细胞生物学课件PDF 细胞信号转导

合集下载

第十二章细胞的信号转导ppt课件

第十二章细胞的信号转导ppt课件

医学细胞生物学
细胞的信号转导
Ligand
Receptor
Ion channel
Receptor
Kinase
Second messenger
Transcription factor
Gene Transcription
医学细胞生物学
第一节 细胞外信号
医学细胞生物学
化 学 信 号 分 子 的 类 型
Gs:刺激性G蛋白; Rs Gi:抑制性G蛋白;Ri Gt:与激活磷酯酶C的受体偶联; Go:与控制Ca2+通道的受体偶联; Gp:与激活磷酸二酯酶的受体偶联;
医学细胞生物学
第二节 受体
• G蛋白:
Ligand GTP
ab
PLC
g
GDP
AC
医学细胞生物学
第二节 受体
医学细胞生物学
第二节 受体
• 3.酪氨酸蛋白激酶受体: • 一条单次跨膜的多肽链 • 配体结合区域为胞外区 • 胞内区具有酪氨酸激酶
后作用于 Ras蛋白、AC和多种磷脂酶等。 • 2. 非受体型PTK: • 1)具有SH2/SH3结构域,游离于胞质中 • 2)与非催化型的受体耦联 • 3)与受体结合后被激活,进一步激活下游蛋白,
如STAT转录因子家族。
医学细胞生物学
第四节 信号转导与蛋白激酶
• 三、丝氨酸/苏氨酸激酶(STK) • 通过变构激活丝氨酸/苏氨酸残基磷酸化 • 磷酸化调节有放大级联效应,可逆性 • 作用底物:PKA(protein kinase A)、PKC、
神经传导、激素作用过程和感觉细胞中广 泛发挥作用
医学细胞生物学
G-protein
(Gliman和Rodbell,1994对G蛋白研究获诺贝尔奖)。

细胞生物学翟中和编 第章 细胞信号转导课件

细胞生物学翟中和编 第章 细胞信号转导课件

的应答反应。
细胞生物学翟中和编 第章 细胞信号转导
11
(二)受体
受体(receptor):是一种能够识别和选择性结合 某种配体(信号分子)的大分子,多为糖蛋白。 受体结合特异性配体后被激活,通过信号转导途 径将胞外信号转换为胞内化学或物理信号,以启 动一系列过程,最终表现为细胞生物学效应。
一般至少包括两个功能区域,与配体结合 的区域和产生效应的区域 ,分别具有结合特异 性和效应特异性。
➢NO为脂溶性气体,可快速扩散透过细胞膜,作用 于临近靶细胞;
➢血管内皮细胞和神经细胞是NO的生成细胞; ➢NO的生成以精氨酸为底物由NO合成酶(NOS)催
化,以NADPH为电子供体,生成NO和瓜氨酸; ➢NO的效应酶是鸟苷酸环化酶。
细胞生物学翟中和编 第章 细胞信号转导
35
NO与药物
➢硝酸甘油治疗心绞痛:其作用机理是硝酸甘油代 谢生成NO,后者刺激心脏血管平滑肌细胞舒张, 从而增加心脏供血。
• 细胞信号通路(signaling pathway ):指细胞接受外界信号, 通过一整套特定的机制,将胞外信号转导为胞内信号,最终 调节特定基因的表达,引起细胞的应答反应。
细胞生物学翟中和编 第章 细胞信号转导
3
一、细胞通讯
1.方式
• 化学信号通讯( chemical signaling ) • 接触依赖性通讯(contact-dependent signaling) • 间隙连接(gap junction)胞间连丝(plasmodesma)
细胞生物学翟中和编 第章 细胞信号转导
4
化学信号通讯作用方式
A. 内分泌
B. 旁分泌
C. 化学突触
D. 自分泌
细胞生物学翟中和编 第章 细胞信号转导

