华东理工大学大学物理第七章答案
大学物理课后习题答案 第七章
![大学物理课后习题答案 第七章](https://img.taocdn.com/s3/m/ac40277eb9f3f90f76c61bee.png)
Q
RT1
ln
V2 V1
8.31 400 ln 0.005 0.001
5.35 103 J
(2) 根据卡诺循环的效率公式可得
1 T2 A净 T1 Q吸
A净
(1
T2 T1
)Q吸
(1
300 ) 5.35 103 400
1.34 103 J
(3)由能量守恒 Q吸 A净 Q放 可得
Pa Va )
1 2 (Pb
Pa ) (Vb
Va )
9.5 102 J
A 100 10.5% Q吸 950
B
C 2 V (L)
62
大学物理上习题册参考解答
10、一定质量理想气体(摩尔热容比为 γ)的某循环过程的 T-V 图如下,其中 CA 为绝
热过程,状态 A(T1,V1)和状态 B(T2,V2)为已知,试问:
RT2
ln
VA VB
R(T1 T2) ln
VA VB
T2 T1 T2
14、一台家用冰箱放在室温为 300K 的房间内,做一盘 2.09105 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功;
℃的冰块需从冷冻室取走
(2)若此冰箱能以 2.09102 J / s 的速率取出热量,求冰箱的电功率。
mR mR
60
大学物理上习题册参考解答
6、某理想气体在 P-V 图上等温线与绝热线相交于 A
点(如图所示)。 已知 A 点的压强 P1=2×105Pa,体积 V1=0.5 P ×10-3m3 ,而且 A 点处等温线的斜率与绝热线斜率之比为
0.714,现使气体从 A 点绝热膨胀至 B 点,其体积 V2=1×10-3m3。
大学物理课后答案第七章.doc
![大学物理课后答案第七章.doc](https://img.taocdn.com/s3/m/fa4441a0c281e53a5802ffd6.png)
第七章静电场中的导体和电介质一、基本要求1. 掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2. 学会计算电容器的电容;3. 了解介质的极化现象及其微观解释;4. 了解各向同性介质中D和E的关系和区别;5. 了解介质中电场的高斯定理;6. 理解电场能量密度的概念。
二、基本内容1. 导体静电平衡(1) 静电平衡条件:导体任一点的电场强度为零(2) 导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3) 导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2. 电容(1) 孤立导体的电容c=勺V电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2) 电容器的电容C =—9-V A~ Vq为构成电容器两极板上所带等量异号电荷的绝对值。
V A-V B为A、B两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3) 电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之111 1和。
等效电容由一=—+—+川+一进行计算。
C C C C1 2 n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为C=C +C ,川*C o 1 2 n(4) 计算电容的一般步骤+ 一%1设两极带电分别为q和q,由电荷分布求出两极间电场分布。
~ = J B%1由V V E dl求两极板间的电势差。
A B A%1根据电容定义求c wV A VB3. 电位移矢量D=£ +人为引入的辅助物理量,定义D E P, D既与E有关,又与P有关。
说明D 0不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向号惟会质都适用。
大学物理习题答案解析第七章
![大学物理习题答案解析第七章](https://img.taocdn.com/s3/m/3aba3c8190c69ec3d5bb7589.png)
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
(完整版)大学物理学(课后答案)第7章
![(完整版)大学物理学(课后答案)第7章](https://img.taocdn.com/s3/m/c8d811e9cc7931b764ce159c.png)
第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A)温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能 \ - kT,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT ,当两者分子数密度相同时,它们压强也相同。
故选( C)。
7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为-kT (D)平均平动动能为-RT2 23分析:由理想气体分子的的平均平动动能 \ 3kT和理想气体分子的的平均动能2-丄kT,故选择(C)。
27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为v A : v B : v C 1:2:4,则其压强之比为P A:P B:P c[](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1分析:由分子方均根速率公式厂2,又由物态方程p nkT,所以当三容器中得分子数密度相同时,得p1: P2: P3 T1 :T2 :T3 1: 4:16。
故选择(C)。
7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果V p O和V p H分别表示氧气和氢气的最概然速率,则[] O 2 H 2(A)图中a表示氧气分子的速率分布曲线且V p O/ V p H4质量M H 2 M O 2,可知氢气的最概然速率大于氧气的最概然速率,故曲线 M 1 ( ) i于氧分子的速率分布曲线。
又因16,所以盘4。
故选择(B )。
f(v)习题7-4图7-5在一个体积不变的容器中,储有一定量的某种理想气体,温度为T 。
大学物理第七章习题及答案
![大学物理第七章习题及答案](https://img.taocdn.com/s3/m/e75a59b0be23482fb5da4c69.png)
第七章 振动学基础一、填空1.简谐振动的运动学方程是 。
简谐振动系统的机械能是 。
2.简谐振动的角频率由 决定,而振幅和初相位由 决定。
3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。
4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。
5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位 6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。
7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。
8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。
二、简答1.简述弹簧振子模型的理想化条件。
2.简述什么是简谐振动,阻尼振动和受迫振动。
3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求: (1)振动的圆频率,周期,初相位及速度与加速度的最大值; (2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。
7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为: (1)X 0=-A ;(2)过平衡位置向正向运动; (3)过X=A/2处向负向运动; (4)过X=2A 处向正向运动。
大学物理学课后习题7第七章答案
![大学物理学课后习题7第七章答案](https://img.taocdn.com/s3/m/44014b97fab069dc502201d9.png)
q 6 0
对于边长 a 的正方形,如果它不包含 q
所在的顶点,则 e
q 24 0
,
如果它包含 q 所在顶点则 e 0 .
