五年级上册多边形面积的计算
(完整word版)五年级上册多边形面积的计算
![(完整word版)五年级上册多边形面积的计算](https://img.taocdn.com/s3/m/e501ac1ef5335a8102d220a3.png)
不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘例6 如右图,已知:S△ABC=1,例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.习题一一、填空题(求下列各图中阴影部分的面积):二、解答题:1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
新人教版五年级上册数学多边形的面积知识点
![新人教版五年级上册数学多边形的面积知识点](https://img.taocdn.com/s3/m/1e6013919b89680202d8256a.png)
多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
人教版五年级上册《多边形的面积》要点知识及易错点解析
![人教版五年级上册《多边形的面积》要点知识及易错点解析](https://img.taocdn.com/s3/m/3a0299f1b9f3f90f76c61b23.png)
人教版五年级上册《多边形的面积》要点知识及易错点解析《多边形的面积》要点知识一、公式:多边形面积公式面积公式的变式说明正方形正方形的面积=边长X边长S正=aXa=a2已知:正方形的面积,求边长长方形长方形的面积=长X宽S长=aXb已知:长方形的面积和长,求宽平行四边形平行四边形的面积=底X高S平=aXh已知:平行四边形的面积和底,求高h=S平÷a三角形三角形的面积=底X宽高÷2S三=aXh÷2已知:三角形的面积和底,求高H=S三X2÷a梯形梯形形的面积=(上底+下底)X高÷2S梯=(a+b)X2已知:梯形的面积与上下底之和,求高高=面积×2÷(上底+下底)上底=面积×2÷高-下底组合图形当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
二、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
三、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2四、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2五、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
小学五年级上册数学《多边形的面积》知识点及练习题
![小学五年级上册数学《多边形的面积》知识点及练习题](https://img.taocdn.com/s3/m/8181efa81b37f111f18583d049649b6648d709ae.png)
【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
小学五年级上册多边形的面积
![小学五年级上册多边形的面积](https://img.taocdn.com/s3/m/05974f13fe4733687e21aae0.png)
精心整理第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah要点提示2.要点提示3.要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)3.8dm 2=()cm 20.03公顷=()平方米(2)一个三角形的底是3.6米,高是2.5米,它的面积是()平方米,和它等底等高 的平行四边形的面积是()平方米。
(3(42.选择。
(1A.(2)(34 1268A.3.(1)(2)(3)4.(1) 3 5 (2) 75.15.5米,这个花园的面积是多少平方米?6.一个三角形的面积是75平方厘米,高是7.5【考点突破】类型一:平行四边形、三角形、梯形的面积。
例1.13.5 B18C 答案:=18×=243(cm 2例2.0.25答案:905400÷例3.A.C.扩大到原来的4倍D.不变 答案:D解析:平行四边形的面积=底×高, (底×2)×(高×12)=底×高×2×12=底×高,面积不变。
故选D 。
例4.一块三角形绿地的面积是13.5平方米,底是6米,高是多少米?答案:由s=ah÷2推导出h=2s÷a。