2024版细胞生物学电子版PPT课件

2024版细胞生物学电子版PPT课件
分裂期
分为前期、中期、后期和末期,主要完成染色体的分离和细胞质的分裂。
间期
细胞周期的大部分时间处于间期,包括G1期、S期和G2期,主要进行DNA复制和相关蛋白质合成。
细胞周期
指连续分裂的细胞从一次有丝分裂结束到下一次有丝分裂结束所经历的整个过程,包括间期和分裂期。
细胞周期与有丝分裂
减数分裂与遗传规律
胚胎发育过程中的细胞分化
组织器官的形成
在胚胎发育过程中,各种组织器官的形成是细胞分化的结果,需要多种类型细胞的协同作用。
组织的再生与修复
当组织受到损伤时,机体可以通过再生和修复机制来恢复组织的结构和功能,其中涉及到干细胞的激活、增殖和分化等过程。
再生医学的应用
再生医学利用干细胞和其他生物技术手段来促进组织的再生和修复,为治疗多种疾病提供了新的思路和方法。
减数分裂
生物细胞中染色体数目减半的分裂方式,性细胞分裂时,染色体只复制一次,细胞连续分裂两次。
遗传规律
主要包括分离定律、自由组合定律和连锁互换定律,是生物遗传的基本规律。
分离定律
在杂种后代中,一对相对性状的显隐性状会分开,各自独立地遗传给后代。
自由组合定律
控制两对或两对以上相对性状的基因在遗传给下一代时,各自独立分配,互不干扰。
位于细胞膜或细胞内,能够特异性识别并结合信号分子的蛋白质或糖蛋白。
受体
信号分子通过受体介导的一系列生物化学反应,将信号从细胞外传递到细胞内,并调节细胞的功能和代谢。
信号转导途径
细胞信号转导的基本概念
参与视觉、嗅觉、味觉等多种生理功能的调节。
G蛋白偶联受体信号转导途径
通过酶促反应将信号放大并传递到细胞内,调节细胞的生长、分化和代谢。
细胞分化的意义

《细胞信号转导》课件

《细胞信号转导》课件
03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。

第08章细胞信号转导-PPT精选文档

第08章细胞信号转导-PPT精选文档
接受外界信号,通过一整套特定的机制,将胞外信
号转导为胞内细胞信号,最终调节特定基因的表达, 引起细胞的应答反应的系列过程。
细胞识别是通过各种不同的信号通路实现的
8
细胞生物学—第八章 细胞信号转导
(二)信号分子与受体
1.信号分子
概念: 在细胞间或细胞内传递信息的化学分子。 化学信号:各类激素、局部介质和神经递质等。
细胞生物学—第八章 细胞信号转导
第八章 细胞信号转导
教学要求:
1.掌握细胞通讯与信号传递。 2.理解细胞内受体介导的信号转导。 3.掌握蛋白耦联受体介导的信号转导。 4.掌握酶连受体介导的信号转导。
5.了解信号的整合与控制。
教学安排:4课时
1
细胞生物学—第八章 细胞信号转导
第一节 概述
多细胞生物有赖于细胞通讯与信号传递, 以协调各种细胞 的功能,维持一个繁忙而有序的细胞社会。 单细胞生物有时也需要细胞通讯与信号传递。 一、细胞通讯
5
细胞生物学—第八章 细胞信号转导
不同的细胞间通讯方式
6
细胞生物学—第八章 细胞信号转导
跨膜细胞信号转导的一般步骤:
特定的细胞合成并释放信号分子 ↓扩散或血循环 靶细胞 ↓ 信号分子与靶细胞受体特异性结合→受体激活 ↓ 活化受体对信号进行转换并启动细胞内信使系统 ↓ 靶细胞功能、代谢或发育的改变。 ↓
15
细胞生物学—第八章 细胞信号转导
第二信使学说(second messenger theory)
胞外化学物质(第一信使)不能进入细胞,它
作用于细胞表面受体,而导致产生胞内第二信使,
信号的解除并导致细胞反应终止
7
细胞生物学—第八章 细胞信号转导

