高考数学难点突破__指数、对数函数

合集下载

函数难点突破:让抽象的函数成为常识

函数难点突破:让抽象的函数成为常识
于直 线 竺对 称 :


程厂 ) ( =有等根. 厂 ) 求| 的解析式. (
典 型 分 析 : () 仳 6 + , 设 = + r 则
 ̄ () 得cO 因为厂 5 fx3 , fo- -. - - o ( )( ) 一+ 一
所 以二 次 函 数 的 对 称 轴 为 x= . 1 所
点评 : () ‘ 是二 次函数” l 厂 这个条
) 的模 型 , 直接
囡躅 日 抽象函数具体化
善 于 对 抽 象 函数 的关 系 式 合 理
件 正 好 告诉 了 函
求 出函数待 定 系数 即 可.
例2 函数厂 的定 义域 为D: ( )
{ ≠0} 对 于 任 意 , 且 D, 有
以 取范为f≤一, 值围{ < 的 7 了 ~ 1 一





圈蕊 盘 考剥

4 4


轮复 习专项突破 ・ 数学

÷ s s 3 或 ≤. J ≤ }
例3 已知 函 ) 足厂 +) 满 ( 1 x

解得t 2 >2 或tO ≤一 或t . - .因此所求 i
性 的基 本 方 法是 定 义 法 .但 要 注 意

。 = 0 4 贝 20 ) )2 0 , o 5 :
在 判 l (  ̄ x) :的 符 号 时 , 构 造 f ) 要
典 型 分析 : 因 所 ) = 斛 1= ) 一 ,

) : ) :
XI  ̄ 2 "

数且周期T2; =a函数厂 ) lo = ( 满足厂 ) (
_ - H (+) ( ( 厂 x fbx_ 6 印函数 ) ( ) w 厂 ) 有 两条对称轴j , ) 则 是周期函数且周

高考数学难点突破_难点33__函数的连续及其应用

高考数学难点突破_难点33__函数的连续及其应用

高考数学难点突破_难点33__函数的连续及其应用函数的连续及其应用是高考数学中的一个重要难点,对于很多学生来说,理解和掌握这个知识点是比较困难的。

本文将分为三个部分进行讲解,首先是函数连续的概念和定义;其次是连续函数的性质和判断方法;最后是函数连续的应用。

一、函数连续的概念和定义在数学中,函数连续是指函数在一些点上没有突变、断层,即在该点上没有跳跃,也没有突变的现象。

具体来说,对于函数f(x)在点x=a处连续,需要满足以下三个条件:1.函数在点x=a处存在;2.函数在点x=a处的左极限和右极限存在且相等;3.函数在点x=a处的极限等于函数在该点的函数值。

符号化表示如下:f(a-)=f(a+)=f(a)二、连续函数的性质和判断方法1.连续函数的四则运算性质:如果函数f(x)和g(x)在点x=a处连续,则它们的和、差、积、商也在点x=a处连续。

2.连续函数的复合函数性质:如果函数f(x)在点x=a处连续,函数g(x)在点x=b处连续,并且a是g(x)的定义域内特定点的函数值,则复合函数f(g(x))在点x=b处连续。

3.连续函数的初等函数性质:初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等,它们在其定义域上都是连续的。

对于函数连续的判断方法,可以通过根据定义依次检查函数是否满足连续的条件,也可以利用函数的性质进行判断。

三、函数连续的应用1.函数连续与导数的关系:对于连续函数f(x),在其定义域内的每个点上都有导数存在。

2.函数连续与极值的关系:对于连续函数f(x),在闭区间[a,b]上,如果f(x)在内部点取得最大值或最小值,则必然在[a,b]的边界点或者内部存在极值。

3.函数连续与介值定理的关系:对于连续函数f(x),如果[a,b]上f(a)和f(b)异号,那么在(a,b)内必然存在一些点c,使得f(c)=0。

4.函数连续与零点存在性的关系:对于连续函数f(x),如果f(a)和f(b)异号,则在(a,b)内必然存在一些点c,使得f(c)=0。

高考数学难点突破_难点09__指数对数函数

高考数学难点突破_难点09__指数对数函数

高考数学难点突破_难点09__指数对数函数指数对数函数是高考数学中的一个重要的难点,也是学生普遍认为比较难理解和掌握的内容之一、本文将从基本概念、性质、解题技巧等方面进行详细介绍,帮助学生突破这一难点。

一、基本概念1.指数函数:指数函数是以指数为自变量,以底数为底的函数。

比如y=2^x就是一个指数函数,其中2是底数,x是指数。

2. 对数函数:对数函数是指数函数的逆运算,也就是说,指数函数和对数函数互为反函数。

比如 y = log2(x) 就是一个对数函数,其中 2 是底数,y 是对数。

二、性质1.指数函数的性质:(1)底数为正数且不等于1;(2)指数为任意实数;(3)当底数小于1时,指数函数是递减函数;(4)当底数大于1时,指数函数是递增函数。

2.对数函数的性质:(1)底数为正数且不等于1;(2)对数为任意正数;(3)对数函数的定义域是正数集合,值域是实数集合;(4)对数函数图象是一条过点(1,0)的上凸曲线。

三、解题技巧1.指数函数的解题技巧:(1)利用指数函数的性质进行函数图象的绘制;(2)将指数转化为对数的形式,利用对数的性质简化计算;(3)注意指数函数的定义域和值域,避免出现无解的情况;(4)利用指数函数的性质解决等式、不等式,注意正确应用换底公式。

2.对数函数的解题技巧:(1)利用对数函数的性质进行函数图象的绘制;(2)利用对数函数的反函数性质化简等式、不等式的解;(3)根据定义域和值域限制,判断函数是否有解;(4)注意合理利用换底公式,化简对数运算。

