线段的垂直平分线与角平分线专题复习
专题02 垂直平分线与角平分线(解析版)八年级数学下册期末综合复习专题提优训练(北师大版)
2020-2021学年八年级数学下册期末综合复习专题提优训练(北师大版)专题02 垂直平分线与角平分线【典型例题】1.如图,△ABC 中,△ABC =25°,△ACB =55°,DE ,FG 分别为AB ,AC 的垂直平分线,E ,G 分别为垂足; (1)直接写出△BAC 的度数;(2)求△DAF 的度数;(3)若BC 的长为30,求△DAF 的周长.【答案】(1)100BAC ∠=︒;(2)20DAF ∠=︒;(3)30DAF C =【分析】 (1)由题意直接根据三角形内角和定理计算,得到答案;(2)由题意根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:(1)△△ABC +△ACB +△BAC =180°,△△BAC =180°﹣25°﹣55°=100°;(2)△DE 是线段AB 的垂直平分线,△DA =DB ,△△DAB =△ABC =25°,△FG 是线段AC 的垂直平分线,△AF =CF ,△△F AC =△ACB =55°,△△DAF =△BAC ﹣△DAB ﹣△F AC =100°﹣25°﹣55°=20°;(3)△BC =30,由(2)可知, AD =BD ,F A =FC ,△C △DAF =AD +DF +F A =BD +DF +FC =BC =30.【点睛】本题考查的是线段的垂直平分线的性质以及三角形内角和定理,等腰三角形性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【专题训练】一、选择题1.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .6【答案】B【分析】根据△B =90°,AD 平分△BAC ,DE △AC ,再根据角平分线的性质得到DE =BD =1.【详解】△90B ∠=︒,△DB AB ⊥,又△AD 平分BAC ∠,DA AC ⊥,△由角平分线的性质得1DE BD ==. 故选:B【点睛】本题主要考查了角平分线的性质,灵活运用角平分线的性质处理问题.2.如图,在ABC 中,直线ED 是线段BC 的垂直平分线,直线ED 分别交BC 、AB 于点D 、点E ,已知BD =3,ABC 的周长为20,则AEC 的周长为( )A .14B .20C .16D .12【答案】A【分析】 根据线段的垂直平分线的性质得到EC =EB ,BC =2BD =6,根据三角形的周长公式计算即可.【详解】△ED 是线段BC 的垂直平分线,△EC =EB ,BC =2BD =6,△△ABC 的周长为20,△AB +AC +BC =20,△AB +AC =14,△△AEC 的周长=AC +AE +EC =AC +AE +EB =AC +AB =14,故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.如图,在ABC 中,AD BC ⊥,垂足为D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,BD DE =,若ABC 的周长为26cm ,5AF =cm ,则DC =( )A .8cmB .7cmC .10cmD .9cm【答案】A【分析】根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,能推出2DE+2EC=16,即可求解.【详解】解:△AD△BC,BD=DE,EF垂直平分AC△AB=AE=EC△△ABC周长是26cm,AF=5cm△AC=10cm△AB+BC=16cm△AB+BE+EC=16cm即2DE+2EC=16cm△DE+EC=8cm△DC=DE+EC=8cm故选A.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端的距离相等时解题的关键.4.如图,在Rt△ABC中,△ACB=90°,AC=3,BC=4,BE平分△ABC,CD△AB于D,BE与CD相交于F,则CF的长是()A.1B.43C.53D.2【答案】B【分析】过点E作EG△AB于点G,由EG△AB,CD△AB,可得EG△CD,由平行线的性质可得△GEB=△EFC;在Rt△ABC 中,由勾股定理求得AB的值;由HL判定Rt△EBC△Rt△EBG,由全等三角形的性质可得△CEB=△EFC及AG 的值,进而可判定CF=CE.设CF=EG=EC=x,则AE=3-x,在Rt△AEG中,由勾股定理得关于x的方程,解得x 的值即为CF 的长.【详解】解:过点E 作EG △AB 于点G ,如图:△CD △AB 于D ,△EG △CD ,△△GEB =△EFC ,△在Rt △ABC 中,△ACB =90°,△EC △CB ,又△BE 平分△ABC ,EG △AB ,△EG =EC .在Rt △ABC 中,△ACB =90°,AC =3,BC =4,△AB =5.在Rt △EBC 和Rt △EBG 中,EB EB EC EG=⎧⎨=⎩, △Rt △EBC △Rt △EBG (HL ),△CEB =△GEB ,BG =BC =4,△△CEB =△EFC ,AG =AB ﹣BG =5﹣4=1,△CF =CE .设CF =EG =EC =x ,则AE =3﹣x ,在Rt △AEG 中,由勾股定理得:(3﹣x )2=x 2+12,解得x =43△CF 的长是43.故选:B.【点睛】本题考查了勾股定理、角平分线的性质定理及等腰三角形的判定等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.5.如图,在△ABC中,△B=15°,△C=30°,MN是AB的垂直平分线,PQ是AC的垂直平分线,已知S△ANQ则BC的长为()A B.3C.3D.2+【答案】B【分析】根据线段垂直平分线的性质得出AQ=CQ,BN=AN,根据等腰三角形的性质和已知条件得出△BAN=△B=15°,△CAQ=△C=30°,根据三角形外角性质得出△ANQ=△B+△BAN=30°,△AQN=△C+△CAQ=60°,求出△NAQ=90°,再根据三角形的面积求出AQ,最后求出BC即可.【详解】解:△MN是AB的垂直平分线,PQ是AC的垂直平分线,△AQ=CQ,BN=AN,△△B=15°,△C=30°,△△BAN=△B=15°,△CAQ=△C=30°,△△ANQ=△B+△BAN=15°+15°=30°,△AQN=△C+△CAQ=30°+30°=60°,△△NAQ=180°﹣△ANQ﹣△AQN=90°,△NQ=2AQ,AN==,△S△ANQ=,2△12⨯AQ 解得:AQ =1(负数舍去),即CQ =AQ =1,AN =BN NQ =2AQ =2,△BC =BN +NQ +CQ 2+1=3故选:B .【点睛】本题考查了含30°角的直角三角形的性质,线段垂直平分线的性质,勾股定理,三角形的面积,三角形的外角性质,等腰三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.二、填空题6.如图,在△ABC 中,△C =90°,AP 平分△CAB ,且PC =3,PB =5,则点P 到边AB 的距离是 ______________【答案】3【分析】作PH △AB 于H .直接根据角平分线的性质求解即可.