h=2s÷a=2×13.5÷6=27÷6=4.5(m)答:高是4.5米。
解析:可以先根据三角形的面积计算公式s=ah÷2推导出h=2s÷a,再计算。
五年级上册多边形的面积
![五年级上册多边形的面积](https://img.taocdn.com/s3/m/a6c54afe25c52cc58ad6be55.png)
第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
五年级上多边形的面积
![五年级上多边形的面积](https://img.taocdn.com/s3/m/27a26a9c88eb172ded630b1c59eef8c75fbf95b5.png)
五年级上多边形的面积在我们五年级上册的数学学习中,多边形的面积可是一个重要的知识板块呢。
它就像是一把神奇的钥匙,能帮助我们打开数学世界里更多有趣的大门。
让我们先来聊聊什么是多边形。
多边形呀,就是由三条或三条以上的线段首尾顺次连接所组成的封闭图形。
常见的多边形有三角形、四边形、五边形、六边形等等。
那多边形的面积又是什么呢?简单来说,就是这个多边形所占平面的大小。
我们先从三角形说起吧。
三角形的面积计算公式是:面积=底×高÷2 。
为什么要除以 2 呢?我们可以通过一个小实验来理解。
假如我们用两个完全一样的三角形,可以把它们拼成一个平行四边形。
这个平行四边形的底就是三角形的底,高就是三角形的高。
而平行四边形的面积是底×高,所以一个三角形的面积就是平行四边形面积的一半,也就是底×高÷2 啦。
比如有一个三角形,底是 6 厘米,高是 4 厘米,那它的面积就是6×4÷2 = 12 平方厘米。
接下来是平行四边形。
平行四边形的面积计算公式是底×高。
想象一下,我们把平行四边形沿着高剪开,然后平移,就可以拼成一个长方形。
这个长方形的长就是平行四边形的底,宽就是平行四边形的高。
因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
举个例子,一个平行四边形的底是 8 厘米,高是 5 厘米,那它的面积就是 8×5 = 40 平方厘米。
再说说梯形。
梯形的面积计算公式是:(上底+下底)×高÷2 。
我们可以把两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底就是梯形的上底与下底之和,高就是梯形的高。
平行四边形的面积是底×高,所以一个梯形的面积就是(上底+下底)×高÷2 。
比如一个梯形,上底是 3 厘米,下底是 7 厘米,高是 6 厘米,那它的面积就是(3 + 7)×6÷2 = 30 平方厘米。
五年级上册第六单元 多边形面积
![五年级上册第六单元 多边形面积](https://img.taocdn.com/s3/m/21e79cf1b14e852458fb575e.png)
第五单元多边形的面积一、基础概念及公式梳理(一)平行四边形的面积1.把平行四边形沿高剪开可以拼成长方形。
长方形的面积等于平行四边形的面积,这个长方形的长等于平行四边形的底,这个长方形的宽等于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示为:S=ah2.计算平行四边形面积时,底和高一定要相对应。
3.平行四边形的底=面积÷高 a=s÷h平行四边形的高=面积÷底 h=s÷a4.把长方形木框拉成平行四边形,周长不变,面积变小;把平行四边形木框拉成长方形,周长不变,面积变大:在长方形时面积最大5.等底等高的平行四边形面积相等。
6.两个平行四边形等底等高,面积相等两个平行四边形的面积相等,底相等,那么高也相等。
两个平行四边形的面积相等高相等,那么底也相等。
(二)三角形的面积1.两个个完全一样(完全相同)的三角形可以拼成一个平行四边形,拼成的平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形的面积的一半,因为平行四边形的面积=底×高,所以三角形的面积=底×高÷2,用字母表示为S=ah÷22.计算三角形的面积时底和高要对应,不要忘记除以23.三角形的面积是和它等底等高的平行四边形的面积的一半,,平行四边形的面积是和它等底等高三角形的面积的两倍。
4.计算三角形的面积时底和高要对应,不要忘记除以2。
5.三角形的高=面积×2÷底 h=2s÷a三角形的底=面积×2÷高 a=2s÷h6.等底等高的三角形面积相等。
7.两个面积相等的三角形底和高不一定相等,形状不一定相同。
8.三角形的面积与它的底和高有关,与它的形状无关。