四、经典题型1. 解对数方程:如 log2(x+3) + log2(x-2) = 3,将对数方程转化为指数方程求解。

2.判断函数性质:如f(x)=5^(x-3),要求判断指数函数f(x)的增减性和定义域。

3.运用指数对数函数求最值:如y=3^x-3^(1-x),通过化简求函数的最值。

4. 判断指数函数与对数函数的关系:如 f(x) = 2^x 和 g(x) = log2(x),要求判断两个函数的值域和定义域。

025高考函数知识点与难题突破

025高考函数知识点与难题突破

025高考函数知识点与难题突破函数是高考数学中的重点和难点,对于很多同学来说,掌握函数知识并突破难题是取得高分的关键。

在这篇文章中,我们将系统地梳理高考函数的知识点,并探讨一些难题的突破方法。

一、函数的基本概念函数是一种对应关系,给定一个自变量的值,通过函数规则就能确定唯一的因变量的值。

函数通常用符号 y = f(x) 表示,其中 x 是自变量,y 是因变量,f 是函数关系。

函数的定义域是自变量 x 的取值范围,值域是因变量 y 的取值范围。

确定函数的定义域时,需要考虑分式的分母不为零、偶次根式内非负、对数的真数大于零等限制条件。

二、常见函数类型1、一次函数:y = kx + b(k、b 为常数,k ≠ 0),其图像是一条直线。

2、二次函数:y = ax²+ bx + c(a ≠ 0),图像是一条抛物线。

当 a > 0 时,开口向上;当 a < 0 时,开口向下。

二次函数的顶点坐标为(b/2a,(4ac b²)/4a)。

3、反比例函数:y = k/x(k 为常数,k ≠ 0),图像是双曲线。

4、指数函数:y = a^x(a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。

5、对数函数:y =logₐx(a > 0 且a ≠ 1),与指数函数互为反函数。

三、函数的性质1、单调性如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。

判断函数单调性的方法有定义法、导数法等。

2、奇偶性如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数;如果都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数。

奇函数的图像关于原点对称,偶函数的图像关于 y 轴对称。

高考数学重难点第11讲 指数函数、对数函数与幂函数10大题型(原卷版)(全国通用)(新高考)

高考数学重难点第11讲 指数函数、对数函数与幂函数10大题型(原卷版)(全国通用)(新高考)

重难点第11讲指数函数、对数函数与幂函数10大题型——每天30分钟7天掌握指数函数、对数函数与幂函数10大题型【命题趋势】指数函数、对数函数与幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位,从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推论,能运用它们的性质解决具体的问题。

考生在复习过程中要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

第1天认真研究满分技巧及思考热点题型【满分技巧】一、指数幂运算的一般原则1、指数幂的运算首先将根式统一为分数指数幂,以便利用法则计算;2、先乘除后加减,负指数幂化成正指数幂的倒数;3、底数为负数,先确定符号;底数为小数,先化成分数;底数是带分数的,先化成假分数;4、运算结果不能同时包含根号和分数指数,也不能既有分母又含有负指数。

二、对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式。

2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式x y z a b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y z a b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解。

【函数小题突破】第1讲 对数函数、幂函数(教案)高考数学二轮重难点复习专题

【函数小题突破】第1讲  对数函数、幂函数(教案)高考数学二轮重难点复习专题

对数与对数运算1.在指数函数y =a x (a >0,且a ≠1)中,幂指数x ,又叫做以a 为底y 的对数.2.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数.3.对数恒等式a log aN =N .4.对数与指数间的关系:a b =N ⇔b =log a N (a >0,a ≠1).5.常用对数/自然对数以10为底的对数叫做常用对数,通常把log 10N 记作lg N . 以e 为底的对数叫做自然对数,通常把log e N 记作ln N . 6.对数运算性质 (1)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ⇔log a (MN )=log a M +log a N ; ⇔log a MN =log a M -log a N ;⇔log a M n =n log a M (n ⇔R ). (2)对数的性质 ⇔log a Na= N ;⇔log a a N = N (a >0且a ≠1).(3)对数的换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).对数函数1.一般地,我们把函数y =log a x (a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).2.对数函数的图象与性质y=log a x a >1 0<a <1图象定义域 (1)(0,+∞) 值域(2)R性质(3)过定点(1,0) (4)当x >1时,y >0;当0<x <1时,y <0(5)当x >1时,y <0;当0<x <1时,y >0 (6)在(0,+∞)上是增函数 (7)在(0,+∞)上是减函数习题1.对数式lg(2x -1)中实数x 的取值范围是________;2.对数式log (x -2)(x +2)中实数x 的取值范围是______.3.下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ; ⑤y =log x (x +2);⑥y =2log 4x ; ⑦y =log 2(x +1). A .1个 B .2个 C .3个D .4个4.若对数函数f (x )的图象过点(4,-2),则f (8)=________.5.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.6.函数f (x )=log 3(2x -1)的定义域为______.7.函数f (x )=12-x+ln(x +1)的定义域为______. 8.函数y =log 32x -1的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,19.已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )10.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)11.函数2()ln(28)f x x x =-- 的单调递增区间是( )A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞ 12.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________. 13.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b14.设 a =log 36,b =log 48,c =log 510,则 ( )15.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b16.已知 log a 13>log b 13>0,则 a ,b 之间的大小关系是 ( )A. 1<b <aB. 1<a <bC. 0<a <b <1D. 0<b <a <117.函数 y =√log 0.5(4x−3) 的定义域为 ( )A. (34,1) B. (34,+∞)C. (1,+∞)D. (34,1)∪(1,+∞)18.函数 y =log a (x +1)+2(a >0且a ≠1) 恒过定点,其坐标为 .幂函数1.一般地,函数y=xα(α⇔R)叫做幂函数,其中x是自变量,α是常数.2.幂函数的图像3.幂函数的性质4.“对号”函数形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:习题1.在函数y =x -2,y =2x 2,y =(x +1)2,y =3x 中,幂函数的个数为( )A .0B .1C .2D .32.已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.3.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 4.当x ∈(1,+∞)时,下列函数中图象全在直线y =x 下方的增函数是( )A. y =x 12 B. y =x 2 C. y =x3 D. y =x −1 5.若(2m +1)21>(m 2+m -1)21,则实数m 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,26.已知α⇔{-1,1,2,3},则使函数y x α=的值域为R ,且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,37.已知幂函数f (x )=x 12)(-+m m (m ⇔N +)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.8.已知f (x )=x 21,若0<a <b <1,则下列各式中正确的是 ( )A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b)<f (b ) 9.已知 a =(13)3,b =x 3,c =lnx ,当x >2 时,a,b,c 的大小关系为( )A. a <b <cB. a <c <bC. c <b <aD. c <a <b10.已知函数12)15()(++-=m x m m x h 为幂函数,且为奇函数(1)求m 的值(2)求函数]21,0[,)(21)()(∈-+=x x h x h x g 的值域。