《细胞生物学》教学课件:08 细胞信号转导

《细胞生物学》教学课件:08 细胞信号转导

A. Mg2+ B. Ca2+
C. K+
D. Na+
• 在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是
A. 腺苷酸环化酶 酶Cγ
B. 磷脂酶Cβ
C. 蛋白激酶C D . 磷脂
第一节 细胞信号转导概述
多细胞生物是一个繁忙而有序的细胞社会,这种社会 性的维持不仅依赖于细胞的物质代谢与能量代谢, 还有赖于细胞通讯与信号传递,以协调细胞的行为。
酶连受体介导的信号跨膜传递
与酶连接的细胞表面受体又称催化性受体, 已知的这类受体都为跨膜蛋白,当胞外配体与 受体结合即激活胞内段的酶活性. 一、受体酪氨酸激酶及RTK-Ras蛋白信号通路
二、细胞表面其它与酶偶联的受体
酶偶联型受体(enzyme linked receptor)
有两类: • 其一是受体本身具有酶活性,
●信号转导系统
细胞通讯(cell communication)
一个细胞发出的信息通过介质传递到另一个细胞产生相应 的反应。细胞间的通讯对于多细胞生物体的发生和组织的构建, 协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必不 可少的。
●细胞通讯方式:
P237
GPLR的失敏:
例:肾上腺素受体被激活后,10-15秒cAMP骤增,然后在不 到1min内反应速降,以至消失。
受体活性快速丧失(速发相)---失敏(desensitization);
机制:受体磷酸化 。受体与Gs解偶联,cAMP反应停止 并被PDE降解。
两种Ser/Thr磷酸化激酶:
PKA 和肾上腺素受体激酶( ARK), 负责受体磷酸化
体构象变化,导致受体
和自磷酸化,激活受体本
身的酪氨酸蛋白激酶活性。

细胞生物学课件:9-细胞信号转导

细胞生物学课件:9-细胞信号转导
受体数目(胰岛素受体)
内在活性-- 配体与受体结合后是否表现功 能反应。
受体激动剂/受体阻断剂
胞内信号传递关键分子(分子开关)
蛋白激酶protein kinase能将磷酸基团转移到底 物特定的氨基酸残基(ser/thr/tyr)上,使蛋白 质磷酸化,从而改变蛋白构象、促进或阻碍与底 物的结合。
G蛋白偶联受体(G-protein-coupled receptor)
识别胞外信号,自身构象改变,与G蛋白作用, 由G蛋白调节底物蛋白活性,在细胞内传递信号 。
与受体偶联的G蛋白
由α、β、γ亚基构成异三聚体,可结合GTP( 活化)/GDP(失活),具有GTP酶活性,本身 的构象改变可活化效应蛋白,进行下一步信号传 递。
胞质受体/核受体
配体多为甾体类激素/甲状腺素类激素/维生素D等。 以简单扩散的方式或借助于载体蛋白跨越靶细胞 膜,结合胞质或胞核内受体的羧基端并激活受体。
胞质受体/核受体
受体的DNA 结合区与位于靶基因的启动子或增 强子区域的特定的应答元件相结合,来行使转录 调节功能。
甾体激素受体
膜受体
DAG结合于质膜上,可活化与质膜结合的蛋白激酶C (Protein Kinase C,PKC)。PKC以非活性形式分布 于细胞质中。当DAG的产生增多时,PKC转位到质膜内 表面,被DAG活化,同时此时它与Ca2+的亲和力增加, 在Ca2+ 、DAG的共同作用下具有了对底物进行磷酸化的 功能。
I使P3胞与内内C质a2网+浓上度的升IP高3受,体激门活控各钙类通依道赖结钙合离,子开的启蛋钙白通。道,
胞内信号传递关键分子(分子开关)
衔接蛋白(adaptor protein)一般不具有酶活性, 而是起到一个结构枢纽的作用。

细胞生物学精品课件--4.细胞信号转导

细胞生物学精品课件--4.细胞信号转导
GTP结合蛋白
③酶联受体
有3个结构区:细胞外配体结合域,跨膜结构域和细胞 内酶蛋白结构区 ,胞内结构域被激活后具有催化活性, 或与其激活的酶相连
(一)第二信使
胞内产生的非蛋白类小分子,通过其浓度变化, 应答胞外信号与细胞表面受体的结合,调节细胞 内酶和非酶蛋白的活性,以传递并放大第一信使 的信息。
1. GTPase开关蛋白
包括单体 GTP 结合蛋白与三聚体 GTP 结合蛋白,当 结合 GTP 时处于开启状态,结合 GDP 时处于关闭状 态。
鸟苷酸交换因子(GEF)控制开关蛋白(G蛋白)从 失活态向活化态转变:GEF引起调控蛋白释放GDP、 结合GTP,引发调控蛋白构象改变使其活化;随着 GTP水解成GDP和Pi,开关调控蛋白恢复失活状态。
并改变蛋白质构象,从而导致其活性增强或减弱, 是细胞内普遍存在的一种调节机制。
该图中,靶蛋白被磷酸化时活化,去磷酸化时失活。有些 靶蛋白具有相反的变化模式。
(3)钙调蛋白(CaM)
Ca2+ -CaM 复合,开启 Ca2+ -CaM 分离,关闭
第二节 细胞内受体介导的信号传递
与细胞内受体相互作用的信号分子是一些亲脂 性小分子,可以透过疏水性的质膜进入细胞而 与受体结合。
第一节 细胞信号转导
一、概述 (一)概念
细胞通过细胞表面或细胞内受体接受外界信号,经 过一系列特定的机制,将细胞外信号转化为细胞内 信号,从而调控细胞代谢或影响基因表达,最终改 变细胞生命活动的过程称为信号转导。这一系列反 应称为信号转导通路
(二)细胞信号转导的基本形式
1. 化学信号介导的信号转导
连接处具有亲水性孔道,允许小分子如Ca2+、 cAMP通过。可协同相邻细胞对外界信号的反应。