7.8 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×
105 C·m-3求距球心5cm,8cm ,12cm 各点的场强.
解:
高斯定理 当 r 5 cm
均匀分布,其电势U
E
dr
R2
qdr R2 4π 0 r 2
q 4π 0 R
题 7.16 图
(2)外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍
为 q .所以球壳电势由内球 q 与内表面 q 产生:
U
q 4π 0 R2
q 4π 0 R2
(2)同理
dEQ
1 4π 0
dx
x2
d
2 2
方向如题 7.6 图所示
由于对称性 l dEQx 0 ,即 EQ 只有 y 分量,
∵
dEQy
1 4π 0
dx
x2
d
2 2
d2
x2
d
2 2
EQy
l dEQy
d2 4π 2
l 2
dx
l
3
2
(x2
d
2 2
)
2
l
1由于电荷均匀分布与对称性ab和cd段电荷在o点产生的场强互相抵消取?ddrl?则??ddrq?产生o点e?d如图由于对称性o点场强沿y轴负方向题714图??????cos4dd2220?????rreeyr04???2sin??2sin??r02????2ab电荷在o点产生电势以0??u?????ab200012ln44d4drrxxxxu??????同理cd产生2ln402???u半圆环产生00344??????rru0032142ln2?????????uuuuo715两个平行金属板ab的面积为200cm2a和b之间距离为2cmb板接地如图715所示
大学物理答案解析第7~8章
![大学物理答案解析第7~8章](https://img.taocdn.com/s3/m/1d9fa85b6c175f0e7cd13759.png)
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
习题7-1图dq ξd ξ习题7-2 图ax θθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
大学物理习题答案解析第七章
![大学物理习题答案解析第七章](https://img.taocdn.com/s3/m/3aba3c8190c69ec3d5bb7589.png)
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
大学物理第7章习题解答
![大学物理第7章习题解答](https://img.taocdn.com/s3/m/629617d0d4bbfd0a79563c1ec5da50e2524dd135.png)
⼤学物理第7章习题解答第七章7-1容器内装有质量为0.lkg 的氧⽓,其压强为l0atm(即lMPa),温度为47C 0。
因为漏⽓,经过若⼲时间后,压强变为原来的85,温度降到27C 0。
问:(1)容器的容积有多⼤?(2)漏去了多少氧⽓? 解:(1)由RT Mm pV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代⼊.证V =8.31×10-3m 3(2) 设漏⽓后,容器中的质量为m ′,则T R Mm V p ''=' 3201.08530030085??='?'=R MR Mm R Mm pV)k g (151='?m漏去的氧⽓为kg 103.3kg 301kg )1511.0(2-?≈=-='-=m m m ?7-2设想太阳是由氢原⼦组成的理想⽓体,其密度可当作是均匀的。
若此⽓体的压强为Pa 141035.1?,试估算太阳的温度。
已知氢原⼦的质量kg H 27 1067.1-?=µ,太阳半径m R S 81096.6?=,太阳质量kg MS301099.1?=。
解:太阳内氢原⼦数HSm MN =故氢原⼦数密度为3827303)1096.6(341067.11099.134===-ππsHSR m M V N n5.8329-?=m由P =nkT 知)(1015.11038.1105.81035.17232914K nkp T ?===-7-3 ⼀容器被中间隔板分成相等的两半,⼀半装有氮⽓,温度为1T,另⼀半装有氧⽓,题7-2图温度为2T ,⼆者压强相等,今去掉隔板,求两种⽓体混合后的温度。
解:如图混合前:2221112222111O He T M m T M m RT Mm pV RT M m pV ===⽓有对⽓有对①总内能 222111212523RT Mm RT M m E E E +=+=前②①代⼊②证11RT M m E =前混合后:设共同温度为T ()RT M m T T EF RT M m M m E 21210221125231,2523???? ?+=+=式得⼜由后③⼜后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒⼦的系统,速率分布函数如习题7⼀4图所⽰,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒⼦数;(4)最概然速率;(5)粒⼦的平均速率;(6) 0.50v ~0v 区间内粒⼦的平均速率。
大学物理学第七章参考答案
![大学物理学第七章参考答案](https://img.taocdn.com/s3/m/d27f7c23192e45361066f55f.png)
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
大学物理第七章习题与答案
![大学物理第七章习题与答案](https://img.taocdn.com/s3/m/0766f188ad51f01dc281f157.png)
自治区精品课程—大学物理学题库第七章振动学基础一、填空1.简谐振动的运动学方程是。
简谐振动系统的机械能是。
2.简谐振动的角频率由决定,而振幅和初相位由决定。
3.达到稳定时,受迫振动的频率等于,发生共振的条件。
-2㎏的小球与轻质弹簧组成的系统,按0.1cos(82)4.质量为10xt的规律3 做运动,式中t以s为单位,x以m为单位,则振动周期为初相位速度最大值。
5.物体的简谐运动的方程为xAsin(t),则其周期为,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为x10.1cos(t),x20.1cos(t),其合振动的振幅为,初相位44为。
7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为5x10.06cos(t),x20.05cos(t),其合振动的振幅为,初相44位为。
8.相互垂直的同频率简谐振动,当两分振动相位差为0或时,质点的轨迹是当相位差为或2 32时,质点轨迹是。
二、简答1.简述弹簧振子模型的理想化条件。
2.简述什么是简谐振动,阻尼振动和受迫振动。
3.用矢量图示法表示振动x0.02cos(10t),(各量均采用国际单位).6-1-自治区精品课程—大学物理学题库三、计算题-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos(8t+2/3)4.质量为10×10的规律做运动,式中t以s为单位,x以m为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s,2s,5s,10s等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s,2s,5s,10s等时刻矢量的位置。
5.一个沿着X轴做简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X0=-A;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;A(4)过X=处向正向运动。
2试求出相应的初相位之值,并写出振动方程。
大学物理答案第7~8章
![大学物理答案第7~8章](https://img.taocdn.com/s3/m/2ab1a2b5b307e87100f69685.png)
第七章 实空中的静电场之阳早格格创做7-1 正在边少为a 的正圆形的四角,依次搁置面电荷q,2q,-4q 战2q ,它的几许核心搁置一个单位正电荷,供那个电荷受力的大小战目标.解:如图可瞅出二2q 的电荷对于单位正电荷的正在效率力将相互对消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε目标由q 指背-4q. 7-2 如图,匀称戴电细棒,少为L ,电荷线稀度为λ.(1)供棒的延少线上任一面P 的场强;(2)供通过棒的端面与棒笔直上任一面Q 的场强.解:(1)如图7-2 图a ,正在细棒上任与电荷元dq ,修坐如图坐标,dq =d,设棒的延少线上任一面P 与坐标本面0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒正在P 面爆收的电场强度的大小为=)(40L x x L-πελ目标沿轴正背.q2q-4q2q习题7-1图dq ξd ξP习题7-2 图ax(2)如图7-2 图b ,设通过棒的端面与棒笔直上任一面Q 与坐标本面0的距离为y204rdxdE πελ=θπελcos 420rdxdE y =, 果θθθθcos ,cos ,2yr d y dx ytg x ===,代进上式,则)cos 1(400θπελ--=y=)11(4220Ly y +--πελ,目标沿x 轴背背.00sin 4θπελy ==2204Ly y L+πελ 7-3 一细棒直成半径为R 的半圆形,匀称分散有电荷q ,供半圆核心O 处的场强.解:如图,正在半环上任与d l =Rd 的线元,其上所戴的电荷为dq=Rd.对于称分解E y =0.θπεθλsin 420R Rd dE x =2022R qεπ=,如图,目标沿x 轴正背.7-4 如图线电荷稀度为λ1的无限少匀称戴电直线与另一少度为l 、线θθπελθd y dE E x x ⎰⎰-=-=00sin 40dq xdxP习题7-2 图bydEθy Qθ0d θθθdEx习题7-3图R电荷稀度为λ2的匀称戴电直线正在共一仄里内,二者互相笔直,供它们间的相互效率力.