高中数学必修1知识难点总结

高中数学必修1知识难点总结

高中数学必修1知识难点总结高中数学必修一作为高中学生必须掌握的重要学科之一,其内容广泛,难度较大。

其中涉及到了很多重要的知识点,以下是笔者针对这些知识点的难点进行的总结。

1.方程与不等式:方程和不等式是高中数学必修1中难度较大的部分,它们是数学分析和解决实际问题的重要工具。

而其中又以一次方程和一次不等式最为基础,理解和掌握其解法是学习这一部分知识的关键。

此外,二次方程和二次不等式也是难点,其解的方法不仅多样,且常涉及高中数学中其他知识点的关联,因此也需要学生投入大量时间和精力去掌握。

2.函数:函数是高中数学必修1中最主要的部分之一,是整个数学课程的重中之重。

函数可以用来总结和反应实际问题中的某些规律,是数学与实际生活相结合的一个重要工具。

而其中又以幂函数、指数函数、对数函数、三角函数等更为常见且重要的知识点最为难以掌握,这些函数不仅是高中数学的重要内容,同时也是高考中经常涉及的复杂题型,因此学生需要针对这些知识点进行重点练习和深入理解。

3.几何:高中数学必修1涉及到的几何部分有很多内容,如直线与角、三角形、四边形和圆等,其中以圆和三角形为难点。

对于圆来说,其性质杂且记忆量大,而对于三角形来说,如线段中线定理、角平分线定理、余弦定理、正弦定理等都是比较抽象的概念,需要学生多加练习,才能掌握。

4.向量:向量是高中数学必修1的新知识,也是比较难理解的一部分。

其涉及到了向量的定义,向量的数量运算、向量的线性运算及向量的应用等多个方面。

需要学生具备很强的空间概念和抽象思维能力,才能够掌握和应用这部分知识。

5.三角函数的图象与性质:三角函数作为高中数学必修1中的重要部分之一,其图象和性质是学习这个领域必不可少的知识点。

但是这部分内容既抽象又复杂,需要学生针对性进行练习和理解,才能够掌握其相关的概念和规律。

6.数列与数学归纳法:数列是高中数学必修1中的一个非常重要的概念,在高考数学中经常涉及。

而数学归纳法则是证明数学命题的常见方法,需要学生掌握其基本思想和应用方法,才能够在数列相关的题型中取得好的成绩。

指数函数教案:突破高考的秘密武器

指数函数教案:突破高考的秘密武器

指数函数教案:突破高考的秘密武器第一章:指数函数的定义与性质1.1 指数函数的定义1.2 指数函数的性质1.3 指数函数的图像与解析式第二章:指数函数的应用2.1 指数函数的增长率问题2.2 指数函数的衰减问题2.3 指数函数的实际应用举例第三章:指数函数的图像与性质3.1 指数函数的图像特点3.2 指数函数的单调性3.3 指数函数的极值问题第四章:指数函数与其他函数的关系4.1 指数函数与对数函数的关系4.2 指数函数与二次函数的关系4.3 指数函数与其他函数的关系第五章:高考真题解析与练习5.1 高考真题解析5.2 高考真题练习第六章:指数函数的求导与积分6.1 指数函数的求导6.2 指数函数的积分6.3 指数函数在微积分中的应用第七章:指数函数与概率论7.1 指数分布7.2 指数函数在概率论中的应用7.3 指数函数与几何概率第八章:指数函数与数列8.1 指数数列的定义与性质8.2 指数数列的求和公式8.3 指数数列的实际应用第九章:指数函数与函数方程9.1 函数方程中的指数函数9.2 指数函数在函数方程中的应用9.3 函数方程的求解方法第十章:综合训练与提高10.1 综合训练题10.2 提高题10.3 答案与解析第六章:指数函数的求导与积分6.1 指数函数的求导6.2 指数函数的积分6.3 指数函数在微积分中的应用7.1 指数分布7.2 指数函数在概率论中的应用7.3 指数函数与几何概率第八章:指数函数与数列8.1 指数数列的定义与性质8.2 指数数列的求和公式8.3 指数数列的实际应用第九章:指数函数与函数方程9.1 函数方程中的指数函数9.2 指数函数在函数方程中的应用9.3 函数方程的求解方法第十章:综合训练与提高10.1 综合训练题10.2 提高题10.3 答案与解析重点和难点解析第六章:指数函数的求导与积分重点环节:指数函数的求导与积分补充和说明:在这一章节中,学生需要理解指数函数的求导规则和积分方法。

