《整式的加减》知识点归纳及典型例题分析
七年级数学整式的加减-知识点总结
整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。
整式的加减知识点总结(含例题)
整式的加减知识点总结及例题1.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放在一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.K知识参考答案:2.(1)合并同类项;(2)不变;(4)降幂;升幂3.(1)相同;相反一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是A.62和x2B.11abc和9bcC.3m2n3和–n3m2D.0.2a2b和ab2【答案】CA.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4【答案】C二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1【答案】B【解析】A、4a与3b不是同类项,不能直接合并,故本选项错误;B、4xy–3xy=xy,计算正确,故本选项正确;C、–2x+5x=3x,计算错误,故本选项错误;D、2y–y=y,计算错误,故本选项错误.故选B.【名师点睛】合并同类项是逆用乘法对加法的分配律,运用时应注意:(1)不是同类项的项不能合并;(2)同类项的系数相加,字母部分不变;(3)确定好每一项系数的符号.三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体. 【例4】下列去括号正确的是 A .–(a +b –c )=–a +b –c B .–2(a +b –3c )=–2a –2b +6c C .–(–a –b –c )=–a +b +cD .–(a –b –c )=–a +b –c【答案】B四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算. 3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m –(m –n )的结果是 A .2m –nB .n –2mC .–nD .n【名师点睛】整式加减的结果要最简: (1)不能有同类项;(2)含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数.(3)不再含括号.。
整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)
整式的加减专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.单项式的概念 (2)2.多项式的概念 (3)3.整式的概念 (4)4.正确列代数式 (5)5.同类项的概念 (7)6.合并同类项 (8)7.去括号法则 (9)8.整式的加减(合并同类项) (10)三、重难点题型 (11)1.整式加法的应用 (11)2.待定系数法 (12)3.整式的代入思想 (13)4.整数的多项式表示 (14)5.与字母的取值无关的问题 (15)6.整式在生活中的应用 (16)二、基础知识点1.单项式的概念单项式:数或字母的积叫作单项式注:①分母中有字母,那就是字母的商,不是单项式②“或”单独的一个数字或单独一个字母也称为单项式例:5x;100;x;10ab等系数:单项式中的数字叫做单项式的系数单项式的次数:一个单项式中所有字母的指数的和例1.判断下列各式中那些是单项式,那些不是?如果是单项式,请指出它的系数和次数。
-13b;13xy2;2π;−ab;32a2b;13a−b;−5x2y33答案:单项式有:-13b,系数为-13,次数为11 3xy2,系数为13,次数为1+2=32π,系数为2π,次数为032a2b,系数为9,次数为2+1=3−5x2y33,系数为−53,次数为2+3=5例2.−xy2z3的系数是,次数是。
答案:系数为:-1,次数为1+2+3=62.多项式的概念多项式:几个单项式的和叫作多项式注:减单项式,实际是加该单项式的负数,也称作“和”项:每个单项式叫做多项式的项,有几项,就叫做几项式常数项:不含字母的项多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n次,就叫做n次式)x2y2按字母y作升幂排列。
例1.将多项式3xy3−4x4+15x2y2+3xy3答案:−4x4+15−4x4中y的次数为01x2y2中y的次数为253xy3中y的次数为3例2.指出下列多项式的项和次数,并说明每个多项式是几次几项式。
整式的加减知识点总结与典型例题(人教版初中数学)
整式的加减知识点总结与典型例题一、整式——单项式1、单项式的定义:由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.2、单项式的系数:单项式中的数字因数叫这个单项式的系数.说明:⑴单项式的系数可以是整数,也可能是分数或小数。
⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号。
⑶对于只含有字母因数的单项式,其系数是1或-1。
⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π.3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 242⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;4、在含有字母的式子中如果出现乘号,通常将乘号写作“∙”或者省略不写。