细胞生物学课件:12 第十二章:细胞信号转导

细胞生物学课件:12 第十二章:细胞信号转导
《细胞生物学》
第十二章:细胞信号转导
薛定谔:“生命的基本问题是信息问题”
薛定谔著《生命是什么》Fra bibliotek信号转导(signal transduction)
细胞之间联系的信号(第一信使)通过与 细胞膜上或胞内的受体特异性结合,将信 号转换后传给相应的胞内系统(第二信使 途径),使细胞对外界信号做出适当反应 的过程。
在某些分泌细胞,需要几个小时, 激活的 PKA 进入细胞核,将CRE结合蛋白磷酸化,调 节相关基因的表达。
Glycogen b骨re骼ak肌do中wn的in糖s原ke降let解al muscle
鸟苷酸环化酶
结合部位 催化部位
以神经肽为主
在视网膜光感受 器,cGMP直接 作用于Na+离子 通道。
受体构象改变,消耗ATP,自身磷酸化
四大胞内信使体系: 1. cAMP(环磷酸腺苷) 2. cGMP(环磷酸鸟苷) 3. DAG/IP3(二酰基甘油/三磷酸肌醇) 4. Ca2+
腺苷酸环化酶 AC G蛋白
第一信使
AC(腺苷酸环化酶)
ATP
PKA
RC RC
第一信使
AC(腺苷酸环化酶)
Ferid Murad
区别
I型激动剂 II型激动剂 I型拮抗剂 II型拮抗剂
结合于受体的部位 和内源配体的相比
相同
不同
相同
不同
产生的细胞效应 与内源配体的效应相比
相当或更强
可增强后者
阻断或减弱
阻断或减弱
乙酰胆碱受体
受体配体 结合区域
胞质内细胞内环
七次跨膜
能被G蛋白识 别的区域
(2) G 蛋白的分子组成和类型
神经递质:由神经元的突触前膜释放,作用于突 触后膜的受体,如乙酰胆碱、去甲肾上腺素。

《细胞信号转导》PPT课件

《细胞信号转导》PPT课件
molecularbiology生物化学与分子生物学教研室第一节细胞通讯第二节细胞信号转导的分子机制第三节不同受体介导的细胞信号转导通路第四节细胞信号转导与医学细胞外信号细胞内的多种分子的浓度活性位置变化蛋白激酶与蛋白磷酸酶proteinkinaseproteinphosphatasegtp结合蛋白gtpbindingproteinmolecularswitchsgtpgtpgdpgtpgtpgtpg蛋白的主要类型肾上腺素腺苷酸环化酶atpcamp无活性pka活化pka磷酸化酶b激酶糖原合酶糖原分解增加肾上腺素腺苷酸环化酶atpcampg蛋白一类和gtp或gdp结合位于胞膜胞浆面的外周蛋白具有信号转导功能由三个亚基组成非活化形式活化形式proteinactivationpkacampacplcippkacampac11gtp结合蛋白异源三聚体低分子量g蛋白gtp结合形式为活性形式gdp结合形式为非活性形式2130kda称为ras超家族现有50多种具有gtp酶活性13gapgtpaseactivatingproteingtpase激活蛋白sosguanidineexchangefactor鸟苷酸交换因子gefgtpoffgdpgaprasrassosgap第二节细胞信号转导的分子机制15蛋白复合物proteincomplexesclusters是细胞信号转导分子共同构成的基本工作场所是信号转导过程特异性和精确性的保证是网络性调控的基础signalosomestransducisomessignalcomplexsignalcassettessignalingmodules16转录调控复合物17蛋白相互作用是信号转导复合物形成的基础蛋白相互识别的结构基础蛋白复合物的重要结构蛋白衔接蛋白adapterprotein支架蛋白scaffoldprotein1840proteininteractiondomain19sh2domainsrcsh2srchomologydomainpyeei20sh3domainclassrkxxpxxpclasspxxpxrsrchomologydomain蛋白激酶btkphthsh3sh2催化区衔接蛋白grb2sh3sh2sh3转录因子statdna结合区sh2ta细胞骨架蛋白tensinsh2ptb22phosphotyrosine?sh2?ptbapoptosis?dd?ded?car