解:正在λ2的戴电线上任与一dq ,λ1的戴电线是无限少,它正在dq 处爆收的电场强度由下斯定理简单得到为,xE 012πελ=二线间的相互效率力为,ln 2021ala +πελλ如图,目标沿x 轴正背.7-5 二个面电荷所戴电荷之战为Q ,问它们各戴电荷几时,相互效率力最大?解:设其中一个电荷的戴电量是q ,另一个即为Q -q ,若它们间的距离为r ,它们间的相互效率力为相互效率力最大的条件为 由上式可得:Q=2q ,q=Q/27-6 一半径为R 的半球壳,匀称戴有电荷,电荷里稀度为σ,供球心处电场强度的大小.解:将半球壳细割为诸多细环戴,其上戴电量为dq 正在o 面爆收的电场据(7-10)式为λ1 习题7-4图习题7-6图304RydqdE πε=,θcos R y = )(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=.如图,目标沿y 轴背背.7-7 设匀强电场的电场强度E 与半径为R 的半球里对于称轴仄止,估计通过此半球里电场强度的通量.解:如图,设做一圆仄里S 1挡住半球里S 2,成为关合直里下斯,对于此下斯直里电通量为0, 即7-8 供半径为R ,戴电量为q 的空心球里的电场强度分散.解: 由于电荷分散具备球对于称性,果而它所爆收的电场分散也具备球对于称性,与戴电球里共心的球里上各面的场强E 的大小相等,目标沿径背.正在戴电球里里与中部天区分别做与戴电球里共心的下斯球里S 1与S 2.对于S 1与S 2,应用下斯定理,即先估计场强的通量,而后得退场强的分散,分别为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )rrˆ204q πε=外E (r>R)E习题7-7图r习题7-18图7-9 如图所示,薄度为d 的“无限大”匀称戴电仄板,体电荷稀度为ρ,供板内中的电场分散.解:戴电仄板匀称戴电,正在薄度为d/2的仄分街里上电场强度为整,与坐标本面正在此街里上,修坐如图坐标.对于底里积为A ,下度分别为x <d/2战x >d/2的下斯直里应用下斯定理,有1d ερψAxEA S ==⋅=⎰S E 得 )2( 01d x i x E <=ερ7-10 一半径为R 的无限少戴电圆柱,其体电荷稀度为分散.)(0R r r ≤=ρρ,ρ0为常数.供场强解: 据下斯定理有R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk22επR r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ7-11 戴电为q 、半径为R 1的导体球,其中共心底搁一金属球壳,球壳内、中半径为R 2、R 3.(1)球壳的电荷及电势分散;(2)把中球交天后再绝缘,供中球壳的电荷及球壳内中电势分散;(3)再把内球交天,供内球的电荷及中球壳的电势.习题7-9图x习题7-10图r解:(1)静电仄稳,球壳内表面戴-q ,中表面戴q 电荷.据(7-23)式的论断得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(4213202R r R R R r qV ≤≤+-=πε (2)),)(11(412101R r R R q U ≤-=πε (3分散设静电仄稳,内球戴q //q /-q.得:21313221R R R R R R qR R q +-='7-12 一匀称、半径为R 的戴电球体中,存留一个球形空腔,空腔的半径r(2r<R),试说明球形空腔中任性面的电场强度为匀强电场,其目标沿戴电球体球心O 指背球形空腔球心O /.说明:利用补缺法,此空腔可视为共电荷稀度的一个完备的半径为R 的大球战一个半径为r 与大球电荷稀度同号完备的小球组成,二球正在腔内任性面P 爆收的电场分别据〔例7-7〕截止为3ερ11r E =, 03ερ22r E -= E =E 1+E 2=03ερ1r 03ερ2r -q习题7-11图上式是恒矢量,得证.7-13 一匀称戴电的仄里圆环,内、中半径分别为R 1、R 2,且电荷里稀度为σ.一量子被加速器加速后,自圆环轴线上的P 面沿轴线射背圆心O.若量子到达O 面时的速度恰佳为整,试供量子位于P 面时的动能E K .(已知量子的戴电量为e ,忽略沉力的效率,OP=L )解:圆环核心的电势为 圆环轴线上p 面的电势为量子到达O 面时的速度恰佳为整有p k eV eV E -=0=21()2e R R σε=-2222210()2eR L R L σε-+-+7-14 有一半径为R 的戴电球里,戴电量为Q ,球里中沿直径目标上搁置一匀称戴电细线,线电荷稀度为λ,少度为L (L>R ),细线近端离球心的距离为L.设球战细线上的电荷分散牢固,试供细线正在电场中的电势能.解:正在戴电细线中任与一少度为dr 的线元,其上所戴的电荷元为dq=dr ,据(7-23)式戴电球里正在电荷元处爆收的电势为rQ V 04πε=电荷元的电势能为:rdrQ dW 04πελ=R 2o R 1xp习题7-13图orQdr习题7-14图细线正在戴电球里的电场中的电势能为:*7-15 半径为R 的匀称戴电圆盘,戴电量为Q.过盘心笔直于盘里的轴线上一面P 到盘心的距离为L.试供P 面的电势并利用电场强度与电势的梯度关系供电场强度.解:P 到盘心的距离为L ,p 面的电势为)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上任性面的电势为 利用电场强度与电势的梯度关系得:i xR x R Q i dx dV x E )1(2)(22220+-=-=πεP 到盘心的距离为L ,p 面的电场强度为:i L R LRQ L E)1(2)(22220+-=πε7-16 二个共心球里的半径分别为R 1战R 2,各自戴有电荷Q 1战Q 2.供:(1)各区乡电势分散,并绘出分散直线;(2)二球里间的电势好为几?解:(1)据(7-23)式的论断得各区乡电势分散为),( )(411221101R r R Q R Q V ≤+=πε (2)二球里间的电势好为7-17 一半径为R 的无限少戴电圆p习题7-15图习题7-16图柱,其里里的电荷匀称分散,电荷体稀度为ρ,若与棒表面为整电势,供空间电势分散并绘出电势分散直线. 解: 据下斯定理有R r ≤时:R r =时,V=0,则 R r ≤时:⎰=R r rdr V 02ερ)(4220r R -=ερ R r >时:空间电势分散并绘出电势分散直线大概如图.7-18 二根很少的共轴圆柱里半径分别为R 1、R 2,戴有等量同号的电荷,二者的电势好为U ,供:(1)圆柱里单位少度戴有几电荷?(2)二圆柱里之间的电场强度.解:设圆柱里单位少度戴电量为,则二圆柱里之间的电场强度大小为rE 02πελ=二圆柱里之间的电势好为 由上式可得:120ln 2R R U =πελ所以n e r E 02πελ=)( ln 2112R r R e rR R Un <<⋅= 习题7-10图roRoV习题7-18图ro7-19 正在一次典型的闪电中,二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,如果释搁出去的能量皆用去使00C 的冰熔化成00C 的火,则可融化几冰?(冰的熔 ×105J ﹒kg -1)解:二个搁电面间的电势好约为109V ,被迁移的电荷约为30库仑,其电势能为上式释搁出去的能量可融化冰的品量为:=⨯⨯=∆591034.31030m ×104kg7-20 正在玻我的氢本子模型中,电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通.(1)若把电子从本子中推出去需要克服电场力做几功?(2)电子正在玻我轨讲上疏通的总能量为几?解:电子沿半径为a 的玻我轨讲上绕本子核做圆周疏通,其电势能为(1)把电子从本子中推出去需要克服电场力做功为:ae W W p 024πε=-=外(2)电子正在玻我轨讲上疏通的总能量为:k p E W W +=221mv W p += 电子的总能量为:221mv W W p +=a e 024πε-=a e 028πε+ae 028πε-=第八章 静电场中的导体与电介量8-1 面电荷+q 处正在导体球壳的核心,壳的内中半径分别为R l 战R 2,试供,电场强度战电势的分散.解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q 电荷正在r<R 1的天区内rr q ˆ4E 201πε=,)111(42101R R r qU +-=πε 正在R 1<r<R 2的天区内 正在r>R 2的天区内:.ˆ4E 203r r πεq=.403rq U πε= 8-2 把一薄度为d 的无限大金属板置于电场强度为E 0的匀强电场中,E 0与板里笔直,试供金属板二表面的电荷里稀度.解:静电仄稳时,金属板内的电场为0,金属板表面上电荷里稀度与紧邻处的电场成正比 所以有8-3 一无限少圆柱形导体,半径为a ,单位少度戴有电荷量1,其中有一共轴的无限少导体圆简,内中半径分R 2R 1习题 8-1图q-qqE 0 E 0习题 8-2图σ1 σ2别为b 战c ,单位少度戴有电荷量2,供(1)圆筒内中表面上每单位少度的电荷量;(2)供电场强度的分散.解:(1)由静电仄稳条件,圆筒内中表面上每单位少度的电荷量为;,21λλλ+-(2)正在r<a 的天区内:E=0正在a<rb 的天区内:E r012πελ=e n正在r>b 的天区内:E r0212πελλ+=e n8-4 三个仄止金属板A 、B 战C ,里积皆是200cm 2,A 、B 相距,A 、C 相距,B 、C 二板皆交天,如图所示.如果A 板戴正电×10-7C ,略去边沿效力(1)供B 板战C 板上感触电荷各为几?(2)以天为电势整面,供A 板的电势.