例如:t ⨯100可以写成t ∙100或t 1005、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. 考向1:单项式1、代数式中,单项式的个数是( ) A .1 B .2 C .3 D .42、单项式2ab 2π-的系数和次数分别是( )A .-2π、3B .-2、2C .-2、4D .-2π、2 3、设a 是最小的自然数,b 是最大的负整数,c ,d 分别是单项式2xy -的系数和次数,则a ,b ,c ,d 四个数的和是( )A .-1B .0C .1D .3二、整式——多项式1、多项式的定义:几个单项式的和叫多项式.2、多项式的项:多项式中的每个单项式叫做多项式的项.3、多项式的次数:多项式里,次数最高项的次数叫多项式的次数.4、多项式的项数:多项式中所含单项式的个数就是多项式的项数.5、常数项:多项式里,不含字母的项叫做常数项.6、整式:单项式与多项式统称整式.考向2:多项式1、多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式2、多项式21xy xy -+的次数及最高次项的系数分别是( )A .2,1B .2,-1C .3,-1D .5,-13、下列说法正确的是( )A .-2不是单项式B .-a 的次数是0 C.53ab 的系数是3 D.324-x 是多项式 4、代数式中是整式的共有( ) A .5个 B .4个 C .3个 D .2个5、若m ,n 为自然数,则多项式n m n m y x +--4的次数应当是( )A .mB .nC .m+nD .m ,n 中较大的数6、多项式是关于x 的二次三项式,则m 的值是( )A .2B .-2C .2或-2D .3三、整式的加减——合并同类项1、同类项的概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.说明:⑴同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。
《整式的加减》主要知识点和题型汇总
《整式的加减》主要知识点和题型汇总01、单项式1、单项式的定义由数与字母的 组成的代数式称为单项式。
单独一个数或一个 也是单项式。
2、判断代数式是单项式的方法:①单项式中不能含有 和 运算,②若有分母,分母中不能含有 ③单独的一个数字或字母都是 。
④在代数式 b a y x ba x y x n 2315,0,,4,3,2),(2,---+πππ中,单项式的个数为( )A 、7个B 、6个C 、5个D 、4个 3、单项式的系数①单项式中 因数叫做单项式的系数②只含有字母的单项式的系数为 , ③如x 的系数是 ,4ab -的系数是 4、单项式的次数①单项式中所有字母指数的 叫做单项式的次数,与数字的次数② a 的次数是 , 22ab -的次数是 ,c b 23)1(-的次数是 ,xy 25π的次数是 ,③填表 单项式x -y x 2y x 33π52ab -7)2(22abc - 系数 次数④写出系数是3,次数为5以a ,b 为字母的三个不同的单项式 。
02、多项式1、多项式的定义①几个 的和叫做多项式。
在多项式中,每个单项式叫做多项式的 。
其中,不含字母的项,叫做 。
②多项式y x xy xy -+++6473中的项分别是 ,常数项是 。
二次项是 ,最高项的系数是 2、多项式的次数①多项式里,次数最高项的 ,就是这个多项式的次数。
②多项式423342--+-mc n m n m 中,第一项的次数是 ,第二项的次数是 ,第三项的次数是 ,这个多项式的次数是 。
3、多项式的命名(几次几项式)如23+-y x 是 次 项式,432-+-y x x 是 次 项式。
4、升幂排列与降幂排列:①按字母x 的降幂排列:把多项式的各项按字母x 的 从大到小的顺序排列,叫做按字母x 的降幂排列;②按字母x 的升幂排列:把多项式的各项按字母x 的指数 的顺序排列,叫做按字母x 的升幂排列。
③重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“+”号交换到后面时要添上;④把多项式y x y x y xy 43252647++--按字母x 的降幂排列为 , 按字母y 的升幂排列为 。
第二章《整式的加减》-----知识点及题型-----(第二版)
单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。
补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。
应用:判断下列各式子哪些是单项式? (1)12x -;(2)35a b -;(3) 1y x +。
解:(1) 12x -不是单项式,因为含有字母与数的差; (2)35a b -是单项式,因为是数与字母的积; (3)1y x +不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式? (1)21+x ; (2) a bc ; (3) b 2; (4) -3a b 2; (5) y ; (6) 2-xy 2; (7) -0.5 ;(8) 11x +。
2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。
应用:指出各单项式的系数:(1) 31a 2h ,(2) 322r ,(3) a bc ,(4)-m ,(5) 223ab π-注意:π是数字而不是字母。