【详解】解:作PH △AB 于H ,如图,△AP 平分△CAB ,且△C =90°,△3PH PC ==,即点P 到边AB 的距离是3.故答案为3.【点睛】此题主要考查了角平分线的性质,熟练掌握角平分线性质定理是解答此题的关键.7.如图,在△ABC 中,△C =90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若△CAB =△B +28°,则△CAE=__.【答案】28︒【分析】先根据直角三角形的两锐角互余可得31,59B CAB ∠=︒∠=︒,再根据垂直平分线的性质可得AE BE =,然后根据等腰三角形的性质可得31B BAE ∠=∠=︒,最后根据角的和差即可得.【详解】解:△在ABC 中,90C ∠=︒,△90CAB B ∠+∠=︒,又△28CAB B ∠=∠+︒,△31,59B CAB ∠=︒∠=︒,△DE 垂直平分斜边AB ,△AE BE =,△31BAE B ∠=∠=︒,△593128CAE CAB BAE ∠=∠-∠=︒-︒=︒,故答案为:28︒.【点睛】本题考查了直角三角形的两锐角互余、等腰三角形的性质、线段垂直平分线的性质等知识点,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题关键.8.如图,在△ABC 中,AB =6,AC =8,BC =11,AB 的垂直平分线分别交AB ,BC 于点D 、E ,AC 的垂直平分线分别交AC ,BC 于点F 、G ,则△AEG 的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解△DE是线段AB的垂直平分线,△EA=EB,同理,GA=GC,△△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.9.如图,在四边形ABCD中,△A=90°,AD= 6,连接BD,BD△CD,△ADB=△C.若P是BC边上一动点,则DP长的最小值为__________.【答案】6【分析】根据垂线段最短得出当DP△BC时,DP的长度最小,求出△ABD=△CBD,根据角平分线的性质得出AD=DP=6,即可得出选项.【详解】解:△BD△CD,△△BDC=90°,△△C+△CBD=90°,△△A=90°△△ABD+△ADB=90°,△△ADB=△C,△△ABD=△CBD,当DP△BC时,DP的长度最小,△AD△AB,△DP=AD,△AD=6,△DP的最小值是6,故答案为:6.【点睛】本题考查了角平分线的性质,三角形内角和定理和垂线段最短等知识点,能知道当DP△BC时,DP的长度最小是解此题的关键.10.如图,等腰三角形ABC的面积为24,底边BC为12,点P在边BC上,且BP:PC=3:1,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDP周长的最小值为___________.【答案】8.【分析】如图作AH△BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DP+DC=AD+DP,可得当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,此时,△CDP周长的最小,求出AP的长即可.【详解】解:如图作AH△BC于H,连接AD.△EG垂直平分线段AC,△DA=DC,△DP+DC=AD+DP,△当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,△12×12•AH=24,△AH=4,△AB=AC,AH△BC,△BH=CH=6,△BP:PC=3:1,△CP=PH=3,△AP5,△DP+DC的最小值为5.△△CDP周长的最小值为5+3=8;故答案为:8.【点睛】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质、勾股定理等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、解答题11.如图,在△ABC中,AB=AC,BE平分△ABC,DE△BC,交AB于点D,交AC于点E.(1)求证:BD=DE;(2)若△DEB=30°且DE=3,求AD的长度.【答案】(1)见解析;(2)3.【分析】(1)由BE平分△ABC,DE△BC可得△DBE=△DEB,可得结论;(2)通过证明△ADE为等边三角形,可得AD=DE=3.【详解】证明:(1)△BE平分△ABC,△△ABE=△EBC,△DE△BC,△△DEB=△EBC,△△DBE=△DEB,△BD=DE;(2)△△DEB=△DBE=30°=△EBC,△△ABC=60°,△AB=AC,△△ABC是等边三角形,△△ABC=△ACB=△A=60°,△DE△BC,△△ADE=△ABC=60°,△AED=△C=60°,△△ADE是等边三角形,△AD=DE=3.【点睛】本题考查了等腰三角形的性质,角平分线的性质,平行线的性质,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.,的垂直平分线交于点P.12.如图,ABC中,边AB BC==.(1)求证:PA PB PC(2)点P是否也在边AC的垂直平分线上?请说明理由.【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:△边AB、BC的垂直平分线交于点P,△P A=PB,PB=PC.△P A=PB=PC.(2)△P A=PC,△点P 在边AC 的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.13.如图,AD 为△ABC 的角平分线,DE △AB 于点E ,DF △AC 于点F ,连接EF 交AD 于点O .(1)求证:△DEF =△DFE ;(2)求证:AD 垂直平分EF .【答案】(1)见解析;(2)见解析【分析】(1)根据角平分线的性质证明即可得解;(2)根据已知条件证明Rt △AED △Rt △AFD (HL )和△△DEO DFO ≅即可得解;【详解】(1)△AD 为△ABC 的角平分线,DE △AB ,DF △AC ,△DE =DF ,△△DEF =△DFE ;(2)根据已知条件可得△AED =△AFD =90°,在Rt △AED 和Rt △AFD 中,DE DF AD AD=⎧⎨=⎩, △Rt △AED △Rt △AFD (HL ),△△ADE =△ADF ;在△DEO 和△DFO 中, DEO DFO DE DFEDO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△△DEO DFO ≅,△EO FO =,EOD FOD ∠=∠,△∠EOD +∠FOD =180°,△∠EOD =∠FOD =90°,△AD 垂直平分EF .【点睛】本题主要考查了角平分线的垂直平分线的判定与性质,结合等三角形证明是解题的关键.14.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若70ABC ∠=︒,求A ∠的度数;(2)连接NB ,若8cm AB =,NBC 的周长是14cm ,求BC 的长.【答案】(1)40°;(2)6cm【分析】(1)由AB =AC 可得△C =△ABC =70°,由三角形内角和可得△A =40°;(2)由(1)可知BN =AN ,由此可得BN +NC =AN +NC =AC =AB =8cm ,再由C △BNC =BN +CN +BC =14cm ,可得BC =14-8=6(cm ).