2025年高考数学必考知识点解析

2025年高考数学必考知识点解析

2025年高考数学必考知识点解析高考,对于每一位学子来说,都是人生中的一次重要挑战。

而数学作为其中的关键学科,其重要性不言而喻。

随着教育改革的不断推进,高考数学的考查重点和形式也在悄然发生变化。

为了帮助广大考生更好地应对 2025 年高考数学,本文将对一些必考知识点进行详细解析。

函数一直是高考数学的核心内容之一。

包括函数的定义、性质(单调性、奇偶性、周期性)、函数的图像以及常见的函数类型(如一次函数、二次函数、反比例函数、指数函数、对数函数等)。

考生需要熟练掌握函数的基本概念和运算,能够根据函数的性质解决相关问题,并且能够运用函数的思想来解决实际应用问题。

三角函数也是必考的重点。

从三角函数的定义、诱导公式、基本关系式,到三角函数的图像和性质(如周期性、最值、单调性等),再到解三角形,都需要考生有清晰的理解和熟练的运算能力。

在解决三角形相关问题时,要能够灵活运用正弦定理、余弦定理等知识。

数列同样占据着重要的地位。

等差数列和等比数列的通项公式、求和公式是必须牢记的基础知识。

此外,数列的递推关系、数列的综合应用也是常考的题型。

考生要学会通过分析数列的特点,找到解题的关键。

立体几何是考查空间想象能力和逻辑推理能力的重要部分。

包括空间直线与平面的位置关系、空间向量的应用、几何体的表面积和体积等。

在解决立体几何问题时,要善于建立空间直角坐标系,利用空间向量来求解角度和距离问题。

概率与统计也是不容忽视的知识点。

概率的基本概念、常见的概率分布(如二项分布、正态分布等)、统计图表的分析、样本均值和方差的计算等,都是高考的常见考点。

考生要能够理解概率的本质,运用统计方法来处理和分析数据。

解析几何是高考数学中的难点之一。

椭圆、双曲线、抛物线的标准方程和性质,直线与圆锥曲线的位置关系,以及弦长公式、中点坐标公式等,都需要考生深入掌握。

解题时要善于将几何问题转化为代数问题,通过联立方程求解。

导数在高考中常常用于研究函数的单调性、极值和最值。

第12讲 对数与对数函数(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)

第12讲 对数与对数函数(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)

3
2
所以( ) m 与( ) n 均为方程 t 2+ t -1=0的实数根,由 t 2+ t -1=0,解得 t =
3
2
3
2
3
2
3
2
因为( ) m >0,( ) n >0,所以( ) m =( ) n =


所以 m = n , =
6
4
3
2
=( ) m =
−1+ 5
2
−1+ 5
2
,故选B.
3
2
−1+ 5
∴ f ( x )是偶函数,∴由 f (ln x )+ f (-ln x )<2可得2 f (ln x )<2,即 f (ln x )<1.
当 x >0时, f ( x )=log2 x + x 2.∵ y =log2 x 和 y = x 2在(0,+∞)上都是单调递增的,
1

∴ f ( x )在(0,+∞)上单调递增,又 f (1)=1,∴|ln x |<1且ln x ≠0,∴ < x <e且 x ≠1,
<1时相反.
(2)研究 y = f (log ax )型的复合函数的单调性,一般用换元法,即令 t =log
ax ,则只需研究
注意
t =log ax 及 y = f ( t )的单调性即可.
研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,
否则所得范围易出错.
角度1
例3
比较大小
1
(1)[2021新高考卷Ⅱ]若 a =log52, b =log83, c = ,则( C
f (-ln x )<2的解集为(
1

D
1

A. ( ,1)

高考数学考纲解读与热点难点突破专题02函数的图象与性质教学案(理)

高考数学考纲解读与热点难点突破专题02函数的图象与性质教学案(理)

专题02 函数的图象与性质【2019年高考考纲解读】(1)函数的概念和函数的基本性质是B级要求,是重要题型;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)幂函数是A级要求,不是热点题型,但要了解幂函数的概念以及简单幂函数的性质。

【重点、难点剖析】1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T =ka(k∈Z)的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)的图象和性质,分0<a<1和a>1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y=xα的图象和性质,分幂指数α>0和α<0两种情况.5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用. 【题型示例】题型一、函数的性质及其应用【例1】 (2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50 B .0 C .2 D .50 答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2. 故选C.【2017北京,理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数, 13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A. 【举一反三】【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .【答案】-2【举一反三】(1)(2015·重庆卷)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .[-3,1] B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1 (1)答案:D解析:要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞). (2)答案:D解析:f (1)=lg 1=0,所以f (a )=0.当a >0时,则lg a =0,a =1;当a ≤0时,则a +3=0,a =-3.所以a =-3或1.【变式探究】 (1)(2014·江西)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)(2)(2014·浙江)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【命题意图】(1)本题主要考查函数的定义域求法以及不等式的解法.通过定义域的求法考查考生的运算求解能力及转化意识.(2)本题主要考查分段函数和不等式恒成立问题,可结合函数图象进行分析求解. 【答案】(1)C (2)(-∞,2]【解析】(1)将求函数的定义域问题转化为解不等式问题. 要使f (x )=ln(x 2-x )有意义,只需x 2-x >0, 解得x >1或x <0.∴函数f (x )=ln(x 2-x )的定义域为(-∞,0)∪(1,+∞). (2)结合图形,由f (f (a ))≤2可得f (a )≥-2,解得a ≤ 2. 【方法技巧】1.已知函数解析式,求解函数定义域的主要依据有:(1)分式中分母不为零;(2)偶次方根下的被开方数大于或等于零;(3)对数函数y =log a x (a >0,a ≠1)的真数x >0;(4)零次幂的底数不为零;(5)正切函数y =tan x 中,x ≠k π+π2(k ∈Z ).如果f (x )是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的自变量的集合.根据函数求定义域时:(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.2.函数的值域是由函数的对应关系和函数的定义域所唯一确定的,具有相同对应关系的函数如果定义域不同,函数的值域也可能不相同.函数的值域是在函数的定义域上求出的,求解函数的值域时一定要与函数的定义域联系起来,从函数的对应关系和定义域的整体上处理函数的值域. 题型二、函数的图象及其应用【例2】(2018·全国Ⅱ)函数f (x )=e x-e-xx2的图象大致为( )答案 B【方法技巧】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是判断函数图象问题的基本方法.(2)判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D【解析】函数f(x)=2x 2–e |x|在[–2,2]上是偶函数,其图像关于y 轴对称,因为22(2)8e ,08e 1f =-<-<,所以排除A 、B选项;当[]0,2x ∈时,()=4e xf x x '-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数,当0(2)x x ,∈时,()f x 为增函数.故选D 。