解:(1) 31a 2h 的系数是31,(2) 322r 的系数是32, (3) a bc 的系数是1 (4)-m 的系数是-1, (5) 223ab π-的系数是23π- 注意:π是数字而不是字母。
3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。
注意:π是数字而不是字母。
应用:1.指出各单项式的次数:(1)31a 2h ,(2)3232r h ,(3)423ab π- 解:(1)因为字母a 的指数是2,字母h 的指数是1,213+=,所以 31a 2h 的次数是3, (2) 3232328r h r h =,因为字母r 的指数是2,字母h 的指数是3,235+=,所以3232r h 的次数是5, (3) 442233ab ab ππ--=, 因为字母a 的指数是1,字母b 的指数是4,145+=, 所以423ab π-的次数是5。
整式的加减知识点总结及题型汇总
整式的加减整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若 a、 b、 c、p、 q 是常数) ax2+bx+c 和 x2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式单项式. 多项式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“ - ”号,括号里的各项都要变号 .9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列) . 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列 .11.列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了 .12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值 .13.列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
第章整式的加减知识点总结及题型
第一章整式的加减知识点总结及题型一、整式的概念和性质整式是由有理数和字母的乘积与乘积之和(差)构成的代数式,其中字母表示未知数。
整式分为单项式、多项式和恒等式。
单项式只有一个项,多项式有多个项,恒等式左右两边恒等。
整式有以下性质:1. 与多项式的次数相同的整式称为同次项。
同次项之间可进行加减法运算。
2. 整式的次数是指各项次数中的最大值。
3. 同次项相加减后的结果还是同次项。
4. 多项式加减法满足交换律和结合律。
二、整式的加法整式的加法要求将同类项相加。
同类项是指字母部分相同的项,其系数可相同可不同。
例1:计算以下两个整式的和。
3x^2 + 4x - 2 和 -2x^2 - 3x + 1解:首先将同类项相加,得到:(3x^2 - 2x^2) + (4x - 3x) + (-2 + 1) = x^2 + x - 1例2:计算以下两个多项式的和。
2x^3 + 3x^2 - 5 和 -x^3 + 4x^2 + 1解:首先将同类项相加,得到:(2x^3 - x^3) + (3x^2 + 4x^2) + (-5 + 1) = x^3 + 7x^2 - 4三、整式的减法整式的减法同样要求将同类项相减。
可通过改变减数的符号,将减法转化为加法运算。
例3:计算以下两个整式的差。
4x^2 + 3x - 2 和 -2x^2 - 3x + 1解:首先将减数变为相反数,得到:(4x^2 + 3x - 2) + (-1)(-2x^2 - 3x + 1) = 4x^2 + 3x - 2 + 2x^2 + 3x - 1 = 6x^2 + 6x - 3例4:计算以下两个多项式的差。
2x^3 + 3x^2 - 5 和 -x^3 + 4x^2 + 1解:首先将减数变为相反数,得到:(2x^3 + 3x^2 - 5) + (-1)(-x^3 + 4x^2 + 1) = 2x^3 + 3x^2 - 5 + x^3 - 4x^2 - 1 = 3x^3 - x^2 - 6四、整式的题型1. 计算整式的和或差。
【精编】六年级数学上册《整式的加减》全章知识点总结及练习
第三章 整式的加减 基础知识复习知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
【特别注意】分母中只要含有字母一定不是单项式,也不是多项式,而是分式。
知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2,(注意:千万不要忘记前边的符号)(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(单项式前边的系数是1或-1时,1可以省略不写。
)(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如-2πxy 的系数就是-2π知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(非要讨论的话,单独的一个数字的系数是它本身,次数是0)(3)单项式的指数只和字母的指数有关,与系数的指数无关。
整式的加减知识点总结
整式的加减知识点总结整式的加减知识点总结一、整式的加法整式是指由常数、变量和它们的乘积及乘方组成的代数式。
整式的加法是指将同类项相加的运算。
1. 同类项同类项是指具有相同字母和相同指数的项。
例如,a^2b和2a^2b是同类项,但a^2b和ab^2不是同类项。
2. 加法法则将同类项的系数相加,字母和指数保持不变。
例如,将3ab+2ab相加时,可将系数相加得到5ab,字母和指数保持不变。