【详解】解:(1)△AB =AC ,△△ABC =△ACB =70°,△△A =180°-70°-70°=40°;(2)MN 是AB 的垂直平分线,△AN =BN ,△BN +CN =AN +CN =AC ,△AB =AC =8cm ,△BN +CN =8cm ,△C △BNC =BN +CN +BC =14(cm ),△BC =14﹣8=6(cm ).【点睛】本题考查等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长,掌握等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长是解题关键.15.如图,△ABC 中,AD 平分△BAC ,DG △BC 且平分BC ,DE △AB 于E ,DF △AC 于F .(1)求证:BE =CF ;(2)如果AB =8,AC =6,求AE ,BE 的长.【答案】(1)证明见解析,(2)AE =7,BE =1.【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE =DF ,再证明△DBE △△DCF 就可以得出结论; (2)由条件可以得出△ADE △△ADF 就可以得出AE =AF ,进而就可以求出结论.【详解】解:(1)证明:连接DB 、DC ,△DG △BC 且平分BC ,△DB =DC .△AD 为△BAC 的平分线,DE △AB ,DF △AC ,△DE =DF .在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩, Rt △DBE △Rt △DCF (HL ),△BE =CF .(2)在Rt △ADE 和Rt △ADF 中AD AD DE DF =⎧⎨=⎩,△Rt△ADE△Rt△ADF(HL).△AE=AF.△AC+CF=AF,△AE=AC+CF.△AE=AB﹣BE,△AC+CF=AB﹣BE,△AB=8,AC=6,△6+BE=8﹣BE,△BE=1,△AE=8﹣1=7.即AE=7,BE=1.【点睛】本题考查了角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.如图,已知Rt△ABC中,△ACB=90°,CD△AB于点D,△BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.【答案】(1)见解析;(2)AB=2AC,理由见解析;(3)12【分析】(1)求出△B=△ACD,根据三角形的外角性质求出△CFE=△CEF,根据等腰三角形的判定得出即可;(2)求出△B=△CAE=△BAE,根据三角形内角和定理求出△B=30°,再求出答案即可;(3)求出高EM的长,求出AB的长,再根据三角形的面积公式求出即可.【详解】解:(1)△CD△AB,△△CDB=90°,△△B+△BCD=90°,△△ACB=90°,△△ACD+△BCD=90°,△△ACD=△B,△AE平分△BAC,△△CAE=△BAE,△△ACD+△CAE=△B+△BAE,即△CFE=△CEF,△CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:△E在线段AB的垂直平分线上,△AE=BE,△△B=△BAE,△△CAE=△BAE,△ACB=90°,△3△B=90°,△△B=30°,△AB=2AC;(3)△AC=2.5,△AB=2AC=5,由(2)得,△CAB=60°,△AE平分△CAB,△△CEA =30°,设CE 为x ,则AE 为2x ,AC ,x ,过E 作EM △AB 于M ,△EM =CE =6,△△ABE 的面积S =12AB EM ⋅=12⨯5. 【点睛】本题考查勾股定理、等腰三角形的判定、含30°角的直角三角形的性质,解题关键是熟练运用所学知识,整合已知条件,解决综合问题.17.如图1,在△ABC 中,AD △BC ,垂足为D ,E 为AC 上一点,BE 交AD 于点F ,△ABC =45°,FD =CD . (1)请写出BE 与AC 的位置关系,并说明理由;(2)如图2,连接DE ,求证:△BED =△DEC ;(3)若AD =4,CD =2,在直线BC 上方的平面内是否存在点P ,使得△BFP 为等腰直角三角形.若存在,请直接写出点P 到直线BC 的距离.【答案】(1)BE △AC ,见解析;(2)见解析;(3)存在,4或6或3【分析】(1)证明△BDF △△ADC ,得到△DBF =△DAC ,由△BFD =△AFE 证得△BDF =△AEF =90°,即可得到结论;(2)过点D 作DM △AC ,DN △BE ,根据△BDF △△ADC ,得到BF =AC ,BDF ADC SS =,推出DM =DN ,证得ED 平分△BEC ,由此得到结论;(3)根据勾股定理求出AC 由△BDF △△ADC ,得到BF =AC =DF =DC =2,BD =AD =4,分三种情况:当△PBF =90°,BP =BF 时, 当△P ′FB =90°,P ′F =BF 时, 当△BP ″F =90°,BP ″=FP ″时, 根据等腰直角三角形的性质解答即可.【详解】(1)证明:如图①中,△AD △BC ,△△ADB =90°,△△ABC =45°,△△ABD =△BAD =45°,△BD =DA ,△DF =DC ,△BDF =△ADC =90°,△△BDF △△ADC (SAS ).△△DAC =△CBE ,△△BFD =△AFE ,△△BDF =△AEF =90°,△BE △AC .(2)解:如图,过点D 作DM △AC ,DN △BE ,△△BDF △△ADC ,△BF =AC ,BDF ADC SS =,△DM =DN ,△ED 平分△BEC ,△△BED =△DEC ;(3)解:如图2-1中,满足条件的点P 有3个.在Rt △ADC 中,△AD =4,CD =2,△AC ,△△BDF △△ADC ,△BF =AC =DF =DC =2,BD =AD =4,当△PBF =90°,BP =BF 时,作PM △CB 交CB 的延长线于M . 易证△PMB △△BDF ,△PM =BD =4,△点P 到直线BC 的距离为4;当△P ′FB =90°,P ′F =BF 时,作P ′H △BC 于H ,FG △P ′H 于G . 易证:P ′G =BD =4,GH =DF =2,△P ′H =4+2=6,△P ′到直线BC 的距离为6;当△BP ″F =90°,BP ″=FP ″时,作P ″N △BC 于N .易证P ″N =2PM DF +=3,△P″到直线BC的距离为3,综上所述,满足条件的点P到直线BC的距离为4或6或3.【点睛】此题考查全等三角形的判定及性质,等腰直角三角形的性质,勾股定理,角平分线的判定及性质,熟记各定理并熟练应用解决问题是解题的关键.18.在△ABC中,若AD是△BAC的角平分线,点E和点F分别在AB和AC上,且DE△AB,垂足为E,DF△AC,垂足为F(如图(1)),则可以得到以下两个结论:①△AED+△AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是△BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若△AED+△AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则△AED+△AFD=180°是否成立?