(三)梯形的面积1.两个完全一样(完全相同)的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
北师大版数学五年级上册 第四单元 多边形的面积(含答案)
![北师大版数学五年级上册 第四单元 多边形的面积(含答案)](https://img.taocdn.com/s3/m/710c394368eae009581b6bd97f1922791688be54.png)
第四单元多边形的面积1.平行四边形的面积公式与推导。
平行四边形的面积=底×高S=ah逆运算公式:平行四边形的底=面积÷高(a=S÷h)平行四边形的高=面积÷底(h=S÷a)注意:在求平行四边形的面积时,底和高必须对应。
长方形框架拉成平行四边形,周长不变,面积变小;平行四边形框架拉成长方形,周长仍不变,但面积变大。
任何平行四边形都有无数条高。
2.三角形的面积公式与推导。
(1)(2)三角形的面积=底×高÷2S=ah÷2逆运算公式:三角形的底=面积×2÷高(a=2S÷h)三角形的高=面积×2÷底(h=2S÷a)注意:在求三角形的面积时,底和高必须对应。
任何三角形都有三条高。
3.等底等高的平行四边形与三角形。
(1)等底等高的平行四边形的面积相等。
(2)等底等高的三角形的面积相等。
(3)等底等高的三角形的面积是平行四边形的面积的一半。
(1)S▱1=S▱2(2)S△1=S△2(3)S▱1÷2=S△24.梯形的面积公式与推导。
(1)(2)梯形的面积=(上底+下底)×高÷2S=(a+b)×h÷2逆运算公式:梯形的上底+下底的和=面积×2÷高(a+b=2S÷h)梯形的上底=面积×2÷高-下底(a=2S÷h-b)梯形的下底=面积×2÷高-上底(b=2S÷h-a)梯形的高=面积×2÷(上底+下底)h=2S÷(a+b)等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
长方形框架拉成平行四边形,周长不变,面积变小。
组合图形:转化成已学的简单图形,通过加、减进行计算。
一、填空题。
人教版五年级上册多边形的面积课件(13张ppt)
![人教版五年级上册多边形的面积课件(13张ppt)](https://img.taocdn.com/s3/m/3f07ff4dfe00bed5b9f3f90f76c66137ef064f62.png)
则平行四边形的底是三角形底的2倍。( × )
我会算
请同学们选择喜欢的方式计算下图的面积。(只列式不计算,画好辅助线)
(单位:厘米)
10
6 5
12
我会画
2、结合本单元学习的知识,请在方格纸上 画出一个面积为12平方厘米的图形,你会怎 么画?(每个小格的边长是1厘米)
构建知识网络
三角形面积计算公式的推导:
┑
三角形的面积=底×高÷2 S = ɑh÷ 2
两个“完全一样”的三角形经过“旋转”,“平移” 转化成公式的推导:
构建知识网络
梯形面积计算公式的推导:
梯形上底+梯形下底(a+b)
h
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
两个“完全一样”的梯形,经过“旋转”、“平移”转化成一个 平行四边形,平行四边形的底等于梯形的(上底+下底)的和
小结:转化—推导
我们学习新知识的时候,可以把它转化成 我们已经学过的旧知识。而反过来,利用旧知 识推导出新知识。
1、面积相等的两个梯形一定能拼成一个平行四边形。( × ) 2、三角形的高越长,则面积越大。( × ) 3、把一个长方形框架拉成一个平行四边形,面积减少了。(√)
总结交流
通过这节课,你有哪些收获?
不规则图形
估算
小组研究
请小组长拿出学具,小组成员借助学具,选择 一种图形在小组内拼一拼、摆一摆、说一说这 个平面图形的面积公式是怎样推导出来的。
构建知识网络
平行四边形面积计算公式的推导:
平行四边形的面积=底×高
S = ɑh
把平行四边形沿着它的“高”剪下来,分成两部分, 经过平移,把平行四边形“转化”成长方形
五年级数学上册《多边形面积的计算》教案、教学设计
![五年级数学上册《多边形面积的计算》教案、教学设计](https://img.taocdn.com/s3/m/d505f940a9114431b90d6c85ec3a87c240288a35.png)
8.培养学生的自主学习能力,鼓励学生在课外主动探索多边形面积计算的相关知识,拓宽知识视野。
例如:引导学生利用网络资源、数学竞赛等途径,了解多边形面积计算的更多方法和应用。
四、教学内容与过程
(一)导入新课
1.教学活动:教师出示一个由多个三角形、四边形和梯形组成的不规则图形,并提出问题:“同学们,你们知道这个图形的面积是多少吗?我们可以怎样计算它呢?”