3. 零多项式零多项式是指系数为0的整式。
将零多项式与任何整式相加的结果都是原来的整式。
例如,将3ab+(-3ab)相加,结果为0。
二、整式的减法整式的减法是指将两个整式相减的运算。
1. 减法法则将减数改变符号后,再按照加法法则进行运算。
例如,将3ab-2ab相减,可将减数改变符号得到-2ab,然后按照加法法则将同类项相减得到ab。
2. 减法的特例减法的特例是指减数和被减数相等的情况,结果为零多项式。
例如,a^2b-a^2b的结果为0。
三、整式的加减混合运算整式的加减混合运算是指包含加法和减法的整式运算。
1. 先化简同类项在进行加减混合运算时,首先将同类项按照加法法则化简。
例如,将3ab-2ab+5ab-4ab化简为(3-2+5-4)ab。
2. 再合并同类项化简后,将同类项的系数相加,字母和指数保持不变。
例如,将(3-2+5-4)ab合并为2ab。
3. 注意符号在进行加减混合运算时,注意同类项前的正负号。
对于同类项之间的减法,可以看作是将减数改变符号后与被减数进行加法运算。
例如,将3ab+(-2ab)相加,得到ab。
四、实例分析下面通过一些实例来对整式的加减进行更详细的说明。
例1:将4a^2b-3ab+2b^2-5a^2b化简为最简整式。
解:首先化简同类项,得到(4-5)a^2b+(-3)b^2。
然后合并同类项,得到(-1)a^2b+(-3)b^2。
最终结果为-a^2b-3b^2。
例2:将a^3+2a^2-3ab+4b^2-5a^3+6ab-7b^2化简为最简整式。
整式的加减全章知识点总结
整式的加减全章知识点总结一、整式的基本概念整式是代数式的一部分,为有理式的一部分,在有理式中可以包含加、减、乘、除、乘方五种运算,但在整式中除数不能含有字母。
1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式 5x 的系数是 5,次数是 1;单项式-3xy²的系数是-3,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
例如,多项式 2x²+ 3x 1 有三项,分别是 2x²、3x 和-1,其中-1 是常数项,该多项式的次数是 2。
3、整式单项式和多项式统称为整式。
二、整式的加减运算整式的加减实质上就是合并同类项。
1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,2x²y 和-5x²y 是同类项;3 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²=(3 + 2)x²= 5x²。
三、整式加减的步骤1、去括号如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例如,a +(b c) = a + b c;a (b c) = a b +c 。
2、合并同类项将同类项的系数相加,字母和字母的指数不变,得到最简结果。
四、整式加减的应用整式的加减在解决实际问题中有着广泛的应用。
例如,在行程问题中,如果已知速度和时间,可以用整式表示路程,然后通过整式的加减来计算不同情况下的路程和。
整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)
整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。
整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。
2.整式的加减原则在整式加减中,只有同类项才能相加减。
同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。
3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。
2.对同类项的系数进行加减运算。
3.将结果合并,得到简化后的整式。
三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。
解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。
答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。
解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。
答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。
解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。
答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。
解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。
答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。
解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。
《整式的加减》知识点归纳及典型例题分析