(只写出结论,不证明)【答案】(1)DE=DF,理由见解析;(2)不一定成立【分析】(1)过点D作DM△AB于M,DN△AC于N,DM=DN,△DME△△DNF,DE=DF;(2)如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立;【详解】(1)DE=DF.理由如下:过点D作DM△AB于M,DN△AC于N,△AD平分△BAC,DM△AB,DN△AC,△DM=DN,△△AED+△AFD=180°,△AFD+△DFN=180°,△△DFN=△AED,△△DME△△DNF(AAS),△DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立..【点睛】本题主要考查角平分线的性质,难点在于熟练和灵活的应用角平分线要点;19.根据图片回答下列问题.(1)如图①,AD平分△BAC,△B+△C=180°,△B=90°,易知:DB____DC.(2) 如图②,AD平分△BAC,△ABD+△ACD=180°,△ABD<90°,求证:DB=DC.(3)如图③,四边形ABCD中,△B=45°△C=135°,DB=DC AB−AC=________.【答案】(1)=;(2)见解析;(3)【分析】(1)利用HL判断出△ADC△△ADC,即可得出结论;(2)先构造出△ACD△△AED,得出DC=DE,△AED=△C,在判断出DE=DB,即可得出结论;(3)利用(2)结论得出DE=DB,再判断出△BDE=90°,利用勾股定理求出BE即可得出结论.【详解】解:证明:(1)△△B+△C=180°,△B=90°,△△C=90°,△AD平分△BAC,△△DAC=△BAD,△AD=AD,△△ACD△△ABD(AAS),△BD=CD;(2)如图②,在AB边上取点E,使AC=AE,△AD平分△BAC,△△CAD=△EAD,△AD=AD,AC=AE,△△ACD△△AED(SAS),△DC=DE,△AED=△C,△△C+△B=180°,△AED+△DEB=180°,△△DEB=△B,△DE=DB,△DB=DC;(3)如图③,连接AD,在AB上取一点E使AE=AC,同(2)的方法得,AE =AC ,CD =DE =BD =2,△△DEB =△B =45°,△△BDE =90°,根据勾股定理得,BE =,△AB -AC =BE =故答案为:【点睛】本题是四边形综合题,考查全等三角形的判定和性质,角平分线的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.20.如图①,△ABC 中,△ABC ,△ACB 的平分线交于O 点,过O 点作BC 平行线交AB ,AC 于E ,F . (1)试说明:EO =BE ;(2)探究图①中线段EF 与BE ,CF 间的关系,并说明理由;(3)探究图②,△ABC 中若△ABC 的平分线与△ABC 的外角平分线交于O ,过点O 作BC 的平行线交AB 于E ,交AC 于F ,这时EF 与BE ,CF 的关系又如何?请直接写出关系,不需要说明理由.【答案】(1)证明见解析;(2)EF BE CF =+,理由见解析;(3)EF BE CF =-【分析】(1)由题意易得△EOB =△EBO ,△ABO =△OBC ,则有△EOB =△ABO ,进而问题得证;(2)由题意易得△FOC =△OCB ,△FCO =△OCB ,则有△FCO =△FOC ,然后可得CF =OF ,由(1)得BE =OE ,进而问题可求解;(3)同理(1)(2)可得:BE=OE,CF=OF,然后问题可求解.【详解】证明:(1)△EF△BC,△△EOB=△EBO,△BO平分△ABC,△△ABO=△OBC,△△EOB=△ABO,△BE=OE;=+,理由如下:(2)解:EF BE CF△EF△BC,△△FOC=△OCB,△CO平分△ACB,△△FCO=△OCB,△△FCO=△FOC,△CF=OF,由(1)得:BE=OE,△EF=BE+CF;(3)解:EF=BE-CF,理由如下:同理(1)(2)可得:BE=OE,CF=OF,△EF=OE-OF=BE-CF.【点睛】本题主要考查角平分线的定义及平行线的性质,熟练掌握角平分线的定义及平行线的性质是解题的关键,也要熟练掌握“双平等腰”模型.。
线段的垂直平分线复习巩固、角平分线
线段的垂直平分线复习巩固【知识要点】线段垂直平分线的性质与判定: (1)垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..; (2)性质定理:线段垂直平分线上的点到这一条线段两个端点距离相等;(3)线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上; (4)三角形三条边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
专题一 线段的垂直平分线与等腰三角形等的综合应用1. 如图,在ABC ∆中,AB =AC ,36A ∠=︒,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下述结论错误的是( )A .BD 平分ABC ∠ B. BCD ∆的周长等于AB +BC C. AD =BD =BC D. 点D 是线段AC 的中点2. 如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,求DE 的长度。
3. 如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75º,以CD 为一边的等边△DCE 的另一顶点E 在腰AB 上.(1)求∠AED 的度数;(2)求证:AB =BC ;(3)如图2所示,若F 为线段CD 上一点,∠FBC =30º.求 DFFC的值.ABCDE F图2A BCDE 图1角平分线复习巩固【知识要点】角平分线的性质与判定:(1)性质定理:角平分线上的点到角两边的距离相等;(2)角平分线逆定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上;(3)三角形三条角平分线交于一点,并且这一点到三边的距离相等。
专题一角平分线性质及判定定理的应用1.(2011,岳阳)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.2.如图,在Rt△ACB中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.B.C.6 D.43.如图,1l,2l,3l是三条公路线,且2l//3l,现在决定在区域内建立一个公路维修站,要求到三条公路的距离相等,请问维修站应该建立在何处,共有几处?请画出图形.4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,求△EDF的面积。
线段的垂直平分线和角平分线专题训练及答案
线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。
16章2复习线段的垂直平分线和角平分线
M
A
B
4 .如图,△ABC的∠B的外角的平分线BD 与∠C的外角的平分线CE相交于点P. 求证:点P到三边AB,BC,CA所在直线 的距离相等.