【高考数学考点突破】分类讨论思想(2020-2021)

【高考数学考点突破】分类讨论思想(2020-2021)

难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS cS k k 成立.命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n 21),得 221)211(411+=-=++n n n S S ,(n ∈N *)(2)要使21>--+c S c S k k ,只要0)223(<---kk S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3, 所以当k =1,k =2时,c <Sk因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立.综上所述,不存在自然数c ,k ,使21>--+cS cS k k 成立.[例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||bbx y ++ ①依题设,点C 在直线AB 上,故有)(1a x aby -+-= 由x –a ≠0,得ax ya b -+-=)1( ②将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0 若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式. 综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③ 此时方程③表示抛物线弧段; (ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+---④所以当0<a <1时,方程④表示椭圆弧段; 当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=.∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOACOA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π∵xy COA ||tan =)1(||||||tan a xa y OD BD BOD +-==∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式. 综合(i)、(ii),得点C 的轨迹方程为 (1–a )x 2–2ax +(1+a )y 2=0(0≤x <a ) 以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x aby -+-=∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk-=-=θθθ 又tan2θ=–b ∴–b =212k k- ① ∵C 点在AB 上 ∴)(1a x abkx -+-= ② 由①、②消去b ,得)(12)1(2a x kkkx a --=+ ③ 又xyk =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段; 当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.一、选择题1.(★★★★)已知122lim =+-∞→nnnn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种 二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ;(3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ; (3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a ) 此时函数f (x )既不是奇函数,也不是偶函数. (2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a );若a >–21,则函数f (x )在[a ,+∞)单调递增.从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1. 综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43.●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证. 答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种. 答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决. 答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0}, 由A ∪B =A 可得1–a =1或1–a =2; 由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22) 三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根. 若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0. 将方程x 02+px 0+q =0两边除以x 02,得01)1()1(20=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾.又由A ∩B ≠∅,∴x 0=1x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1 ∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1 设动点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程. (1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()(即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f又由f (x n )=n ,f (x n –1)=n –1 ∴x n –x n –1=(b1)n –1,n =1,2,…… 由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b1. 因b ≠1,得∑==nk n x 1(x k –x k –1)=1+b 1+…+1)1(111--=--b b b bn n 即x n =1)1(1---b b b n (2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n 当0<b <1,n →∞, x n 也趋于无穷大.∞→n lim x n 不存在.(3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知 f (x )=n +b n (x –x n )(n =1,2,…),由(2)知 当b >1时,y =f (x )的定义域为[0,1-b b ); 当0<b <1时,y =f (x )的定义域为[0,+∞). 8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1∵ba b a x b x f 4)2()(22+--= ∴ba b a f 4)2(2=≤1∵a >0,b >0 ∴a ≤2b .(2)证明:必要性: 对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1) 即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1. 因为b >1,可以推出f (b 1)≤1即a ·b1–1≤1, ∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1]. 可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1 即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b . (3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1 即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1 即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1 即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。

重难点专题07 比较大小六大方法汇总(解析版) 备战2024年高考数学重难点突破

重难点专题07 比较大小六大方法汇总(解析版) 备战2024年高考数学重难点突破

结构不相同的比较大小题目,可以寻找“中间桥梁”,通常是与0,1比较
通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到它们之间的大小关系.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性:y=a x,当a>1时,函数递增;当0<a<1时,函数递减;(2)利用对数函数的单调性:y=log a x,当a>1时,函数递增;当0<a<1时,函数递减;
(1)作差法:作差与0作比较;
(2)作商法:作商与1作比较(注意正负);
结构相同的比较大小题目,可以构造函数,利用函数的单调性比较大小
通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.在本题中,通过构
造函数f(x)=
e x―x―1,利用导数证明得到x>0时,
e
x>x+1,进而放缩得到a=
e
0.2
>1+0.2=1.2=ln
e
1.2.
由数形结合可知sin x >3πx 在0,π
6
恒成立,所以sin π9>1
3,
所以c <a <b ,故选:A
当x∈(0,2)时,x2<2x;当x∈
由x=π∈(0,2),故(π)2 <
所以b<a<c,
故选:A
8.(2023·河南开封·校考模拟预测)若。

高考专项:指数函数对数函数的四类题型,基础夯实必备(含详细解析)

高考专项:指数函数对数函数的四类题型,基础夯实必备(含详细解析)