解:(1)设A 板二侧的电荷为q 1、q 2,由电荷守恒本理战静电仄稳条件,有A q q q =+21(1)1q q B -=,2q q C -=(2)依题意V AB =V AC ,即101d S q ε=202d Sqε112122q q d d q ==→代进(1)(2)式得习题 8-3图A BC习题 8-4图d 12q 1=×10-7C ,q 2×10-7C ,q B ×10-7C ,q C =-q 2×10-7C ,(2)101d S q U A ε==202d Sq ε==⨯⨯⨯⨯⨯⨯----312471021085810200102.×103V 8-5 半径为R 1=l.0cm 的导体球戴电量为×10-10C ,球中有一个内中半径分别为R 2=战R 3=的共心导体球壳,壳戴有电量Q=11×10-10C ,如图所示,供(1)二球的电势;(2)用导线将二球连交起去时二球的电势;(3)中球交天时,二球电势各为几?(以天为电势整面)解:静电仄稳时,球壳的内球里戴-q 、中球壳戴q+Q 电荷 (1))(4132101R Qq R q R q U ++-=πε代进数据 )41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---U=×102V=×102V(2)用导线将二球连交起去时二球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V (3)中球交天时,二球电势各为)(412101R qR q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V 8-6 说明:二仄止搁置的无限大戴电的习题 8-5图q-qq+Q2 ABq 1 q 3 4仄止仄里金属板A 战B 相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,略去边沿效力,供二个板的四个表面上的电里稀度.证:设A 板戴电量为Q A 、二侧的电荷为q 1、q 2,B 板板戴电量为Q B 、二侧的电荷为q 3、q 4.由电荷守恒有A Q q q =+21(1)B Q q q =+43(2)正在A 板与B 板里里与二场面,金属板里里的电场为整有020122εεS q S q -0220403=--εεS qS q ,得04321=---q q q q (3) 020122εεS q S q +0220403=-+εεS qS q ,得04321=-++q q q q (4) 联坐上头4个圆程得:241B A Q Q q q +==,232B A Q Q q q -=-=即相背的二里上电荷里稀度大小相等,标记好同,相背的二里上电荷里稀度大小等,标记相共,本题得证.如果二金属板的里积共为100cm 2,戴电量分别为Q A =6×10-8 C 战Q B =4×10-8C ,则=⨯⨯⨯+==--844110101002)46(σσ×10-6C/m 2, =⨯⨯⨯-=-=--843210101002)46(σσ×10-6C/m 2 8-7 半径为R 的金属球离大天很近,并用细导线与天相联,正在与球心相距离为D=3R 处有一面电荷+q ,试供金属球上的感触电荷.解:设金属球上的感触电荷为Q ,金属球交天电势为整,即8-8 一仄止板电容器,二极板为相共的矩形,宽为a ,少为b ,间距为d ,今将一薄度为t 、宽度为a 的金属板仄止天背电容器内拔出,略去边沿效力,供拔出金属板后的电容量与金属板拔出深度x 的关系.解:设如图左边电容为C 1,左边电容为C 2安排电容并联,总电容即金属板后的电容量与金属板拔出深度x 的关系,为=)(0td tx b da -+ε 8-9 支音机里的可变电容器如图(a )所示,其中公有n 块金属片,相邻二片的距离均为d ,奇数片联正在所有牢固没有动(喊定片)奇数片联正在起而可一共转化(喊动片)每片的形状如图(b )所示.供当动片转到使二组片沉叠部分的角度为时,电容器的电容.解:当动片转到使二组片沉叠部分的角度 为时,电容器的电容的灵验里积为此结构相称有n-1的电容并联,总电容为td bx习题 8-8图(a) (b)习题 8-9图qQD=3RRd S n C 0)1(ε-==dr r n 360)()1(21220--θπε8-10 半径皆为a 的二根仄止少直导线相距为d (d>>a ),(1)设二直导线每单位少度上分别戴电十战一供二直导线的电势好;(2)供此导线组每单位少度的电容.解:(1)二直导线的电电场强度大小为rE 022πελ⨯= 二直导线之间的电势好为(2)供此导线组每单位少度的电容为VC λ==aa d -lnπε8-11 如图,C 1=10F ,C 2=5F ,C 3=5F ,供(1)AB 间的电容;(2)正在AB 间加上100V 电压时,供每个电容器上的电荷量战电压;(3)如果C 1被打脱,问C 3上的电荷量战电压各是几?解:(1)AB 间的电容为20155)(321213⨯=+++=C C C C C C C =F ;(2)正在AB 间加上100V 电压时,电路中的总电量便是C 3电容器上的电荷量,为C CV q q 4631073.31001073.3--⨯=⨯⨯===o(3)如果C 1被打脱,C 2短路,AB 间的100V 电压齐加正在C 3上,即V 3=100V ,C 3上的电荷量为8-12 仄止板电容器,二极间距离为l.5cm ,中加电压39kV ,若气氛的打脱场强为30kV/cm ,问此时电容器是可会被打脱?现将一薄度为的玻璃拔出电容器中与二板仄止,若玻璃的相对于介电常数为7,打脱场强为100kV/cm ,问此时电容器是可会被打脱?截止与玻璃片的位子有无关系?解:(1)已加玻璃前,二极间的电场为 没有会打脱(2)加玻璃后,二极间的电压为气氛部分会打脱,今后,玻璃中的电场为cm kV cm kV E /100/1303.039>==,玻璃部分也被打脱.截止与玻璃片的位子无关.8-13 一仄止板电容器极板里积为S ,二板间距离为d,其间充以相对于介电常数分别为r1、r2,的二种匀称电介量,每种介量各占一半体积,如图所示.若忽略边沿效力,供此电容器的电容.解:设如图左边电容为C 1,左边电容为C 2dS C r 2/101εε=安排电容并联,总电容为V习题 8-12图εr1εr2习题 8-13图8-14 仄止板电容器二极间充谦某种介量,板间距d 为2mm ,电压600V ,如坚决启电源后抽出介量,则电压降下到1800V .供(1)电介量相对于介电常数;(2)电介量上极化电荷里稀度;(3)极化电荷爆收的场强.解:设电介量抽出前后电容分别为C 与C /8-15 圆柱形电容器是由半径为R 1的导体圆柱战与它共轴的导体圆筒组成.圆筒的半径为R 2,电容器的少度为L ,其间充谦相对于介电常数为r的电介量,设沿轴线目标单位少度上圆柱的戴电量为+,圆筒单位少度戴电量为-,忽略边沿效力.供(1)电介量中的电位移战电场强度;(2)电介量极化电荷里稀度.解:8-16 半径为R 的金属球被一层中半径为R /的匀称电介量包裹着,设电介量的相对于介电常数为r ,金属球戴电量为Q,供(1)介量层内中的电场强度;(2)介量层内中的电势;(3)金属球的电势.解:8-17 球形电容器由半径为R 1的导体球战与它共心的导体球壳组成,球壳内半径为R 2,其间有二层匀称电介量,分界里半径为r ,电介量相对于介电常数分别为r1、r2,如图所示.供(1)电容器的电容;(2)当内球戴电量为+Q 时各介量表面上的束缚电荷里稀度.R 1 R /习题 8-16图U 1 U 2U 0 E 1 E 2解:1221221212220102010221022011021211221221(1)4,4,441111()()444()(r r r r rR R rr r r r r r r Q D ds D r Q D D r D D Q QE E r r Q Q U E dl E dl r R R rR R r QC U R R r R R ππεεεεπεεπεεπεεπεεπεεεεεεε⋅=⋅=∴==∴====∴=⋅+⋅=-+-∴==-+-⎰⎰⎰取同心高斯球面,由介质的高斯定理得1110112211112342221222)11(1)(1),(1)44111(1),(1),(1)444r r r r r r Q Q D E R R Q Q Q r r R σεσεεππσσσεεεπππ=-=-∴=--=-=--=-8-18 一仄止板电容器有二层介量(如图),r1=4,r2=2,薄度为d 1=,d 2=,极板里积S=40cm 2,二极板间电压为200V .(1)供每层电介量中的能量稀度;(2)估计电容器的总能量;(3)估计电容器的总电容.解:8-19 仄板电容器的极板里积S=300cm 2二极板相距d 1=3mm ,正在二极板间有一个与天绝缘的仄止金属板,其里积与极板的相共,薄度d 1=1mm.当电容器被充电到600V 后,拆去电源,而后抽出金属板,问(1)电容器间电场强度是可变更;(2)抽出此板需做几功?解:8-20 半径为R 1=的导体球,中套有一共心的导体球壳,球壳内中半径分别为R 2=、R 3=.球与壳之间是气氛,壳中也是气氛,当内球戴电荷为×10-8C 时,供(1)所有电场R 1 R 2r习题 8-17图习题 8-18图贮存的能量;(2)如果将导体球壳交天,估计贮存的能量,并由此供其电容.解:。
大学物理课后习题答案第七章 a
![大学物理课后习题答案第七章 a](https://img.taocdn.com/s3/m/311644d65022aaea998f0fb5.png)