细胞生物学课件 第九章 细胞信号转导

细胞生物学课件 第九章 细胞信号转导

G 蛋白的分类
GS家族:对效应蛋白起激活作用的α亚单位 为αs亚单位,由此亚单位构成的G蛋白为Gs 蛋白; Gi家族:抑制作用 Gq家族
cAMP信号转导系统
1.cAMP信号通路的组成:
①. 激活型激素受体(Rs)或抑制型 激素受体(Ri); ②. 活化型调节蛋白(Gs)或抑制型 调节蛋白(Gi);
NO的作用机理: • 乙酰胆碱→血管内皮→Ca2+浓度升高→一 氧化氮合酶→NO→平滑肌细胞→鸟苷酸环 化酶→cGMP→血管平滑肌细胞的Ca2+离子 浓度→平滑肌舒张→血管扩张、血流通 畅。 • 硝酸甘油治疗心绞痛具有百年的历史, 其作用机理是在体内转化为NO,可舒张血 管,减轻心脏负荷和心肌的需氧量。
信号分子的分类
旁分泌信号: 突触信号: 内分泌信号 自分泌信号
第一节、受 体 Receptor
一、受体的概念
多数为糖蛋白; 存在于细胞膜或细胞内; 能接受外界的信号并 将这一信号转化为细胞 内的一系列生物化学反 应 ,而对细胞的结构 或功能产生影响
配体Ligand
受体所接受的外界信号统称为配体。 受体与配体结合特性:特异性、高效性、可饱和 性、可逆性。
各类受体酪氨酸激酶
受体酪氨酸激酶作用机制
配体与TRK结合→蛋白质构象的变化→激酶活
性区的酪氨酸残基自体磷酸化→ 其他底物蛋白
质磷酸化→催化细胞内的生物化学反应--------把细胞外的信号传导到细胞内。
(二)配体闸门离子通道
N型乙酰胆碱受体
5个亚单位α2、β、γ、δ在细胞膜上共同构成 一个通道; 每一个亚单位带有4个越膜区域; α亚单位上有乙酰胆碱ACh结合部位; 使终板膜Na+内流,少量K+外流,形成终板电位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N2烟碱受体
5个亚基各含约450个 氨基酸,此5个肽链形成 一个跨膜的环,在细胞内 固定于细胞骨架上,每一 肽链跨膜4次,N端和C端 都位于胞外部(如δ亚单位剖面所示)。肽链在胞外 被糖基 化。在胞内被磷酸化,导致受体脱敏,2个α单 位各有1个乙酰胆碱(Ach)结合位点,二者都结合1分 子乙酰胆碱(Ach)后,钠通道开放,细胞除极兴奋。
不同细胞对cAMP信号途径的反应:
在肌肉细胞,1秒钟内可启动糖原降解为1-磷酸葡 糖,而抑制糖原合成。(快速反应)
在某些分泌细胞,需要几个小时, 激活的PKA 进 入细胞核,将CRE (cAMP response element )结 合蛋白磷酸化,调节相关基因的表达。CRE是 DNA上的调节区域。(慢速反应)
细胞的信号转导
Cell Communication and Signal Transduction
一、基本概念 1.细胞间通讯 2.细胞识别 3.信号分子 4.受体 5.蛋白激酶
二、主要的信号转导途径 1.细胞内受体介导的信号转导 2.膜受体介导的信号转导
三、信号转导与疾病 1.受体表达性克隆 2.膜受体的检测
学习指导
重 点:
1. 细胞信号转导的概念 2. 受体和配体的概念 3. 代表性的信号途径
难 点:
1. G蛋白偶联受体介导的信号转导 2. PI介导的信号转导
细胞是如何对细胞外信号产生反应的?