专项5 指数函数、对数函数相关的4种题型1.比较大小一般来说,指数、对数比较大小我们采取的思路是:首先,尽量将不同底数的指数、对数或幂函数,通过公式化成同一底数的,底数相同的根据单调性比较大小;其次,对于确实不能化成同一底数的,我们尽量将真数或指数化成相同的,然后我们做出图像,根据指数函数在第一象限内底数越大图像越高的特征、对数函数在第一象限内水平向右底数增大的特征判断大小; 最后,如果全都不相同,我们一般先做出图像,观察图像,判断大小,如果图像仍然不能解决问题,那么我们就应该考虑找中间值进行比较,中间值一般取0,-1,1,比如能否确定所要进行比较的数的正负、与1或-1的大小关系。

通过上述方式一般能解决所有比较大小问题。

1.设0.90.48 1.514,8,()2a b c -===,则( ) .A c a b >>.B b a c >>.C a b c >>.D a c b >>2.三个数0.32、log 20.3、20.3的大小关系为( )A .0.32<20.3<log 20.3B .0.32<log 20.3<20.3C .log 20.3<0.32<20.3D .log 20.3<20.3<0.323. a log a,log a,log 1,a 0530.5三者的大小关系是则<<若( )a log a log a log D.a log a log a log C.a log a log a log B.a log a log a log A.530.50.5530.535350.5>>>>>>>>4.设a >1,且2log (1)log (1),log (2)a a a m a n a p a =+=-=,,则p n m ,,的大小关系为( )(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n5.以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2) (C) ln (D) ln26.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b <<D .b a c <<7.设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2c c ⎛⎫= ⎪⎝⎭.则( ) A.a b c << B.c b a << C.c a b << D.b a c <<28.下列大小关系正确的是( )A .20.440.43log 0.3<<;B .20.440.4log 0.33<<;C .20.44log 0.30.43<<;D .0.424log 0.330.4<<9.设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q <<10. 下列不等式成立的是( )A .2lg (lg )e e <<B .2lg (lg )e e <<C .2(lg )lg e e <<D .2(lg )lg e e <<11.已知324log 0.3log 3.4log 3.615,5,()5a b c ===,则( ) .A a b c >>.B b a c >>.C a c b >>.D c a b >>12.若13(,1),ln ,2ln ,ln x e a x b x c x -∈===,则( ) .A a b c <<.B c a b <<.C b a c <<.D b c a <<13.设2554log 4,(log 3),log 5,a b c ===则( ) .A a c b <<.B b c a <<.C a b c <<.D b a c <<2.恒过定点问题指数函数恒过定点(0,1),是指指数函数的指数位置的表达式为0的时候,函数值恒为1;对数函数恒过(1,0),是指对数函数的真数位置的表达式为1的时候,函数值恒为0;对于指数位置或真数位置表达式中含有参数的,应考虑使用公式分离参数。