整式的加减典型例题一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( ) A.4·21 B.3÷2y C.xy ·3 D.ab2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x ,2131,24y x -中,单项式共有 ( )A.1个 B.2个 C.3个 D .4个4、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是()A 、3 B、4 C 、5 D 、65、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
6、下列说法正确的是( )A、0不是单项式 B 、x 没有系数 C、37x x+是多项式 D、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A时,即n=A,座位总数是140;当第1排座位数是B,即n =B 时,座位总数是160,求A 2+B2的值.2、若长方形长是2a+3b,宽为a +b,则其周长是( )A.6a+8b ﻩ ﻩB.12a+16bﻩﻩ C.3a+8bﻩ D.6a+4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ) A .b+a B.10b+a C. 100b +a D. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a元,则原价为 元。
(2)香蕉每千克售价3元,m 千克售价____________元。
ﻫ(3)温度由5℃上升t ℃后是__________℃。
ﻫ(4)每台电脑售价x元,降价10%后每台售价为____________元。
ﻫ(5)某人完成一项工程需要a 天,此人的工作效率为__________。
解析《整式的加减》知识点
解析《整式的加减》知识点一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。
二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
2、有除法运算并且除式中含有字母的有理式叫做分式。
三、单项式与多项式1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
整式的加减知识点总结及习题
整式的加减【知识要点】同类项: 所含字母相同, 相同字母的指数也相同的项一、 注: ①同类项与字母顺序无关;②几个常数也是同类项1、 合并同类项:2、 概念: 把同类项合并成一项3、 方法: ①同类项的系数相加;②字母和字母的指数不变二、 步骤: ①准确找出同类项;②利用法则, 把同类项系数相加;三、 ③利用有理数加法计算出各项系数的和, 写出结果四、 去括号:1、 意义法则: ①括号前是“+”号, 去括号后符号不变2、 ②括号前是“-”号, 去括号后符号改变方法: ①由内到外②由外到内③内外同时【典型例题】下列各题中的两项是不是同类项? 为什么?(1)y x y x 2252与;(2)b a ab 3322与;(3)ab abc 44与;(4)nm mn 与3;(5)-5与+3.【例1】 合并下列各式中的同类项。
(1)223x x +;(2)37328422++---a a a a ;(3)m n nm 222123- (4)ab a ab 342-+在式子① , ② ,③ , ④ 中, 需要先去括号, 再合并同类项的有。
先去括号, 再合并同类项。
(1))(528b a b a -++;(2))(26c a a --【例2】 下列计算结果正确的是( )。
A. B.C. D.先化简, 再求值。
, 其中 , 。
【课堂练习】一、 选择题1.下列运算正确的是( )A. B 、C. D.2、已知 是同类项, 则 的值是( )A.1B.0C.2D.33.减去 等于 的代数式是( )A. B. C. D.4.化简 的结果是( )A. B 、 C 、 D 、二、 填空题1. = 。
2.7-3x-4x2+4x-8x2-15= 。
3.2(2a2-9b)-3(-4a2+b)= 。
4.8x2-[-3x-(2x2-7x-5)+3]+4x= 。
5.单项式 的系数是______, 次数是______;6、 是 次 项式, 它的项分别是 , 其中常数项是 ;三、 7、为鼓励节约用电, 某地对居民用户用电收费标准作如下规定: 每户每月用电如果不超过100度, 那么每度电价按a 元收费;如果超过100度, 那么超过部分每度电价按b 元收费。
第4章整式的加减知识点总结及题型
第4章整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
整式加减知识点加习题精选全文
可编辑修改精选全文完整版七年级整式的加减1、单项式的概念:数与字母的积的代数式叫做单项式,单独的一个数或字母也是单项式。
(1)单项式中的数字因数叫做单项式的系数。
(2)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、几个单项式的和叫做多项式(1)在多项式中,每个单项式叫做多项式的项,其中不是字母的项叫做常数项。
(2)多项式里,次数最高的项的次数,叫做这个多项式的次数。
3、整式的意义:单项式和多项式统称为整式。
4、同类项:所含字母相同,相同字母的指数也相同的项,叫做同类项。
合并同类项:把同类项合并成一项叫做合并同类项。
5、应注意的问题:(1)系数(单项式或多项式的某项)包括前面的符号,特别地,在单项式中作为系数,如a π2-的系数为π2-。
(2)单项式只允许含有乘法以及数字为除数运算;多项中必须会有加法或减法运算,但不能有以字母为除式的除法运算。
(3)多项式重新排列时,各项要连同它前面的符号一起移动。
(4)多项式不含某一字母次数的项,表示此项的系数为0,如x 2+1π不含x的一次项,说明这样的一次项x的系数为0。