5.注重培养学生的创新思维,引导学生从不同角度思考问题,敢于尝试新的解题方法。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握三角形、四边形、梯形等常见多边形的面积计算公式,并能熟练运用。
2.难点:理解多边形面积公式的推导过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实例,让学生感受多边形面积计算在实际中的应用,提高学生的学习兴趣。
设计意图:激发学生的创新思维,培养学生的探究能力和解决问题的能力。
4.小组作业:分组讨论,共同解决一道具有挑战性的多边形面积计算题。请同学们在讨论过程中,注意互相学习、互相帮助,共同提高。
设计意图:培养团队合作意识,提高学生的沟通与协作能力。
5.思考题:思考如何将多边形面积计算方法与其他数学知识相结合,解决更复杂的问题。
例如:设计基础题、提高题和拓展题,让学生自主选择适合自己水平的题目进行练习。
6.加强课后辅导,针对学生在课堂学习中遇到的问题,进行有针对性的指导,帮助学生克服难点。
例如:在课后辅导时,针对学生个体差异,给予个性化的指导,帮助学生巩固所学知识。
7.定期进行教学评价,通过课堂问答、练习题、小测验等形式,了解学生的学习进度,及时调整教学策略。
五年级数学上册《多边形的面积》知识点汇总
![五年级数学上册《多边形的面积》知识点汇总](https://img.taocdn.com/s3/m/e451425d10661ed9ad51f3ee.png)
五年级数学上册《多边形的面积》知识点汇总1、公式:长方形:周长=×2字母公式:=×2面积=长×宽字母公式:S=ab正方形:周长=边长×4字母公式:=4a面积=边长×边长字母公式:S=a平行四边形的面积=底×高字母公式:S=ah底=面积÷高高=面积÷底三角形的面积=底×高÷2字母公式:S=ah÷2(底=面积×2÷高;高=面积×2÷底)梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2上底=面积×2÷高-下底下底=面积×2÷高-上底高=面积×2÷(上底+下底)2、单位换算的方法:大化小,乘进率;小化大,除以进率。
3、常用的单位间的进率长度单位:千米=1000米米=10分米分米=10厘米厘米=10毫米面积单位:平方千米=100公顷公顷=10000平方米平方米=100平方分米平方分米=100平方厘米4、图形之间的关系:两个完全相同的三角形可以拼成一个平行四边形。
两个完全相同的梯形可以拼成一个平行四边形。
等底等高的平行四边形面积相等;等底等高的三角形面积相等。
等底等高的平行四边形面积是三角形面积的2倍。
如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。
如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
、把长方形框架拉成平行四边形,周长不变,面积变小了。
6、求组合图形面积的方法:(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
(2)找到计算这些基本图形的面积所需要的数据。
(3)分别计算这些基本图形的面积,然后再相加或相减。
小学五年级多边形的面积计算公式汇总附练习题
![小学五年级多边形的面积计算公式汇总附练习题](https://img.taocdn.com/s3/m/30ae8647650e52ea54189842.png)
多边形的面积计算公式1、长方形的面积=长×宽字母表示:S=ab长方形的长=面积÷宽 a=S÷b长方形的宽=面积÷长b=S÷a2、正方形的面积=边长×边长字母表示: S= a²3平行四边形的面积=底×高字母表示: S=ah平行四边形的高=面积÷底 h=S÷a平行四边形的底=面积÷高 a=S÷h4、三角形的面积=底×高÷2字母表示: S=ah÷2三角形的高= 2×面积÷底h=2S÷a三角形的底= 2×面积÷高a=2S÷h5、梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)·h ÷2梯形的高=2×面积÷(上底+下底) h=2S÷(a+b)梯形的上底=2×面积÷高—下底 a=2S÷h-b梯形的下底=2×面积÷高—上底 b=2S÷h-a1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方米=10000平方厘米1米==10分米=100厘米《多边形的面积》同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积×2”这一知识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是15平方厘米和25平方厘米。
中间涂色三角形的面积是()。
考查目的:等底等高的三角形和平行四边形的面积之间的关系。
新苏教版五年级上册多边形图形面积计算
![新苏教版五年级上册多边形图形面积计算](https://img.taocdn.com/s3/m/53f37fce7f1922791688e8fa.png)
怎样把这个图形转化成已学过的图形?