高考数学第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算

高考数学第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算

4.1.1 实数指数幂及其运算课标解读课标要求核心素养1.理解n次方根及根式的概念.2.正确运用根式的运算性质进行根式运算.(重点)3.掌握根式与分数指数幂的互化.(重点、易错点)4.掌握有理指数幂的运算性质.(重点、难点)1.通过根式与分数指数幂互化的学习,培养数学运算的核心素养.2.通过利用指数式的条件解决求值问题,提升逻辑推理的核心素养.公元前五世纪,古希腊有一个数学学派名叫毕达哥拉斯学派,其学派中的一个成员希帕索斯思考了一个问题:边长为1的正方形的对角线的长度是多少呢?他发现这一长度既不能用整数表示,也不能用分数表示,希帕索斯的发现使数学史上第一个无理数诞生了.问题:若x2=3,则这样的x有几个?它们叫做3的什么?如何表示?答案这样的x有2个,它们都称为3的平方根,记作±.1.有关幂的概念一般地,a n中的a 称为①底数,n称为②指数.2.根式的相关概念和性质(1)根式的概念:一般地,给定大于1的正整数n和实数a,如果存在实数x,使得x n=a,则③x称为a的n 次方根;当有意义的时候,④称为根式,n称为⑤根指数,a称为⑥被开方数.(2)根式的性质:(i)()n=⑦a.(ii)=思考1:类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?提示a为正数:a为负数:零的n次方根为零,记为=0.3.分数指数幂(1)定义:一般地,如果n是正整数,那么:当有意义时,规定=⑧;当没有意义时,称没有意义.(2)意义:分数指数幂正分数指数幂=(a>0),=()m =⑨负分数指数幂a-s =⑩(a s有意义且a≠0)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义(3)运算法则:(i)前提:s,t为任意有理数.(ii)法则:a s a t=a s+t;(a s)t=a st;(ab)s=a s b s.思考2:分数指数幂的运算性质是什么?提示分数指数幂的运算性质形式上与整数指数幂的运算性质完全一样.记忆分数指数幂的运算性质的口诀:乘相加,除相减,幂相乘.4.实数指数幂一般地,无理指数幂a t(a>0,t是无理数)是一个确定的实数,有理指数幂的运算性质对于无理指数幂同样适用.因此当a>0,t为任意实数时,实数指数幂a t 都有意义,对任意实数s和t,类似有理指数幂的运算法则仍然成立.探究一n次方根的化简与求值例1 (易错题)化简:(1);(2)()2++(a-1≥0).解析(1)=|3-π|=π-3.(2)原式=a-1+|1-a|+1-a=a-1+a-1+1-a=a-1.易错点拨n的奇偶性a的n次方根的表示a的取值范围n为奇数a∈Rn为偶数±[0,+∞)1.已知-3<x<3,求-的值.解析原式=-=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=x-1-(x+3)=-4,∴原式=探究二根式与指数幂的互化例2 (1)下列根式与分数指数幂的互化正确的是( )A.-=(-x(x>0)B.=(y<0)C.=(x>0)D.=-(x≠0)(2)用指数幂的形式表示(x>0,y>0).答案(1)C解析(1)A选项,-=-(x>0);B选项,=(y2=-(y<0);C选项,=(x-3=(x>0);D选项,=(x≠0).故C正确.(2)解法一:由里向外化为分数指数幂.===.解法二:由外向里化为分数指数幂.===·=.思维突破(1)记结论:=和==(a>0).(2)明途径:一是由里向外化为分数指数幂;二是由外向里化为分数指数幂.2.化简:(1)(a>0);(2)(2)(-6)÷(-3).解析(1)===(=.(2)原式=[2×(-6)÷(-3)]·=4ab0=4a.探究三指数幂的化简与求值例3 已知x+x-1=3,求x2+x-2的值.解析∵(x+x-1)2=x2+x-2+2,∴x2+x-2=(x+x-1)2-2=9-2=7.思维突破式子中包含的指数互为相反数时,通常用平方法进行解决,平方后观察条件和结论的关系,变形求解即可.3.(1)(变结论)已知x+x-1=3,求x2-x-2的值.(2)(变条件)已知x-x-1=3,求x2+x-2的值.解析(1)由例3知x2+x-2=7,∴x4+x-4=47,∴(x2-x-2)2=x4-2+x-4=45,即x2-x-2=±3.(2)∵(x-x-1)2=x2+x-2-2=9,∴x2+x-2=11.1.下列各式正确的是( )A.=-3B.=aC.()3=-2D.=2答案 C2.已知a>0,则=( )A. B.C. D.答案 D =,则===.故选D.3.化简(a3÷()(a>0,b>0)结果为( )A.aB.bC.D.答案 A 原式=÷()==a.故选A.4.化简:(x>0,y>0)= .答案2x2y解析∵x>0,y>0,∴==(24·x8y4=2x2y.5.若10m=2,10n=3,则103m-n= .答案解析由已知得103m=(10m)3=23=8,∴103m-n==.逻辑推理——指数运算与均值不等式的应用已知a>0,b>0,若2a·2b=2,则ab的最大值是.审:由指数运算法则以及2a·2b=2,可得a+b=1,再根据均值不等式ab≤,当且仅当a=b时取得最大值得出答案.联:求积的最值,会联想到基本不等式,那就需要和为常数,这个和刚好由指数运算求得.解:∵函数g(x)=2x,且有g(a)·g(b)=2,∴①2=2a·2b=2a+b,∴a+b=1,∵a>0且b>0,∴②ab≤=,当且仅当a=b=时,ab取得最大值.思:从已知条件中解出字母的值,然后代入求值,这种方法一般是不可取的,应设法从整体寻求结果与条件的联系,进而整体代入求值,体现了数据分析、逻辑推理的核心素养.设x∈R且x≠0,若x+x-1=3,猜想x2n+x-2n(n∈N*)的个位数字是( )A.2B.5C.6D.7答案 D ∵x+x-1=3,∴当n=1时,x2+x-2=(x+x-1)2-2=32-2=7,当n=2时,x4+x-4=(x2+x-2)2-2=72-2=47,当n=3时,x8+x-8=(x4+x-4)2-2=472-2=2207,……则x2n+x-2n(n∈N*)的个位数字是7.——————————————课时达标训练—————————————1.计算:++(2019)0=( )A.6B.7C.8D.答案 B2.下列各式正确的是( )A.=aB.a0=1C.=-4D.=-π答案 D 对于A,当a为负数时等式不成立,故不正确;对于B,当a=0时,a0无意义,故不正确;对于C,=4,故不正确.故选D.3.若(3-2x有意义,则实数x的取值范围是( )A.(-∞,+∞)B.∪C. D.答案 C 要使(3-2x=有意义,需使3-2x>0,解得x<,即实数x的取值范围是.故选C.4.化简(2a-3)·(-3a-1b)÷(4a-4)=( )A.-b2B.b2C.-D.答案 A 原式==-b2.5.设α,β是方程2x2+3x+1=0的两根,则的值为( )A.8B.C.-8D.-答案 A 由题意可知α+β=-,则====8,故选A.6.(x>0)用分数指数幂表示为.答案解析=(x·=·=·==.7.化简:(1)π0+2-2×= ;(2)()4()4(a>0)= .答案(1)(2)a4解析(1)π0+2-2×=1+×=1+×=.(2)()4()4=()4()4=()4()4=a2×a2=a4.8.已知2x=8y+1,9y=3x-9,则x+y= .答案27解析由2x=8y+1得2x=23y+3,所以x=3y+3,①由9y=3x-9得32y=3x-9,所以2y=x-9,②由①②解得x=21,y=6,所以x+y=27.9.计算下列各式的值:(1)(×(÷;(2)2(×)6+(-4×-×80.25+(-2019)0.解析(1)原式=(×(1÷1=2-1×103×1=2-1×1=.(2)原式=2(×)6+(×-4×-×+1=2×22×33+2-7-2+1=210.10.(多选)下列各式中正确的是( )A.=n7B.=C.=(x+yD.=答案BD =n7m-7,A错误;==,B正确;=(x3+y3,C错误;=(=(=,D正确.故选BD.11.x=1+2b,y=1+2-b,则y=( )A. B.C. D.答案 D ∵x=1+2b,∴2b=x-1.∴y=1+2-b=1+==.12.化简(1+)(1+)(1+)(1+)(1+)的结果是( )A.(1-)-1B.(1-)-1C.1-D.(1-)答案 B 因为(1+)(1-)=1-,故将原式化为分数形式,并且分子、分母同乘(1-),得原式===(1-)-1.故选B.13.已知实数x满足x2-3x+1=0,则x2+x-2= ;= .答案7;4解析因为实数x满足x2-3x+1=0,所以x2+1=3x,即x+x-1=3,两边平方,得x2+x-2+2=9,所以x2+x-2=7.又===x+x-1+1=4.14.若x>0,y>0,且x--2y=0,求的值.解析∵x--2y=0,x>0,y>0,∴()2--2()2=0,∴(+)(-2)=0,由x>0,y>0得+>0,∴-2=0,∴x=4y,∴==.15.若a,b,c为正实数,a x=b y=c z,++=0,则abc= .答案 1解析设a x=b y=c z=k,则k>0,则a=,b=,c=,因此abc===k0=1.16.已知实数x,y满足(x+2y)3+x3+2x+2y=0,则x+y-1= .答案-1解析因为(x+2y)3+x3+2x+2y=(2x+2y)[(x+2y)2-x(x+2y)+x2]+2(x+y)=2(x+y)[(x+2y)2-x(x+2y)+x2+1] =2(x+y)(x2+2xy+4y2+1)=2(x+y)[(x+y)2+3y2+1]=0,又易知(x+y)2+3y2+1>0,所以x+y=0,所以x+y-1=-1.。