第七章 电磁感应选择题7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零.7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C )(A) a b c d ==<E E E E ; (B) a b c d ==>E E E >E ; (C) a b c d ===E E E E ;(D) a b c d >>>E E E E .7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A )(A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ;(C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积210cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率1d 10T s d Bt-=⋅,则线圈中的感应电流的大小为( D )(A) 3i 1.010A I -=⨯; (B) 2i 1.010A I -=⨯; (C) 2i 1.010A I =⨯; (D) 1i 1.010A I -=⨯.7-5 导线元d l 在磁感应强度为B 的磁场中以速度v 运动时,其上的动生电动势为()i d d =⨯⋅B l E v( D ) (A) 当v 与d l 垂直时,一定有i d d B l =E v ; (B) 当v 与B 垂直时,一定有i d d B l =E v ; (C) 当d l 与B 垂直时,一定有i d d B l =E v ;(D) 只有在v 、B 和d l 三者相互垂直时,才有i d d B l =E v 或i d d B l =-E v .7-6 下述正确的是 ( C )(A) 静电场和感生电场的电场线都不闭合;(B) 静电场的电场线是闭合的,感生电场的电场线不闭合; (C) 感生电场的电场线是闭合的,静电场的电场线不闭合; (D) 静电场和感生电场的电场线都是闭合的.7-7 静止的导体中产生涡电流的原因是 ( C ) (A) 导体处于不均匀的稳恒磁场中; (B) 导体处于不均匀的静电场中; (C) 导体处于随时间变化磁场中; (D) 导体处于通有稳恒电流的线圈内. 7-8 在自感线圈中,电流i 随时间t 的变化曲线如图(a)所示.若以i 的正流向为正方向,则线圈中自感电动势L E 随时间t 的变化曲线应为图(b)中的 ( D )7-9 尺寸相同的铜环和铝环,穿过它们所围面积的磁通量的变化率相同.设铜环上的感应电动势和感应电流分别为1E 和1I ,铝环上的感应电动势和感应电流分别为2E 和2I ,则( C )(A) 12=E E , 12I I =; (B) 12>E E , 12I I >; (C) 12=E E , 12I I >; (D) 12>E E , 12I I =.7-10 如图所示,若一块磁铁沿着一根竖直放置的长铜管的轴线,自管口竖直下落,如果忽略空气阻力,则 ( C )(A) 磁铁越落越快,最后速度趋于无限大; (B) 磁铁越落越慢,最后速度趋于零; (C) 磁铁越落越快,最后达到一恒定速度; (D) 磁铁越落越慢,最后达到一恒定速度;计算题7-11 一个匝数100N =的导线圈,通过每匝线圈的磁通量41510sin10πΦt =⨯,式中1Φ的单为Wb ,t 的单位为s .求:(1) 任意时刻线圈上的感应电动势;(2) 在10s t =时,线圈上的感应电动势的大小.解 (1) 根据法拉第电磁感应定律,任意时刻线圈上的感应电动势为()41i d d100510sin10π0.5πcos10πd d ΦNt t t t-=-=-⨯=-E 式中t 的单位为s ,i E 的单位为V .(2) 10s t =时,线圈上的感应电动势为()i 0.5πcos 10π10 V 1.57 V =-⨯=-i E大小为i 1.57 V =i E7-12 若在一方向不变的磁场中,有一面积为20.03m 的平面线圈,线圈所在平面的法线与磁场的夹角为θ,磁感强度的大小为510B t =+,式中B 的单位为T ,t 的单位为s .求:(1) 当π3θ=时,线圈中的感应电动势的大小; (2) 当π2θ=,2s t =时,线圈中的感应电动势的大小; 解 穿过线圈所围平面的磁通量为()()cos 5100.03cos 0.150.3cos BS t t Φθθθ==+⨯=+线圈中的感应电动势为()i d d0.150.3cos 0.3cos d d t t tΦθθ=-=-+=-E (1) 在π3θ=的情况下,线圈中的感应电动势为 i π0.3cos V 0.15V 3⎛⎫=-=- ⎪⎝⎭E其大小为0.15V(2) 在π2θ=的情况下,2s t =时,线圈中的感应电动势为 i π0.3cos V 02⎛⎫=-= ⎪⎝⎭E7-13 如图所示,一正方形线圈与载流长直导线共面,线圈的匝数为N ,边长为a ,其两边与长直导线平行,与长直导线之间的最小距离为b .长直导线中的电流为I .(1) 求通过线圈的磁通量;(2) 若100N =,20cm a =,10cm b =,当长直导线中的电流I 以12A s -⋅的变化率增长时,求线圈中的感应电动势.解 (1) 坐标选取如图所示.以顺时针为线圈回路的正方向, 则线圈所围平面的法向单位矢量n e 垂直纸面向里.在线圈平面上,长直载流导线的磁感应强度为0n 2πIaxμ=B e .在x 处取面元dS d a x =,则面元矢量为n d d a x =S e .穿过面元的磁通量为0d d d 2πIaΦx xμ=⋅=B S穿过线圈所围平面的磁通量为00d d ln2π2πa bSaIaNIaa bΦN N x xbμμ++=⋅==⎰⎰B S(2) 若100N =,20cm a =,10cm b =,则7064π101000.200.200.10ln ln Wb2π2π0.10 4.4010WbNIaa b I Φb I μ--⎛⎫+⨯⨯⨯⨯+== ⎪⎝⎭=⨯ 线圈中的感应电动势为()666i d d 4.4010 4.40102 V 8.8010 V d d ΦIt t--=-=-⨯=-⨯⨯=-⨯E i 0<E ,表明线圈中的感应电动势沿逆时针方向.7-14 如图所示,矩形导线框ABCD 与载流为I 的长直导线共面,边长分别为b 和l ,AB 与长直导线平行.矩形线框以速度v 在其平面内向右运动,v 与直导线垂直.在时刻t ,AB 与长直导线间的距离为a .求此时线框上的感应电动势.解 在长直导线右侧的线框平面上,到长直导线的距离为r 的点上,载流长直导线的磁场,方向垂直于纸面向里,磁感应强度的大小为02πIB rμ=以顺时针为导线回路的正方向,线圈中的感应电动势为()()()()()i d d d d d ABCDAAB BC CD DA =⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅⎰⎰⎰⎰⎰B l B l B l B l B lv v v v v E 在BC 和DA 段上,d l v ,()d 0⨯⋅=B l v ,因此积分为零.在时刻t ,AB 处的磁感应强度大小为012πIB aμ=,CD 处的磁感应强度大小为()022πIB a b μ=+.于是()()()i 1200000d d d d d d 11 2π2π2πAB CD AB CD llB l B lI lI l Il a a b a a b μμμ=⨯⋅+⨯⋅=+-⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰⎰⎰⎰B l B l E v v v v v v vi 0>E ,表明线圈中的感应电动势沿顺时针方向.7-15 如图所示,匀强磁场的磁感应强度的大小为B ,方向垂直纸面向外.有一根长为L 的金属棒MN ,可绕点O 在纸面内逆时针旋转,角速度为ω,4LOM =.求金属棒两端之间的电动势.那一端的电势较高?解 如图所示,在棒MN 上,到点O 的距离为l 处,沿径向取位移元d l .d l 的速度v 的方向如图,既垂直于d l ,也垂直于B ,大小为l ω=v .d l 上的动生电动势为()i d d d Bl l ω=⨯⋅=B l dE vMN 上的动生电动势为32441d 4L L MN Bl l BL ωω==⎰E0MN >E ,表明动生电动势的方向为从M 到N ,N 端电势较高.7-16 如图所示,矩形导线框ABCD 与载流长直导线共面,AB 与长直导线平行,相互间的距离为a ,导线框的边长分别为b 和l .如果长直导线上的电流为0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,式中0I 和ω为常量.求在0t =时,导线框上的感应电动势.解 坐标选取如图所示.以ABCDA ,即顺时针为线框回路的正方向,则平面ABCD 的法向单位矢量n e 垂直纸面向里.在平面ABCD 上,长直载流导线的磁感应强度为0n 2πIx μ=B e .由于0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,因此B 的具体指向随时间变化.在x 处取面元dS d l x =,则面元矢量为n d d l x =S e .穿过面元的磁通量为0d d d d 2πIlΦB S x xμ=⋅==B S穿过线框所围平面的磁通量为00d d ln2π2πa bSaIlIla bΦx xaμμ++=⋅==⎰⎰B S 矩形线框ABCD 上的感应电动势为0i 0000d d ln d 2πd d ππ ln cos ln sin 2πd 32π3l a b I t a tl I l a b a b I t t a t a μΦμμωωω+=-=-+⎡⎤+⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦E0t =时0000i πlnsin ln2π34πI lI l a b a b a aμωω++==E i 0>E ,表明此时线框上的感应电动势沿顺时针方向.7-17 在一个长为0.6m 、直径为5.0cm 的纸筒上,密绕1200匝线圈.求这个长直螺线管的自感.解 长直螺线管的自感为()2220027223π44π101200π 5.010H 5.9210H40.6N SN d L llμμ---==⨯⨯⨯⨯⨯==⨯⨯7-18 一螺线管的自感为21.010H -⨯,流过的电流为2.0A .求其储存的磁场能.解 载流螺线管储存的磁场能为2222m 11 1.010 2.0J 2.010J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭7-19 一个直径为0.01m 、长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.若把螺线管接到电动势为2V 的电池上,求电流稳定后,螺线管中储存的磁能和管内的磁能密度.解 长直螺线管的自感为()2220027223π44π101000π 1.010H 9.8710H40.1N SN d L llμμ--==⨯⨯⨯⨯⨯==⨯⨯线圈上稳定电流的强度为2A 0.258A 7.76U I R === 电流稳定后,螺线管中储存的磁能为2325m 119.87100.258J 3.2810J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭载流螺线管中磁能密度为()533m m m 22244 3.2810J m 4.18J m ππ1.0100.1W W V d l ---⨯⨯===⋅=⋅⨯⨯w 7-20 在真空中,若一匀强电场中的电场能量密度与一0.5T 的匀强磁场的能量密度相等,求该电场的电场强度.解 设电场强度为E 的匀强电场的能量密度与0.5T B =的匀强磁场的能量密度相等,则有22001122B E εμ=由此可得181m 1.5010 V m E --==⋅=⨯⋅。
