴上与原点的位置关系。
在确定一次函数表达式时,关键是要有足够的信息来确定a和b的值。
以下是几种常见的确定一次函数表达式的方法:1. 已知两个点的坐标:假设已知直线上的两个点A(x1, y1)和B(x2, y2),则可以通过计算斜率k=(y2-y1)/(x2-x1)来确定a的值,然后再利用其中一个点的坐标,代入y=ax+b的表达式,解方程得到b的值。
例如,已知直线上两个点A(2,4)和B(5,10),则斜率k=(10-4)/(5-2)=2、代入点A的坐标,可得4=2a+b,代入任意一个点的坐标,如5=5a+b。
解这个方程组,可以得到a=2,b=0,即y=2x的一次函数表达式。
2. 已知斜率和一点坐标:有时候可能已知直线的斜率k和其中一个点的坐标,可以直接代入y=ax+b的表达式,然后解方程得到b的值。
例如,已知一次函数的斜率为3,且经过点(1, 4),代入y=ax+b的表达式,可得4=3*1+b,解方程得到b=1、因此,一次函数的表达式为y=3x+13.已知函数图像上的一些特征:有时候,可能通过观察函数图像上的一些特征,来确定一次函数的表达式。
-如果直线与y轴平行,则直线在y轴上的截距为b,且斜率为无穷大。
此时,一次函数的表达式为y=b。
- 如果直线与x轴平行,则直线在x轴上的截距为b,且斜率为零。
此时,一次函数的表达式为y=ax+b,其中a为零。
- 如果直线经过原点,则直线在y轴上的截距为零,即b为零。
此时,一次函数的表达式为y=ax。
4.利用最小二乘法拟合数据:如果已知一些数据点,但不确定是否符合一次函数的形式,可以使用最小二乘法来拟合数据点,以确定最优的一次函数表达式。
最小二乘法通过最小化实际数据与拟合函数之间的误差来确定最优的a和b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育个性化辅导教案提纲
学生: 日期: 年 月 日 第 次 时段:
教学课题
6.4确定函数表达式—导学案
教学目标 考点分析
1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.
教学重点
1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式. 教学难点 1.能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.
2.用一次函数的知识解决有关现实问题. 教学方法 观察法、探究法、讲练结合法、启发式教学
教学过程:
Ⅰ.导入新课
在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.
Ⅱ.自学新课 一、试一试
某物体沿一个斜坡下滑,它的速度v (米/秒)与其下滑时间t (秒 )的关系如图所示.
图① 图②
(1)如图①观察可知V 是t 的______函数,可设一般表达式为___________;
除原点外图象上的已知点的坐标为_________,可求出函数关系式为_____________. 由此可知确定正比例函数关系式需要除原点外的________个条件. (2) 如图②观察可知y 是x 的______函数,可设一般表达式为___________; 图象上的已知点的坐标为________________,可求出函数关系式为__________ 由此可知确定一次函数关系式需要________个条件.
课堂小结,我是小专家:根据图象如何求函数关系式?
y 3
x O 4
x
A
B
O y
Ⅳ: 课堂深化,牛刀小试
(1)如图正比例函数y 1=k 1x 和一次函数 y 2=k 2x+b 的图象相交于点A(4,3),B 为直线y 2与y 交点且OA=2OB;
① 求k 1、k 2、b 的值 ② 求△AOB 的面积.
③ 若点D 在x 轴上且AOBD 是梯形,求D 点的坐标.
Ⅴ 师生反思:
教学反思
课后作业:
一、填空题
(1)若一次函数y =kx -3k +6的图象过原点,则k =_______,一次函数的解析式为________. (2)若y -1与x 成正比例,且当x =-2时,y =4,那么y 与x 之间的函数关系式为________.
(3)如图1:直线AB 是一次函数y =kx +b 的图象,若|AB |=5,则函数的表达式为________.
(4)随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.
年份(x ) 1999 2000 2001 2002 … 入学儿童人数(y )
2710
2520
2330
2140
…
利用你所学的函数知识解决以下问题: 图1 ①入学儿童人数y (人)与年份x (年)的函数关系是________. ②预测该地区从________年起入学儿童人数不超过1000人. 二、解答题
1.汽车的油箱中的余油量Q (升)是它行驶的时间t (小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如下图2:
图2
(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系,并求出t的取值范围.
(2)从开始算起,如果汽车每小时行驶40千米,当油箱中余油20升时,该汽车行驶了多少千米?
2.小明买了一套现价为12万元的房子,购房时已付房款3万元,从第二年起,以后每年付房款5000元与上一年剩余欠款利息的和,已知剩余欠款的年利率为0.4%.
(1)将第三年、第四年、第十年应付房款填入下列表格中:
年份第一年第二年第三年第四年…第十年…
应交房款(元)30000 5360 ……
(2)若第x年(x≥2),小明家应交房款y元,请写出年付房款y与x的函数关系式.
答:____________________________________________________________________.
3.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤6,请写出y与x的函数关系式.
(2)若x>6,请写出y与x的函数关系式.
(3)在同一坐标系下,画出以上两个函数的图象.
(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
学生对于本次课评价:
○特别满意○满意○一般○差学生签字:教师评定:
1、上次作业评价:○非常好○好○一般○需要优化
2、上课情况评价:○非常好○好○一般○需要优化教师签字:
教务主任签字:___________
龙文教育教务处。