C 更上一层楼! F H
D P E
A
B
G
5. 如图,△ABC的角平分线BM,CN相交于点P。 求证:(1)点P到三边AB、BC、CA的距离相等 A D (2)点P在∠A的平分线上 F
解: ∵AB=AC, ∴∠ABC=∠C=70°。 ∴∠A=180°-2∠C=40°, 又∵DE垂直平分AB, ∴AD=BD。 ∵∠DBA=∠A=40°。 ∴∠BDC=∠A+∠ABD =40°+40°=80°。
2、如图,在△ABC中, AB=AC, ∠BAC= 120°,AC的垂直平分线EF交AC 于点E,交BC于点F。求证:BF=2CF。
A
B
点P为校址
2.:如图,在直线 l 上求一点P,使PA=PB A
B l
P
点P为所求作的点
角平分线的性质与判定 角的平分线上的点到角的两 1:角平分线的性质: 边的距离相等。 2:角平分线性质的逆定理(角平分线的判定) 在角的内部到角的两边的距离相等的点在角的平 分线上。 A P到OA的距离
PA=PB
任何图形都是有点组成的。因 三、 此我们可以把图形看成点的集 线段的垂直平分线的集合定义: 合。由上述定理和逆定理,线 线段的垂直平分线可以看作是到线 段的垂直平分线可以看作符合 段两上端点距离相等的所有点的集合 什么条件的点组成的图形?
1:如图,已知:AB=AC,AB的垂直平分线交AC于D,垂 足是点E,∠C=70°,求∠BDC的度数。
D
C
复习课线段的垂直平分线和角平分线
A 在BC 的垂直平分线上 复习课——第十九章 线段的垂直平分线和角平分线
普陀区课题组
教学目标:
2.会灵活运用线段垂直平分线、角平分线的定理和逆定理解决相关问题,体会构造基本图形的重要性.
教学重点与难点:线段垂直平分线、角平分线的定理及逆定理的灵活应用. 教学过程:
教师活动
学生活动
设计意图 一、建立知识结构
问:今天主要复习线段的垂直平分线、角的平分线相关知识.
问1:几何证明的依据有哪些?
问2:定理和公理都是命题,由命题你想到了什么?
(师生共同完成回答)
教师帮助建立知识结构:
在建立知识结构的同时复习各知识点.PPT 显示线段垂直平分线的定理及逆定理,角平分线定理及逆定理的图形语言表示.
(1) ⇒
AB=AC (2) ⇒
(3) ⇒
PM=PN (4)
答1:定义、公理、定理
答2:逆命题、逆定理、线段垂直平分线的定理及逆定理、角平分线定理及逆定理,点的三种基本轨迹.
梳理知识,建立知识结构.
学生了解知识点,重点在于线段垂直平分线、角平分线定理及逆定理,点的三种轨迹.
复习线段的垂直平分线定理及逆定理、角平分线定理及逆定理运用的规范书写.
C D A B N M
C D
A
B N M
C A
B C D A B N M O P N
M B A
B M N O A P B
M
N
O
A P
2
1
O
M
B
A。
垂直平分线和角平分线典型题
知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
专题16角平分线与线段的垂直平分线(基础巩固练习) 解析版
2021年中考数学专题16 角平分线与线段的垂直平分线(基础巩固练习,共30个小题)一、选择题(共15小题):1.(2020•怀化)在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为()C.2 D.6A.3 B.32【答案】A【解析】根据角平分线的性质即可求得.解:∵∠B=90°,∴DB⊥AB,又∵AD平分∠BAC,DE⊥AC,∴DE=BD=3,故选:A.2.(2019•兴安盟)如图,BD是△ABC的角平分线,DE是BC的垂直平分线,∠BAC=90°,AD=3,则CD的长为()A.3√3B.6 C.5 D.4【答案】B【解析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∵DA⊥BA,DE⊥BC,∴DE=AD=3,∴CD=2ED=2AD=6,故选:B.3.(2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+√2B.√2+√3C.2+√3D.3【答案】A【解析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.解:过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=√2DF=√2,∴BC=BD+CD=2+√2,故选:A.AD,BD平分∠ABC,4.(2019•张家界)如图,在△ABC中,∠C=90°,AC=8,DC=13则点D到AB的距离等于()A.4 B.3 C.2 D.1【答案】C【解析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.解:如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3=2,∴CD=8×11+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.5.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42【答案】B【解析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD +S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.6.(2018•辽阳)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON 的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为()A.5 B.245C.4 D.125【答案】B【解析】根据题意,作出合适的辅助线,然后根据角平分线的性质、等腰三角形的性质和勾股定理可以求得点B到AC的距离,本题得以解决.解:由题意可得,OC为∠MON的角平分线,∵OA=OB,OC平分∠AOB,∴OC⊥AB,设OC与AB交于点D,作BE⊥AC于点E,∵AB=6,OA=5,AC=OA,OC⊥AB,∴AC=5,∠ADC=90°,AD=3,∴CD=4,∵AB⋅CD2=AC⋅BE2,∴6×42=5×BE2,解得,BE=245,故选:B.7.(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.6【答案】D【解析】根据角的平分线上的点到角的两边的距离相等即可得.解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.8.(2018•大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【答案】B【解析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠DAB,计算即可.∠MAB=12解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∠DAB=35°,故选:B.∴∠MAB=129.(2018•常德)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3√3【答案】D【解析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3√3,故选:D.10.