大学物理答案第七章热力学基础-习题解答
![大学物理答案第七章热力学基础-习题解答](https://img.taocdn.com/s3/m/768541f7fc0a79563c1ec5da50e2524de518d0c2.png)
展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。
大学物理学(课后答案)第7章
![大学物理学(课后答案)第7章](https://img.taocdn.com/s3/m/88f8e3f9be1e650e53ea99b1.png)
第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能τk= kT,仅与温度有关,因此当氦气和氮2气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p =nkT ,当两者分子数密度相同时,它们压强也相同。
故选( C)O7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i ,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想气体分子的的平均平动动能3 kT和理想气体分子的的平均动能2T二丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为V A : V B : V C 1:2:4 ,则其压强之比为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分子方均根速率公式= J3RT,又由物态方程p = nkT ,所以当三容器中得分子数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果(VP O和(V P 分别表示氧气和氢气的最概然速率,则[](A)图中a表示氧气分子的速率分布曲线且V P O z V P H= 4(B) 图中a表示氧气分子的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表示氧气分子的速率分布曲线且V P O / V P H=1/4(D) 图中b表示氧气分子的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢气与氧气的摩尔质量M H2£M o2,可知氢气的最概然速率大于氧气的最概然速率,故曲线a对应于氧分子的速率分布曲线。
大学物理答案第七单元
![大学物理答案第七单元](https://img.taocdn.com/s3/m/d4ebfee8b8f67c1cfad6b804.png)
习题七7-1下列表述是否正确?为什么?并将错误更正.(1)A E Q ∆+∆=∆ (2)⎰+=Vp E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η解:(1)不正确,A E Q +∆=(2)不正确,⎰+=Vp E Q d Δ(3)不正确,121Q Q -=η(4)不正确,121Q Q -=不可逆η7-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 7-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图7-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题7-4图解:1.由热力学第一定律有 A E Q +∆=若有两个交点a 和b ,则 经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程012=+∆A E022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾. 2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律.7-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程(2)画出对应的V p -图 (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量acbc abQ Q Q,,表述其热机效率或致冷系数.解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得 K vR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5)ab ca bc abQ Q Q Q e -+=题7-5图 题7-6图7-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问:(1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功;(2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程.7-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为: ⎰=-BAA B TQ S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-BA AB T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BAAB TQ S S 可逆d ,如果过程P 为不可逆过程,其熵变为⎰>-BAA B TQ S S 不可逆d 7-9 根据⎰=-BA AB T Q S S 可逆d 及⎰>-B A A B T Q S S 不可逆d ,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明理由. 答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变.只能说在不可逆过程中,系统的热温比之和小于熵变. 7-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差A E Q +∆=224126350=-=-=∆A Q E J abd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R i T T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热75.1038)300350(31.825=-⨯⨯=QJ)(12V T T C E -=∆υ内能增加 25.623)300350(31.823=-⨯⨯=∆E J 对外作功5.4155.62375.1038=-=∆-=E Q A J7-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu,转变为气体分子无序运动使得内能增加,温度变化2V 21muT C Mm E =∆=∆)1(211212mol V 2mol -==∆γu M R C uM T7-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功 21112lnlnp p V p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V =57=γ由绝热方程γγ2211V p V p =γγ/12112)(p V p V =1121/12112)()(V p p p V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111pTp T 得K579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q所以)(12molT T C MM A V --=RTM M pV mol=,)(2512111T T R RT V p A --=35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J7-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV===γγγ2211得γγVV p p 111=⎰=21d V V V p A⎰-----==21)11(1d 11121111V V rV V V p vv V p A γγγγγ]1)[(112111---=-γγV V V p又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A7-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab 过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为2V T K =得过程方程 VV T K 002=由状态方程 RT pV υ=得VRTp υ=ab 过程气体对外作功⎰=2d V v Vp A⎰⎰⎰====020022002d 2d 2d V V V v V V RT V V RT VV V T V R V VRT A7-16 某理想气体的过程方程为a a Vp,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v V p A⎰-=-==-2121)11()(d 2121222V V V V V V a Va V Va A7-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p V V γη答:等体过程吸热 )(12V 1T T C Q -='υ)(1221V 11RV p RV p C Q Q -='=绝热过程 03='Q 等压压缩过程放热 )(12p 2T T C Q -='υ)(2212P RV p RV p C -= 循环效率 121Q Q -=η)1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图题7-19图7-18 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少?