基本法则1、整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.2、合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.注意:a、系数相加时,一定要带上各项前面的符号。
b、合并同类项一定要完全、彻底,不能有漏项。
c、只有是同类项才能合并。
d、合并同类项的结果可能是单项式也可能是多项式。
重点难点解析1、本节的重点是整式的有关概念;难点是正确识别多项式的项和项的系数.2、关于单项式的系数,学习中要注意:①系数要包括前面的符号;②系数是1或-1时,通常省略不写.3、关于单项式的次数:①当字母的指数是1时,“1”通常省略不写;②对于不含字母的非0数,如-2,0.5等,叫“零次单项式”.4、关于多项式的项,每项必须包括它前面的符号.5、多项式的次数的概念要正确理解,是指最高次项的次数,而不是指多项式中所有字母指数的和,要与求单项式的次数区分开.练习:1多项式222332y y x x +-是一个 次 项式,它的项是2 若y x 57 与21+--m n y x 是同类项,则 m = ,n = . 3、在 中,次数 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减典型例题一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( ) A .4·21 B.3÷2y C.xy ·3 D.ab2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x,2131,24y x -中,单项式共有 ( )A.1个B.2个C.3个D.4个4、代数式,21a a +43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( )A 、3B 、4C 、5D 、65、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
6、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A 时,即n =A ,座位总数是140;当第1排座位数是B ,即n =B 时,座位总数是160,求A 2+B 2的值.2、若长方形长是2a +3b ,宽为a +b ,则其周长是( ) A.6a +8bB.12a +16bC.3a +8bD.6a +4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ) A.b+a B.10b+a C. 100b+a D. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。
(2)香蕉每千克售价3元,m 千克售价____________元。
(3)温度由5℃上升t ℃后是__________℃。
(4)每台电脑售价x 元,降价10%后每台售价为____________元。
(5)某人完成一项工程需要a 天,此人的工作效率为__________。
三、同类项的概念1、2275b a b a k m m k ++与为同类项,且k 为非负整数,则满足条件的k 值有( )A.1组B.2组C.3组D.无数组2、合并下列各题中的同类项,得下列结果:①4x +3y =7xy ;② 4xy -y =4x ;③ 7a -2a +1=5a +1;④ mn -3mn +2m =4mn ;⑤ -2x 2+12x 2-x 2=-52x 2; ⑥ p 2q -q 2p =0.其中结果正确的是( ) A.③⑤B.⑤⑥C.②③④D.②③④⑥3、已知yxxn m n m 2652与-是同类项,则( ) A.1,2==y x B.1,3==y x C.1,23==y x D.0,3==y x 4、下列各对单项式中,不是同类项的是( ) A .130与13B .-3x n+2y m 与2y m x n+2C .13x 2y 与25yx 2D .0.4a 2b 与0.3ab 25、下列各组中,不是同类项的一组是( )A.b a ab 2272.036.0与 B.222013yx y x 与 C.13241-和 D.n n n n x y yx 11++与四、去括号、添括号1、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
2、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
3、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 4、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 5、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 6、下列各式中去括号正确的是( ) A .()222222a a b b a a b b --+=--+B .()()222222x y x y x y x y -+--+=-++-C .()22235235x x x x --=-+D .()3232413413aa a a a a ⎡⎤---+-=-+-+⎣⎦五、单项式的次数和多项式的次数、项数1、≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
2、若m 、n 都是自然数,多项式222mn m n ab ++-的次数是( )A .mB .2nC .2m n +D .m 、2n 中较大的数3、已知单项式4312x y -的次数与多项式21228m a ab a b +++的次数相同,求m 的值。