(2020•益阳)如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°【答案】B【解析】依据线段垂直平分线的性质,即可得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B的度数.解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.11.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线 B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线 D.EH是l的垂直平分线【答案】A【解析】根据垂直平分线的性质定理判断即可.解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.12.(2020•枣庄)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17【答案】B【解析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为11.解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.13.(2019•梧州)如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12 B.13 C.14 D.15【答案】B【解析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.14.(2019•南充)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17【答案】B【解析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.15.(2018•南通)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:CD的长为半径作弧,两弧相交于M,N两点;步骤1:分别以点C和点D为圆心,大于12步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.53B.32C.√2D.43【答案】D【解析】由作图可知,四边形ECFD是正方形,根据S△ACB =S△ADC+S△CDB,可得12×AC×BC=1 2×AC×DE+12×BC×DF,由此即可解决问题.解:由作图可知,四边形ECFD是正方形,∴DE=DF=CE=CF,∠DEC=∠DFC=90°,∵S△ACB =S△ADC+S△CDB,∴12×AC×BC=12×AC×DE+12×BC×DF,∴DE=4×26=43,故选:D.二、填空题(共10小题):16.(2020•湘潭)如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为.【答案】3【解析】根据垂线段最短可知当PM⊥OC时,PM最小,再根据角的平分线的性质,即可得出答案.解:根据垂线段最短可知:当PM⊥OC时,PM最小,当PM⊥OC时,又∵OP平分∠AOC,PD⊥OA,PD=3,∴PM=PD=3,故答案为:3.17.(2019•永州)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.【答案】4【解析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.18.(2020•十堰)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.【答案】19【解析】由线段的垂直平分线的性质可得AC=2AE,AD=DC,从而可得答案.解:∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,AD=DC,∵AB+BD+AD=13,∴△ABC的周长=AB+BC+AC=AB+BD+AD+AC=13+6=19.故答案为:19.19.(2020•南京)如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.【答案】78°【解析】解法一:连接BO,并延长BO到P,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.解:解法一:连接BO,并延长BO到P,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.20.(2020•青海)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=cm.【答案】10【解析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.解:∵C=24cm,△DBC∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24﹣14=10cm.故填10.21.(2018•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=度.【答案】24【解析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理计算即可.解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.22.(2019秋•澧县期末)如图,已知AB=AC,AB的垂直平分线MN交AB于点E,交AC于点D,若∠A=38°,则∠BDE=.【答案】52°【解析】直接利用线段垂直平分线的性质得出AD=BD,进而结合等边对等角得出答案.解:∵AB的垂直平分线MN交AB于点E,交AC于点D,∴AD=BD,∴∠ABD=∠A=38°,∴∠BDE=90°﹣38°=52°.故答案为:52°.23.(2020•武汉模拟)如图,△ABC中,DE是BC的垂直平分线,CE是∠ACB的平分线,FG为△ACE的中位线,连DF,若∠DFG=108°,则∠AED=.【答案】126°【解析】利用垂直平分线和外角和中位线的性质解答即可.解:∵DE是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB,设∠EBC=∠ECB=x,∴∠AEC=∠EBC+∠ECB=2x,∵CE平分∠ACB,∴∠BCE=∠ACE=x,∵FG是△ACE的中位线,∴FG∥AC,∴∠EFG=∠ACE=x,∵D为BC的中点,F为CE的中点,∴DF∥AB,∴∠EFD=∠AEF=2x,∵∠DFG=∠GFE+∠EFD=x+2x=3x,∴3x=108°,∴x=36°,∴∠AED=∠AEC+∠CED=2x+90°﹣x=90°+x=90°+36°=126°,故答案为:126°.24.(2020秋•涪城区校级期末)如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S △PCB=AC:CB;③BP垂直平分CE;④CP=FC,其中正确的判断有.