(3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率 121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η要求 15001=T K ,高温热源温度需提高500K(3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K7-19 如题7-19图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=ηAB 等压过程 )(12P 1T T C Q -='υ吸热)(P mo 1A B lT T C M M Q -=CD 等压过程 )(12P 2T T vC Q -='放热)(P mol22D C T T C M M Q Q -='-=)/1()/1(12B A BCD C A B D C T T T T T T T T T T Q Q --=--= 根据绝热过程方程得到AD 绝热过程 γγγγ----=D D AA Tp Tp 11BC 绝热过程 γγγγ----=CC BB T p T p 111又B CD DC B A T T T T p p p p ===231T T -=η(2)不是卡诺循环,因为不是工作在两个恒定的热源之间.7-20 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J 的热量传向27℃的热源,需要多少功?从-173℃向27℃呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么?解:(1)卡诺循环的致冷机2122T T T A Q e -==静7℃→27℃时,需作功 4.71100028028030022211=⨯-=-=Q T T T A J173-℃→27℃时,需作功2000100010010030022212=⨯-=-=Q T T T A J(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图解:21→熵变等温过程 A Q d d = , V p A d d =,RT pV = ⎰⎰==-21111221d 1d V V VVRT T TQ S S76.52ln ln!212===-R V V R S SJ 1K -⋅321→→熵变 ⎰⎰+=-312312d d T Q TQ S S32V 13p V p 12ln ln d d 2331T T C T T C TT C TT C S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V VT T =23→等体过程 2233T p T p =3232p p T T =1232p p T T =12V 12P 12lnlnp p C V V C S S +=- 在21→等温过程中 2211V p V p =所以2ln ln ln ln 1212V 12P 12R V V R V V C V V C S S ===- 241→→熵变⎰⎰+=-412412d d T Q TQ S S41p 42p p 12ln ln d 024T T C T T C T T C S S T T ==+=-⎰41→绝热过程 111441144111----==γγγγV V T T V T V Tγγγγ/121/141144411)()(,p p p p V V V p V p === 在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln1ln12P41P 12R V V C T T C S S =-==-γγ7-22 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为m o l C ).解:两个容器中的总熵变⎰⎰+=-TT TT l TT C TT C S S 12d d mo mol 0212mol 21mol ln)ln(lnT T TC T T T T C =+=因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=-得212T T T +=21212mol 04)(lnT T T T C S S +=-7-23 把0℃的0.5kg 的冰块加热到它全部溶化成0℃的水,问:(1)水的熵变如何?(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大?(3)水和热源的总熵变多大?增加还是减少?(水的熔解热334=λ1g J -⋅)解:(1)水的熵变612273103345.031=⨯⨯==∆T QSJ 1K -⋅(2)热源的熵变 570293103345.032-=⨯⨯-==∆T Q SJ 1K -⋅ (3)总熵变 4257061221=-=∆+∆=∆S S SJ 1K -⋅熵增加。
大学物理第七章和第八章习题答案
![大学物理第七章和第八章习题答案](https://img.taocdn.com/s3/m/fc0c17e3f8c75fbfc77db21b.png)
变。故总能量 We
1 CU 2 增大 。 2
] d
10. 一空气平行板电容器, 极板间距为 d, 电容为 C, 若在两板中间平行插入一块厚度为 d/3 的金属板,则其电容值变为 [ C (A)C (C)3C/2 (B)2C/3 (D)2C
d
3
、500V(耐压值)和 300pF、900V, 11.C1 和 C2 两个电容器,其上分别标明 200pF(电容量) 把它们串连起来在两端加上 1000V 电压,则 [ C (A)C1 被击穿,C2 不被击穿。 (C)两者都被击穿。 ]
-3
-6
E
q
4 0 R 2
8. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源,再将一块与板面积相 同的金属板平行地插入两极板之间, 则由于金属板的插入及其所放位置的不同, 对电容器储 能的影响为:[ A ] (A)储能减少,但与金属板位置无关。 (B)储能减少,且与金属板位置有关。 (C)储能增加,但与金属板位置无关。 (D)储能增加,且与金属板位置无关。 9. 两个完全相同的电容器 C1 和 C2,串联后与电源连接,现将一各向同性均匀电介质板插入
R2
R1
Q ( R2 R1 ) dr Q 1 1 ( ) 2 r 4 0 R1 R2 4 0 R1 R2
(3) 电容
C
4 0 R1 R2 Q U 12 R2 R1
(4)电场能量
W
QU12 2 0 r R1 R2U12 2 2 R2 R1
(5) C ' r C
(B)C2 被击穿,C1 不被击穿。 (D)两者都不被击穿。
12. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性,均匀电 介质,则电场强度的大小 E、电容 C、电压 U、电场能量 W 四个量各自与充入介质前相比较, 增大(↑)或减小(↓)的情形为:[ B ] (A)E↑,C↑,U↑,W↑ (C)E↓,C↑,U↑,W↓ (B)E↓,C↑,U↓,W↓ (D)E↑,C↓,U↓,W↑
物理化学智慧树知到答案章节测试2023年华东理工大学
![物理化学智慧树知到答案章节测试2023年华东理工大学](https://img.taocdn.com/s3/m/4a331127591b6bd97f192279168884868662b859.png)
绪论单元测试1.物理化学是研究速率规律和()的平衡。
A:前3个选项都正确B:相变化C:pVT变化sD:化学变化答案:A第一章测试1.下列叙述中不属于状态函数特征的是()。
A:系统状态确定后,状态函数的值也确定B:系统变化时,状态函数的改变值仅由系统的始、终态决定而与过程无关C:状态函数均有加和性答案:C2.在使用物质的量时,必须指明物质的基本单元,以下不正确的是()。
A:1 mol ( )B:1 mol ( )C:1 mol铜离子答案:C3.400K、101325Pa下,1mol气体的体积为22.85 dm3,则气体的压缩因子=()。
A:0.6962B:1C:1.2532答案:A4.下图为某物质的压缩因子图,图中标有三条等温线,则三条线上注明的温度T1、T2、T3,其大小关系是()。
A:B:C:答案:A5.甲、乙、丙三种物质的临界温度分别为343.05K、373.65K和405.65K,其中最易液化的气体为()。
A:乙物质B:甲物质C:丙物质答案:C6.范德华气体分子的微观模型为()。
A:只具有吸引力的软球B:只具有吸引力的硬球C:不具有吸引力的硬球答案:B7.在一定温度和压力下求解范德华方程,得到三个摩尔体积的值:0.0523、0.2534和2.9523 ,其中饱和液体的摩尔体积为()。
A:B:C:答案:B8.物质A和B的对比温度相等、对比压力也相等,按对应状态原理,以下结论不一定正确的是()。
A:它们的压缩因子相同B:它们的对比体积相同C:它们的体积相同答案:C9.一隔板将一刚性绝热容器分为左右两侧,左室气体的压力大于右室气体的压力。
现将隔板抽去,左、右气体的压力达到平衡。