4m 5m 4m
5m
2m 6m
2m
6m
2m
6m 方法一:分割成两个长方形 方法二:分割成一个长方形 和一个正方形 4m
方法三:分割成两个梯形
分割法 添补法
2m
5m
6m 方法四:补上一个小正方形,使它成为一个大长方形
典题精讲
5-2=3(m) 方法一:分割成两个长方形 4m 6×2 + 4×3 5m = 12 + 12 2m = 24(m2) 6m 答:至少要24平方米的地板。 4m 方法二:分割成一个长方形和一个 正方形 5m 4×5+2×2 2m = 20 + 4 6m = 24(m2) 6-4=2(m) 答:至少要24平方米的地板。
2
S=(a+b)×h÷2
大长方形面积: 2 15×10=150(米 )
可以看成由一个 长方形和三角形组成
S=ab
长方形面积:12×10=120(米 )
S=ah÷2
2
三角形面积:3×6÷2=9(米 )
2
草坪面积:120+9=129(米 )
2
可以看成由一个 梯形和三角形组成。
S=ah÷2
三角形面积:15×6÷2=45(米 )
S=(a+b)×h÷2
2
梯形面积:(4+10)×12÷2
=14×6=84(米 ) 草坪面积:45+84=129(米 )
2 2
图形内:分割法 求和
图形外:添补法 求差
典题精讲
如图:校园里有一个花圃你能计算出它 的面积是多少平方米吗? (可以尝试着不同的方 法)
5m
2m 2m 6m
典题精讲
五年级数学多边形的面积计算公式汇总+练习题(附答案)
![五年级数学多边形的面积计算公式汇总+练习题(附答案)](https://img.taocdn.com/s3/m/7e1b0c56f342336c1eb91a37f111f18583d00c09.png)
五年级数学多边形的面积计算公式汇总+练习题(附答案)面积计算公式1、长方形的面积=长×宽字母表示:S=ab长方形的长=面积÷宽 a=S÷b长方形的宽=面积÷长b=S÷a2、正方形的面积=边长×边长字母表示: S= a²3、平行四边形的面积=底×高字母表示:S=ah平行四边形的高=面积÷底 h=S÷a平行四边形的底=面积÷高 a=S÷h4、三角形的面积=底×高÷2字母表示:S=ah÷2三角形的高= 2×面积÷底h=2S÷a三角形的底= 2×面积÷高a=2S÷h5、梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)·h ÷2梯形的高=2×面积÷(上底+下底)h=2S÷(a+b)梯形的上底=2×面积÷高—下底a=2S÷h-b梯形的下底=2×面积÷高—上底b=2S÷h-a1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方米=10000平方厘米1米=10分米=100厘米多边形面积同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积×2”这一知识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是15 平方厘米和25 平方厘米。
中间涂色三角形的面积是()。
考查目的:等底等高的三角形和平行四边形的面积之间的关系。
五年级上册多边形的面积
![五年级上册多边形的面积](https://img.taocdn.com/s3/m/f781603f5fbfc77da369b16d.png)
第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高 (a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应.2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底)字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高—上底字母表示为:b=2s÷h—a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4。
组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题.(1)3。
8dm2=()cm2 0。
03公顷=()平方米(2)一个三角形的底是3。
6米,高是2.5米,它的面积是()平方米,和它等底等高的平行四边形的面积是( )平方米.(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是( )厘米。
五年级上册数学教学课件《多边形面积的计算》
![五年级上册数学教学课件《多边形面积的计算》](https://img.taocdn.com/s3/m/47e1913f3a3567ec102de2bd960590c69fc3d85e.png)
4
5厘米
厘
米
3厘米
三.操作题。
• 1.将下面的多边形分割成两个简单的图形。
四.应用题。
• 1.李家用篱笆围成一个养鸡场(如图),一 边利用房屋墙壁,篱笆长是60米,养鸡场 的面积是多少平方米?
20米
(60 - 20)× 15÷ 2
• 2.如下图,三角形ABE的面积是AECD面积 的一半,求BE的长是多少?
A 9分米 D 5分米
B
EC
平行四边形面积的计算
S=ah
•高 •底
三角形面积的计算 S=ah÷2
高 底
梯形面积的计算 S=(a+b)h÷2
ab h ba
智能训练
• 用一张长1.7米,宽0.8米的红纸能做多少面 底和高都是0.4米的三角形小红旗?
(0.8÷0.4)×(1.7÷0.来自)×2综合训练• 一.判断.
• 1.平行四边形的面积等于三角形面积的2倍.
( ×)
• 2.两个面积相等的三角形可以拼成一个平行四边
形.
(× )
• 3.两个面积相等的三角形,它们的底和高也一定相
等.
( ×)
• 4.把一个活动的长方形框架,拉成一个平行四边形
后,面积变小了.
(√ )
二.填空.
• 1.一个三角形和一个平行四边形的面积相等, 底也相等,那么三角形的高是平行四边形 高的( ).2倍
• 2.将一块上底是6厘米,下底是9厘米,高是6 厘米的梯形铁皮剪去一个最大的正方形, 所剩下的面积是( 9)平方厘米.
• 3.一个直角三角形的三条边分别是3厘米,4 厘米和5厘米,那么它的面积是( 6)平方厘米.
3厘米
6 厘 米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.
例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘
例6 如右图,已知:S△ABC=1,
例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?
例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
习题一
一、填空题(求下列各图中阴影部分的面积):
二、解答题:
1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.
3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF 的面积为4.求三角形ABE的面积.
5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。
求三角形DEF的面积.
6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?。