(填序号)【答案】①②③【解析】根据角平分线的定义得出∠CAP=∠BAP,根据平行线的性质得出∠CAP=∠GPA,求出∠GPA=∠BAP,即可判断①;过P作PQ⊥AD于Q,PR⊥AE于R,PT⊥BC于T,根据角平分线的性质得出PQ=PR,PT=PR,根据三角形的面积求出S△PAC =12×AC×PQ,S△PCB=12×BC×PT,即可判断②;根据等腰三角形的性质即可判断③,根据等腰三角形判断即可判断④.解:∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠CAP=∠GPA,∴∠GPA=∠BAP,∴GA=GP,故①正确;过P作PQ⊥AD于Q,PR⊥AE于R,PT⊥BC于T,∵∠BAC与∠CBE的平分线相交于点P,∴PQ=PR,PT=PR,∴PQ=PT,∵S△PAC =12×AC×PQ,S△PCB=12×BC×PT,∴S△PAC :S△PCB=AC:BC,故②正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE,故③正确;根据已知条件不能推出∠CPF=∠CFP,即不能推出CP=FC,故④错误;故答案为:①②③.25.(2018•锦州)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.【答案】4•(√33)2016•(1+√3)2017【解析】从特殊到一般探究规律后即可解决问题;解:由题意:正方形ABCA1的边长为√3,正方形A1B1C1A2的边长为√3+1,正方形A2B2C2A3…的边长为(√3+1)(1+√33),正方形A3B3C3A4的边长为(√3+1)(1+√33)2,由此规律可知:正方形A2017B2017C2017A2018的边长为(√3+1)(1+√33)2016.∴正方形A2017B2017C2017A2018的周长为4•(√3+1)(1+√33)2016=4•(√33)2016•(1+√3)2017.故答案为4•(√33)2016•(1+√3)2017.三、解答题(共5小题):26.(2020秋•庐阳区期末)如图,△ABC中,∠BAC=100°,∠C=50°,AD⊥BC,垂足为D,EF是边AB的垂直平分线,交BC于E,交AB于点F,求∠EAD的度数.【答案】∠EAD=30°【解析】根据三角形内角和定理求出∠B,根据线段垂直平分线的性质得到EA=EB,进而得到∠EAB=∠B=30°,根据三角形的外角性质、直角三角形的性质计算即可.解:∵∠BAC=100°,∠C=50°,∴∠B=180°﹣(∠BAC+∠C)=30°,∵EF是边AB的垂直平分线,∴EA=EB,∴∠EAB=∠B=30°,∴∠AED=∠EAB+∠B=60°,∵AD⊥BC,∴∠ADE=90°,∴∠EAD=90°﹣60°=30°.27.(2020•香洲区二模)如图,在Rt△ABC中,∠ACB=90°,AC>BC.(1)请用尺规作图法,作边AB的垂直平分线交AC于点D(不要求写作法,但保留作图痕迹);(2)若AC=4,AB=5,连接BD,求△BCD的周长.【答案】(1)见解析;(2)△BCD的周长=7.【解析】(1)路尺规作线段AB的垂直平分线交AC于点D,交BA于点E.(2)利用勾股定理求出BC,证明DA=DB,即可解决问题.解:(1)如图,直线DE即为所求作.(2)∵∠ACB=90°,AC=4,AB=5,∴BC=√AB2−AC2=√52−42=3,由作图可知,DE垂直平分线段AB,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=3+4=7.28.(2020•临清市一模)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交AC,BC,AD于点O,E,F.(1)求证:AF=CE;(2)若BE=3,AF=5,求AC的长.【答案】(1)见解析;(2)AC=√AB2+BC2=√42+82=4√5.【解析】(1)利用垂直平分线的性质以及矩形的性质,即可△AOF ≡△COE (ASA ),进而得出AF =CE ;(2)连接AE ,先求得CE =5=AE ,BC =BE+CE =8,即可运用勾股定理得到AB 和AC 的长.(1)证明:∵EF 是AC 的垂直平分线,∴AO =CO ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠AOF =∠COEOA =OC ∠OAF =∠OCE,∴△AOF ≡△COE (ASA ),∴AF =CE ;(2)如图,连接AE ,∵EF 是AC 的垂直平分线,∴AE =CE ,∵AF =CE ,AF =5,∴CE =5=AE ,∴BC =BE+CE =3+5=8,又∵AB =√AE 2−BE 2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5.29.(2020•南岗区三模)已知:在△ABC中,AC<AB<BC.线段AB的垂直平分线交BC于点D,点E在BC上,且BE=AB.连接AD,AE,∠AEC=3∠BAD.(1)如图1,求证:AD=AE;(2)如图2,当∠B=2∠CAE时,在不添加任何辅助线情况下,请直接写出图2中的四个等腰三角形.【答案】(1)见解析;(2)四个等腰三角形分别是:△ABD,△ABE,△ADE,△ADC.【解析】(1)设∠B=α,先根据线段垂直平分线的性质得AD=BD,可表示∠BAD=α,再根据三角形的外角和等腰三角形的性质可得∠ADE=∠AED=2α,从而得结论;(2)根据等腰三角形的判定即可求解.(1)证明:设∠B=α,∵线段AB的垂直平分线交BC于点D,∴AD=BD,∴∠B=∠BAD=α,∴∠ADE=∠B+∠BAD=2α,∵∠AEC=3∠BAD=3α,∠AEC=∠B+∠BAE,∴∠DAE=α,∵AB=BE,∴∠AEB =∠BAE =2α,∴∠ADE =∠AED ,∴AD =AE ;(2)解:如图2,由(1)知:AD =BD ,AD =AE ,∴△ABD 和△ADE 都是等腰三角形,∵AB =BE ,∴△ABE 也是等腰三角形,∵∠B =2∠CAE ,∴∠CAE =12α,△AEC 中,∠C =∠AED ﹣∠CAE =2α−12α=32α,∵∠DAC =∠DAE+∠CAE =α+12α=32α, ∴∠C =∠DAC ,∴AD =CD ,∴△ADC 是等腰三角形,综上,图2中的四个等腰三角形分别是:△ABD ,△ABE ,△ADE ,△ADC .30.(2020•金牛区模拟)如图,点E 在矩形ABCD 对角线AC 上由A 向C 运动,且BC =2√3,∠ACB =30°,连结EF ,过点E 作EF ⊥DE ,交BC 于点F (当点F 与点C 重合时,点E 也停止运动)(1)如图1,当AC 平分角∠DEF 时,求AE 的长度;(2)如图2,连结DF ,与AC 交于点G ,若DF ⊥AC 时,求四边形DEFC 的面积;(3)若点E 分AC 为1:2两部分时,求BF :FC .【答案】(1)AE=3−√3;(2)S四边形DEFC =12×2×4√33=4√33;(3)BF:CF=4:5或BF:CF=8:1.【解析】(1)如图1中,作DM⊥AC于M,解直角三角形求出CM,EM,AC即可解决问题.(2)解直角三角形求出DG,FG,CG,利用相似三角形的性质求出EG,根据S四边形DEFC =12•DF•CE求解即可.(3)分两种情形:①如图1﹣1中,若AE:CE=1:2,作EM⊥BC于M,EN⊥CD于N.解直角三角形求出EN,DN,EM,再利用相似三角形的性质求出MF即可解决问题.②若AE:CF=2:1时,同法可求.