高考数学难点突破_难点09__指数、对数函数

高考数学难点突破_难点09__指数、对数函数

难点9 指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx-+11,F (x )=x -21+f (x ).(1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明;(2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解. ●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题. 技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围; (3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级 题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a)-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力. ●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x +1)-x ]C.g (x )=2x ,h (x )=lg(10x +1)-2x D.g (x )=-2x ,h (x )=lg(10x +1)+2x2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题 3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x)的最大、最小值. 参考答案难点磁场 解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则 F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+))1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+yy x x x , ∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R .当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解.歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1) ①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1) ②由①②得:g (x )=2x ,h (x )=lg(10x +1)-2x.答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f --1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae -nt,y 2=a -ae-nt,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aax -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-.6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号),当a >1时,有log a x 1x 2≤log a (221x x +)2,∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2,∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2); (2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23. 即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3 ∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.。

第四章 幂函数、指数、对数函数教案

第四章  幂函数、指数、对数函数教案


突出本 节知识, 突出 运算法则. 教师抽问,学生回答 例题精讲
师生共同完成。
1.指数幂的推广 反 思 与 小 结 正整指数幂
零指数幂 负整指数幂
整数指数幂 2. 正整指数幂的运算法则对整数指数幂 仍然成立: (1) aman=am+n; (2) (am)n=amn; (3) (ab)m=a m b m
1 练习 7 式子(a-b)-4= 是否恒 (a-b)4 成立?为什么? 四、实数系 整数 分数 正整数 零 负整数
有理数 实数 无理数
五、整数指数幂的运算法则 aman=a ; (am)n=amn ; (ab)m=a mb m. 讲
m+ n
师:正整指数幂的运算法 则, 对整数指数幂的运算仍然成 立. 板书运算法则. 通过演示将 am 的运算归 an
引 入根 式、根 指数的 概念.
an = |a| = 学生认真观察.
例如: (-5)3=-5, 23 =2; 52=5, (-3)4=|-3|=3. 观察下面的运算: (a ) =a
2 3 3 1 3 3 1 33 4
3
3
在教师的引导下,学生寻找解 惑途径. 将 数学语 言(符 号)转 化为文 字语 言,使 学生加 深对性 质的理 解.
环节
教学内容
师生互动
设计意图
导 入
学生在教师的引导下观察 通过问 在一个国际象棋棋盘上放一些米 图片,明确教师提出的问题,通 题 的 引 入 激 粒,第一格放 1 粒,第 2 格放 2 粒,第 过观察课件,归纳、探究答案. 发 学 生 学 习 3 格放 4 粒„„一直到第 64 格, 那么第 的兴趣. 64 格应放多少粒米? 第 1 格放的米粒数是 1; 第 2 格放的米粒数是 2; 师:通过上面的解题过程, 在问题的 第 3 格放的米粒数是 2× 2; 你能发现什么规律?那么第 64 分析过程中, 格放多少米粒,怎么表示? 培养学生归纳 2个2 学生回答, 教师针对学生的 推理的能力. 第 4 格放的米粒数是 2× 2× 2; 回答给予点评.并归纳出第 64 格应放的米粒数为 263. 3个2 为引出 an 第 5 格放的米粒数是 2× 2× 2× 2; 师: 请用计算器求 263 的值.设下伏笔. „„ 学生解答. 4个2 用计算器 第 64 格放的米粒数是 2× 2× 2× „× 2. 使问题得到解 决.

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点9 指数函数、对数函数问题指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx-+11,F (x )=x -21+f (x ).(1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明;(2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解. ●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上; (2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标. 错解分析:不易考虑运用方程思想去解决实际问题. 技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n位于函数y =2000(10a )x(0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级 题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n .(2)∵函数y =2000(10a )x(0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a)-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20.●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力. (3)应用题目.此类题目要求考生具有较强的建模能力. ●歼灭难点训练 一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2xD.g (x )=-2x ,h (x )=lg(10x +1)+2x2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题 3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y = ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x)的最大、最小值. 参考答案难点磁场 解:(1)由xx-+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则 F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+))1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1. 因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+yy x x x , ∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R .当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解.歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1) ①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1) ②由①②得:g (x )=2x ,h (x )=lg(10x +1)-2x.答案:C 2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数. 答案:B二、3.解析:容易求得f --1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而:f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x4.解析:由题意,5分钟后,y 1=ae -nt,y 2=a -ae-nt,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10. 答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′.∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aax -21,∴g (x )=log aax -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-.6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号),当a >1时,有log a x 1x 2≤log a (221x x +)2,∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2,∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u -1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论.(1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2);(2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23. 即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3 ∴当log 2x =2,即x =4时y mi n =-1;当log 2x =3,即x =8时,y max =0.。

相关文档
最新文档