dd



第一节 基本概念
细胞通讯(cell communication)是体内一 部分细胞发出信号,另一部分细胞(target cell)接收信号并将其转变为细胞功能变化 的过程。
旁分泌:信号分子通过扩散作用于邻近的细胞。包 括:①各类细胞因子;②气体信号分子。
突触信号发放:神经递质经突触作用于靶细胞。 自分泌:信号发放细胞和靶细胞为同类或同一细胞,
常见于癌变细胞。
二、细胞识别
细胞识别(cell recognition)是指细胞通过其表面的 受体与胞外信号物质分子(或配基)选择性地相互作 用,从而导致胞内一系列生理生化变化,最终表现为 细胞整体的生物学效应的过程,是细胞通讯的一个重 要环节。
信号分子的类型
信号分子
亲脂性分子
代表
甾类激素和甲状腺素
亲水性分子
神经递质、生长因子、细 胞因子、局部化学递质和 大多数激素
运靶作作作用输细用用方方胞时结式式间果 与易通介与特穿常导细殊过影较胞的靶响长质载细特时 或体胞殊间细蛋的组胞白质织持核结膜的续中合进生反的 在入长应受物血细与体。液胞分结配中化合体长形 受距成体离受复转体合运复物合通 过与DNA的特定控制区 结合,改变基因表达模 式
进与介通入细导过血胞短影信液表暂响号中面的基转或上反因导进的应表机入特达制到殊,细受引在胞体起细 外相细胞蛋液结胞内白短合对产激距不外生酶离进界第或运入信二蛋输细号信白胞的使磷反或酸应激酶活的 活性,引起细胞内一系列 蛋白磷酸化级联反应
按引起细胞应答反应的顺序分类: 第一信使:水溶性信号分子(如神经递质,
4. 蛋白激酶A
5.环核苷酸磷酸二酯酶
细胞内另一类型的酶即环核苷酸磷酸二酯酶 ( PDE )可快速地降解 cAMP 生成5'-腺苷酸 (5'-AMP),使细胞内 cAMP 水平下降。PDE的活 性是依赖于 Ca2+和钙调素(CaM),而且细胞内的 Ca2+浓度又受其他信号通路调节。
Gene transcription Cell proliferation Cell survival Cell death Cell differentiation Cell function Cell motility Immune responses
肾上腺素(α 2型)受体、阿片肽受 体、乙酰胆碱(M)受体和生长激素 释放的抑制因子受体等
2. GS和Gi
激素与受体结合所产生的增强或降低腺苷酸环化酶的活性, 不是受体与腺苷酸环化酶直接作用的结果,而是通过两种 调节蛋白Gs和Gi完成的。G蛋白使受体和腺苷酸环化酶偶 联起来,使细胞外信号转换为细胞内的信号即cAMP第二信 使。所以G蛋白也称为偶联蛋白或信号转换蛋白。
一、通过细胞内受体介导信号的机制
与细胞内的受体结合的信号分子的主要代表是: 小分子的甾类激素、甲状腺素、维甲酸和维生素D等
甾类激素是疏水性小分子,由于它们的亲脂性, 通过简单的扩散即可跨越质膜进入细胞内。
细胞内
皮质酮、黄体酮
甲状腺素、维生素D、 维甲酸和雌激素
胞质 结合 受体
配体与胞质 受体复合物
细胞识别是通过各种不同的信号通路实现的。
完成细胞通讯则需要 两个重要成分:
1. 信号分子
2. 受体
特点:①特异,②高效,③可被灭活; 按成分分类:蛋白类(短肽、氨基酸)、脂类、类
固醇、气体分子(NO、 CO)、核苷酸; 按作用方式分类:激素、神经递质、局部化学介质; 按溶解性分类:脂溶性、水溶性信号分子。
阿片肽受体
以受体解剖学的亚细胞定位分类
cAMP
配体
膜受体
载体蛋白 DNA
激素 胞内受体
胞内受体
配体-受体复合体
(1) 胞内受体
Hsp90
H2N
COOH
甾类激素 结合域
甾类激素
H2N
DNA结合域
COOH
氢化可的松 雌激素
黄体酮
甲状腺素 视黄酸
(2)膜受体(分三种)
①与G蛋白相偶联受体: R7G受体