4、若单项式2+m m b a 与单项式n b a 35的和是一个单项式,求mn5、A 是五次多项式,B 是四次多项式,则A+B 是( )A.九次多项式B.四次多项式C.五次多项式D.一次多项式 6、A 、B 、C 都是关于x 的三次多项式,则A +B -C 是关于x 的( ) A.三次多项式B.六次多项式C.不高于三次的多项式D.不高于三次的多项式或单项式7、已知,m n 是自然数,322341111712m n m n a b c a b c a b c --+--+是八次三项式,求,m n 8、8、若多项式x x a xa a +-+-)1()1(3,是关于x 的一次多项式,则a 的值为( )A. 0B. 1C. 0或1D.不能确定 9、若212112313n n n n x y z x y ----+-是六次四项式,则n=10、234233295327z y x z y x y xxy -+--是 次 项式, 其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
11、如果多项式1)1(3+--x n x m 是关于x 的二次二项式,试求m ,n 的值。
六、升幂、降幂排列1、将多项式3x 2y -xy 2+x 3y 3-x 4y 4-1按字母x 的降幂排列,所得结果是( ) A.-1-xy 2+3x 2y+x 3y 3-x 4y 4B. -x 4y 4+ x 3y 3+3 x 2y -x y 2-1 C. -x 4y 4+ x 3y 3-xy 2+3x 2y -1 D. -1+3 x 2y -x y 2+x 3y 3-x 4y 42、把多项式34432252353xy xy x y x y y --+-按x 的降幂排列为3、把多项式2xy 2-x 2y -x 3y 3-7按x 的升幂排列是 七、多项式中不含项的问题 1、若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值3、已知多项式3(ax 2+2x -1)-(9x 2+6x -7)的值与x 无关,试求5a 2-2(a 2-3a +4)的值。
4、当a(x ≠0)为何值时,多项式3(ax 2+2x -1)-(9x 2+6x -7)的值恒等为4。
八、多项式中错值代换问题 1、李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为221x x -+-,试求出正确答案。
3、有这样一道题“当22ab ==-,时,求多项式()()22233322a ab b a ab b -----+的值”,马小虎做题时把2a =错抄成2a=-时,王小明没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由。
九、整体代换问题 1、如果代数式535axbx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是2、已知:3=x y,则xy x -3等于( ) A.34 B. 1 C. 32D. 0 3、已知:x-y=5,xy=3,则3xy-7x+7y=4、已知:4,3=+=b a ab ,求]3)22(2[3+---b ab a ab 的值。
5、若)65(6)47(,3,5xy x y xy y x xy y x -+-++=-=-求的值。
6、已知:11=+x x ,则代数式51)1(2010-+++xx x x 的值是 。
7、已知32c a b =-,求代数式22523c a b a b c ----的值。
十、用字母表示的多项式中的加减 1已知两个多项式A 和B ,43344323,321,n n n A nxx x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?2、已知:A=3x+1,B=6x-3,则3A-B=3、已知:y x z y x A 54)(2-=-++,则A=4、已知:A=2244y xy x +- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值。
5、已知:A =x 3+3x 2y-5xy 2+6y 3-1,B =y 3+2xy 2+x 2y-2x 3+2,C =x 3-4x 2y +3xy 2-7y 3+1.求证:A +B +C 的值与x 、y 无关.十一、整式的运算 1、化简:(1){})]([])([222b b a -------- (2)21-]1)()72(7[9222-----y x y x x (3))109()7103(22n n n n x x x x x x ----+++ (4)b a b a ab ab b a ab 22223]}4)214(3[{+-+--(5)]2)2(35[)223(2--+---x x x x x2、当23-=a 时,求代数式:}3]9)2(85[4{1522222a a a a a a a a -+---+--的值。
3、已知:0)31()1(222=-++++c b a ,求)]}4(3[2{5222b a ab abc b a abc ----的值。
4、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
5、如果a 的倒数就是它本身,负数b 的倒数的绝对值是31,c 的相反数是5,求代数式4a -[4a 2-(3b -4a+c )]的值。
6先化简再求值:42222222276)]3(2)25([5a b a b a a a a a a a --+---++,其中21-=a 。