若以全部气体作为系统,则()。
A:W< 0、Q >0、 =0B:W=0、Q =0、 =0C:W>0、Q < 0、 =0答案:B10.物质的标准摩尔蒸发焓为,标准摩尔熔化焓为,标准摩尔升华焓为,三者间的关系为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或者
η = 1−
Q放 Q吸
= 1−
T T1 300 ⇒ Q 放 = 1 Q吸 = × 5.35 × 10 5 = 4.01 × 10 3 J T2 400 T2
12 、一台家用冰箱放在气温为 300K 的房间内,做一盘−13 ℃的冰块需从冷冻室取走 2.09 ×10 5 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功。 (2)若此冰箱能以 2.09 ×10 2 J / s 的速率取出热量,求所要求的电功率是多少瓦? (3)做冰块需时多少? 解: (1)卡诺循环制冷系数 T2 260 ω= = = 6.5 T1 − T2 300 − 260 Q ω= 2 A
dP dV dP dV
T =C
A B V1 V2 V
根据题意知
=
1 = 0.714 γ
∴γ =
1 = 1.4 0.714
Q=C
γ P1V1γ = P2 V2
由绝热方程可得
P2 = (
V1 γ 0.5 × 10 −3 1.4 ) P1 = ( ) × 2 × 10 5 = 7.58 × 10 4 Pa − 3 V2 1 × 10
45
CP ,有时可用下面方法:将开始的温度、体积和压力分 Cv 别为T0,V0和P0的一定量气体,在一定时间内通以电流的铂丝加热,而且每次加热供应气 体的热量相同。第一次维持V0不变,此时气体达到温度T1和压力P1。第二次维持压力P0不 变,而温度变到T2,体积变到V1,试证明:
5、为测定气体的比热容比 γ =
47
发,经过图中的循环过程又回到状 a ,其中过程 ab 是直线,试求: (1)在整个循环过程中,系统对外界所作的净功; (2)循环的效率。 1 解: (1) A = bc ⋅ ac 2 1 = × 2 × 10 5 × 1× 10 − 3 2 = 100J (2) Q 吸 = Q ab = ΔE + A
∴ A净 = ( 1− T2 300 )Q 吸 = (1 − ) × 5.35 × 10 3 = 1.34 × 10 3 J T1 400
3
3
(3)由能量守恒 Q 吸 = A 净 + Q 放 可得
Q 放 = Q 吸 − A 净 = 5.35 × 10 3 − 1.34 × 10 3 = 4.01 × 10 3 J
49
∴ PdV + VdP = PdV + kVdV = 2PdV = RdT R 即 PdV = dT 2 3 1 dQ = C V dT + PdV = RdT + RdT = 2RdT 2 2 dQ = 2R 热容量 C = dT (3)过程方程 P = kV
即
PV −1 = k
多方指数 n=-1
3 R (T2 − T1 ) = −428J 2 5 Q 2 = C p (T3 − T2 ) = R (T3 − T2 ) = −1365J 2 总计放热: Q = Q1 + Q 2 = 1.79 × 10 3 J Q1 = C V (T2 − T1 ) =
9、一定质量的单原子理想气体,从初始状态 a 出
(2)
A=
P1 V1 − P2 V2 2 × 10 5 × 0.5 × 10 −3 − 7.58 × 10 4 × 1 × 10 −3 = = 60.5J γ −1 1.4 − 1
46
P(105Pa) 7、试证明:1mol刚性分子理想气体,作等压膨胀时,若对外作功为A,则气体分子平均 A ,式中γ为比热容比,NA为阿伏伽德罗常数。 动能的增量为 3 b N A (γ − 1) 证明:设膨胀前后的体积为V1、V2,温度为T1、T2,压强P 根据等压膨胀作功可得 A = P(V2 − V1 ) = R (T2 − T1 ) 1 a c 气体分子的比热容比 i+2 0 Cp i+2 γ= = 2 = 1 2 V(l) i CV i 2 2 ∴ i= γ −1 气体分子的平均动能的增量 2 i i A γ −1 1 A Δε K = k (T2 − T1 ) = k = A= 2 2 R 2 NA N A ( γ − 1)
γ=
证:
QV =
( P1 − P0 ) V 0 ( V1 − V0 ) P0
m C V (T1 − T0 ) M m Qp = C p (T2 − T0 ) M
根据题意
Q V = Q p 及 PV =
m RT M
∴
MP1 V1 MP0 V0 − T1 − T0 mR = (P1 − P0 )V0 γ= = = mR MP2 V2 MP0 V0 (V1 − V0 )P0 C V T2 − T0 − mR mR Cp
m 1 C V (Tb − Ta ) + (Pb + Pa )(Vb − Va ) M 2 3 1 = (Pb Vb − Pa Va ) + (Pb + Pa ) (Vb − Va ) = 9.5 × 10 2 J 2 2 A 100 η= = = 10.5% Q 吸 950 =
10、图中所示为一定质量理想气体的一个循环过程的T-V图,其中CA为绝热过程,状态 A(T1,V1)和状态B(T2,V2)为已知,试问: (1)各分过程是吸热还是放热? (2)状态 C 的 V、T 值是多少?(γ,m 已知) T (3)这个循环是不是卡诺循环? A B (4)这循环的效率为多少? 解: (1)把 T-V 改画为 P-V 图,如右图所示 AB 等温膨胀—吸热 BC 等容降温—放热 CA 绝热过程不吸放热 (2) Vc = V2 V γ −1 γ −1 TA VA = TC VC ⇒ TC = ( 1 ) γ −1 ⋅ T1 V2 (3)不是卡诺循环。 (4) m C V (T1 − Tc ) Q放 M η = 1− = 1− V m Q吸 RT1 ln 2 M V1 V V 1 − ( 1 ) γ −1 C V T1 [1 − ( 1 ) γ −1 ] V2 V2 1 = 1− = 1− ⋅ V V2 γ −1 ln 2 RT1 ln V1 V1
− γ −1
所以
4、如图所示,1mol的氦气由状态A(p1,V1)沿p-V图中直线变化到状态B(p2,V2),设AB延 长线通过原点,求: (1)这过程内能的变化,吸收的热量和对外作的功; (2)气体的热容量; (3)多方指数。 m 3 3 P 解: (1) ΔE = C v ΔT = R (T2 − T1 ) = (P2 V2 − P1V1 ) M 2 2 B (P2, V2) 1 A = (P1 + P2 )(V2 − V1 ) 2 P1 P P = 2 (k = ) A(P1,V1) V1 V2 V 1 O V ∴ A = (P2 V2 − P1V1 ) 2 3 1 Q = ΔE + A = (P2 V2 − P1V1 ) + (P2 V2 − P1V1 ) = 2(P2 V2 − P1V1 ) 2 2 (2) dQ = dE + dA = C V dT + PdV 由理想气体方程得 PdV + VdP = RdT 又 P=kV, dP=kdV
Q = ΔE + A = 1246 + 2033 = 3279 J 2V (2) A = A12 = RT1 ln 0 = 8.31 × 293 ln 2 = 1687J V0
0
5 × 8.31× 60 = 1246J 2 Q = A + ΔE = 1687 + 1246 = 2933J ΔE = E 3 − E 2' =
C O V
P A(T1,V1) dT=0 B(T2,V2) dQ=0 C V
。 11、1mol理想气体在T1=400K的高温热源与T2=300K的低始体积为V1=0.001m , 终止体积为V2=0.005m 。 试求此气体在每一循 环中 (1)从高温热源吸收的热量Q1; (2)气体所作的净功 A; (3)气体传给低温热源的热量Q2。 解: (1)气体在高温热源等温膨胀吸热,故 V 0.005 Q = RT1 ln 2 = 8.31 × 400 ln = 5.35 × 10 3 J V1 0.001 (2) 根据卡诺循环的效率公式可得 A T η = 1− 2 = 净 T1 Q 吸
6、某理想气体在P-V图上等温线与绝热线相交于A 5 点(如图所示) 。 已知A点的压强P1=2×10 Pa,体 P -3 3 积V1=0.5×10 m ,而且A点处等温线的斜率与绝热 线斜率之比为 0.714,现使气体从A点绝热膨胀至B -3 3 点,其体积V2=1×10 m 。求: P1 (1)B 点处的压强; (2)在此过程中气体对外作的功。 dP P =− 解: (1)等温线的斜率 dV T =C V O dP P = −γ 绝热线的斜率 dV Q =C V
第七章 热力学基础
1、一定量气体吸热 800J,对外作功 500J,由状态 A 沿路径(1)变化到状态 B,问气体 的内能改变了多少?如气体沿路径(2)从状态 B 回到状态 A 时,外界对气体作功 300J, 问气体放出热量多少? P 解: (1) ΔE = Q1 − A1 = 800 − 500 = 300J (2) Q 2 = −ΔE − A 2 = −300 − 300 = −600J (1) B (2) A V 2、1mol氢,在压强为 1 大气压,温度为 20 C时,体积为V0,今使其经以下两个过程达到 同一状态,试分别计算以下两种过程中吸收的热量,气体对外作功和内能的增量,并在 p-V图上画出上述过程。 P(atm) 0 (1)先保持体积不变,加热使其温度升高到 80 C,然 后令其作等温膨胀,体积变为原体积的 2 倍; 2 353K (2)先使其等温膨胀到原体积的 2 倍,然后保持体积不 0 变,加热到 80 C。 3 1 1 293K 解:由题意知 T1=273+20=293K,T2=273+80=353K 2’ 5 (1) ΔE = E 2 − E 1 = C v (T2 − T1 ) = × 8.31× 60 = 1246J 2 2V0 V V0 2Vo A = A 23 = RT2 ln = 8.31 × 353 × ln 2 = 2033J V0