信号转导(signal transduction)是细胞针 对外源信息所发生的细胞内生物化学变化 及效应的全过程。
当外界信号分子作用于细胞时,细胞通过 某种机制“了解”到外界环境中信号分子的存 在,并将外界信号(第一信使)转换为细胞能 “感知”的信号(第二信使),从而使细胞对外 界信号作出相应的反应。这种由细胞外信号转
③与酶相偶联受体(酶联受体)
膜外:一个跨膜螺旋 膜间:受体的识别部位 膜内:效应酶
胰岛素受体
胰岛素到达靶细胞后,即与靶细胞上的胰岛素受体 结合。胰岛素受体主要分布于肝细胞、脂肪细胞、肌肉 细胞,也分布于脑细胞、性腺细胞、红细胞和血管内皮 细胞。胰岛素受体是一种位于细胞膜上的糖蛋白,它能 特异性与胰岛素结合而引起细胞效应。
(促肾上腺皮质激素)
1. RS和Ri
RS
刺激型受体
Gs
腺苷酸环 化酶活性
Ri
胞内的 cAMP
肾上腺素(β 型)受体、后叶加压素受体、胰高血 糖素受体、促黄体生长激素受体、促卵泡激素受 体、促甲状腺素受体、促肾上腺皮质激素受体以 及肠促胰酶素受体等
Ri
抑制型受体
Gi
腺苷酸环 化酶活性
Rs
胞内的 cAMP
被释放的蛋白激酶 A 的催化亚基转位到细胞核中磷酸化一种称为 CREB (binding protein of cAMP respones element)蛋白的丝氨 酸残基。被磷酸化的CREB作为基因调节蛋白识别靶基因上基因调节 序列CRE (cAMP respones element,cAMP应答元件)并与之结合调 节靶基因的表达。
N端
R7G受体
C端
G蛋白
人β1-肾上腺受体
含477氨基酸,肽链 跨膜7次,N端在细胞外, C端在细胞内,胞内带短 线的是丝氨酸,能被磷 酸化。黑实心圆是人体 β1、β2受体所共有的氨 基酸,在跨膜区较多。
②与离子通道偶联的受体
受体与离子通道的偶联: 有些受体含有离子通道,如N胆碱受体,与
配体结合就能直接使通道开放,故称这种受体 为门控通道型受体。
能与受体结合的信息分子也称为配体(ligand)。
receptor
ligand
2.受体的分类
以受体药理学的 效应特性分类
以激动剂为主 的分类方法
神经递质(或调质)受体 激素受体 药物受体 毒素受体 免疫因子受体 神经因子受体等
乙酰胆碱受体:M1, M2, M3, N1, N2 肾上腺素受体: β 1, β 2, α 1, α 2 多巴胺受体
cAMP PATHWAY
Ca2+ PATHWAY
(一) cAMP信号通路
(一) cAMP介导的信号通路
细胞外信号与相应受体结合,通过调节细胞 内第二信使cAMP的水平而引起细胞反应。
cAMP是通过腺苷酸环化酶合成的。这种对激 素敏感的cAMP信号通路由5种成分组成的:
①刺激型激素受体(RS)或抑制型激素受体(Ri) ; ②刺激型调节蛋白(GS)或抑制型调节蛋白(Gi) ; ③催化成分(C)即腺苷酸环化酶; ④蛋白激酶(Protein Kinase A,PKA); ⑤环核苷酸磷酸二酯酶(PDE)。
靶细胞对外界信号分子反应的两种调节方式:
1. 受体对信号结合的特异性 2. 细胞本身固有的特征对信号进行反应
是一类磷酸转移酶,将ATP的磷酸基转移到 底物特定氨基酸残基上,使蛋白磷酸化。 其中了解较多的是蛋白酪氨酸激酶、蛋白 丝氨酸/苏氨酸激酶。
根据第二信使分类:PKA、PKC、PKG
1.通过胞内受体介导 2. 通过膜受体介导
胰岛素
αα
ββ

激素
Cell A
Cell B

激素
Receptor A Receptor B

激素
Receptor A Receptor B
细胞对信号的反应不仅取决于其受体的特异性, 而且与细胞的固有特征有关。 相同信号可产生不同效应:如乙酰胆碱可引起骨 骼肌收缩、心肌收缩频率降低,唾腺细胞分泌。 不同信号可产生相同效应:如肾上腺素、胰高血 糖素,促进肝糖原降解而升高血糖。
相关文档
最新文档