【解答】解:(1)如图1中,作DM⊥AC于M,∵四边形ABCD是矩形,∴∠B=∠BCD=∠ADC=90°,AB=CD,AD=BC=2√3,∵∠ACB=30°,∴AB=CD=BC•tan30°=2,AC=2AB=4,在Rt△CDM中,∵∠CMD=90°,∠DCM=60°,CD=2,∴∠CDM=30°,∴CM=12CD=1,DM=√3CM=√3,∵∠DEF=90°,EM平分∠DEF,∴∠DEM=12∠DEF=45°,∴EM=DM=√3,∴AE=AC﹣EM﹣CM=3−√3.(2)如图2中,∵DF⊥AC,∴∠DGC=90°,在Rt△CDG中,∵CD=2,∠DCG=60°,∴∠CDG=30°,∴CG=12CD=1,DG=√3,∴FG=CG•tan30°=√33,∵∠FEG+∠DEG=90°,∠EDG+∠DEG=90°,∴∠FEG=∠EDG,∵∠EGF=∠DGE=90°,∴△EGF∽△DGE,∴EGDG =FGEG,∴√3=√33EG,∴EG=1,∴S四边形DEFC =12•DF•CE=12×2×4√33=4√33.(3)①如图1﹣1中,若AE:CE=1:2,作EM⊥BC于M,EN⊥CD于N.∵AB =CD =2,AC =4,AE :EC =1:2, ∴AE =43,EC =83,在Rt △CEN 中,∵∠ECN =30°∴CN =12EC =43,EN =√3CN =4√33, ∴DN =2−43=23,在Rt △CEM 中,∵∠ECM =30°,∴EM =12EC =43,CM =√3EM =4√33, ∵DE ⊥EF ,∴∠DEF =∠NEM =90°,∴∠DEN =∠MEF ,∵∠END =∠EMF =90°,∴△END ∽△EMF ,∴EN EM =DN MF ,可得MF =2√39, ∴CF =CM ﹣MF =10√39,BF =2√3−CF =8√39, ∴BF :CF =4:5.②若AE :CF =2:1时,同法可得BF :CF =8:1. 综上所述,BF :CF =4:5或BF :CF =8:1.。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
垂直平分线与角平分线综合练习
线段的垂直平分线与角平分线综合练习练习1一、填空题1、一个角是轴对称图形,它的对称轴是 。
2、如果一个点到一条线段两个端点的距离相等,那么这个点在 上。
3、线段的垂直平分线可以看作是 的点的集合。
4、如果两个点关于一条直线对称,那么这条直线 连接这两点的线段。
5、如图(1),BC 的垂直平分线交AB 于点D ,如果=50A ∠,2DCB ACD ∠=∠,那么B ∠= ,ACB ∠= 。
6、角的平分线可以看作是 点的集合。
7、如图(2),PE ⊥OA ,PF ⊥OB ,PE=PF ,那么点P的位置在上,依据是 。
8、如图(3),△ABC 中,ABC ACB ∠∠、的平分线相交于点O ,连接AO ,如果130BOC ∠=,那么OAC ∠等于 度。
BOBC图(1) 图(2) 图(3) 二、选择题9、等腰三角形是轴对称图形,对称轴是( ) A. 底边的中线; B. 顶角的平分线; C. 底边上的高; D. 底边的垂直平分线。
10、如果点P 到△ABC 的各顶点的距离相等,那么点P 是( ) A. 三角形三条中线的交点; B. 三角形三条高的交点;C. 三角形三个内角平分线的交点;D. 三角形各边垂直平分线的交点。
11、在△ABC 内部,到边AB 、BC 、CA 的距离都相等的点共有( ) A. 一个; B. 二个; C. 三个; D. 无数个。
12、已知△ABC 中,AB=AC ,角平分线AD 、BE 、CF 相交于点I ,画图后判断该图形中全等三角形的对数共有( )A. 4对;B. 5对;C. 6对;D. 7对。
三、解答题 13、已知,如图,在△ABC 中,DE 垂直平分AB ,交BC 于点E ,垂足为D ,2CEA CAE ∠=∠。
求证:2BAC B ∠=∠。
AB14、已知,如图,AB=AE ,BC=ED ,B E ∠=∠,AF 是BAE ∠的平分线。
求证:AF 垂直平分CD 。
EFB15、如图所示,在△ABC 中,DF 垂直平分AB ,垂足为点D ,交AC 于点E ,交BC 的延长线于点F ,且AE=EF ,:4:3A F ∠∠=。
线段的垂直平分线和角平分线的复习
https://
REPORTING
目录
• 垂直平分线与角平分线基本概念 • 垂直平分线相关定理与推论 • 角平分线相关定理与推论 • 垂直平分线与角平分线在几何图形中应用 • 解题技巧与策略总结 • 练习题与答案解析
PART 01
垂直平分线与角平分线基 本概念
对称性等。
角平分线在多边形中可用于求解 角度和线段长度,如利用角平分 线性质求解多边形中的角度和边
长。
垂直平分线和角平分线的交点在 多边形中可用于求解多边形的内 切圆和外接圆以及与这些圆相关
的性质。
PART 05
解题技巧与策略总结
REPORTING
WENKU DESIGN
观察图形特征,选择合适方法
03
2. 题目
在△ABC中,AD是∠BAC的平分 线,DE⊥AB于点E,DF⊥AC于 点F,交BC于点G,且 DE=DF. 求证:△ABC是等腰三 角形.
04
解析
根据角平分线的性质“角的平分 线上的点到角的两边的距离相等” 可得点D在∠BAC的平分线上,再 根据等腰三角形的性质“等边对 等角”以及平角的性质证明 ∠B=∠C即可。
练习题三:证明四边形性质
题目
四边形ABCD中,AB=CD,AD=BC, E、F分别是BD、AC的中点,求证: EF垂直平分AC。
解析
连接AE、CE,由于AB=CD,AD=BC, BD=BD,所以△ABD≌△CDB,从而 ∠ABD=∠CDB,又因为E是BD的中点,所以 AE=CE,又因为F是AC的中点,所以EF垂直平 分AC。
两者关系与区别
关系
垂直平分线和角平分线都是几何学中的基本概念,它们都与距离和角度有关。
线段的垂直平分线、角平分线经典习题及答案
线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。
证毕。
例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。
例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。
证毕。
例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。
例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。
例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。
根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。
线段的垂直平分线和角平分线性质复习
(第8题)ED C BA线段的垂直平分线和角平分线性质复习学习目标:1.利用角平分线的性质解决问题2.利用线段垂直平分线的性质解决问题教学过程:一、基础练习:1、如图,△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________.2、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是( )cm.A.3.9B.7.8C.4D.4.63、如右图,△ABC 中,AB=AC=16cm ,AB 的垂直平分线ED 交AC 于D 点. (1)当AE=13cm 时,BE= cm ;(2)当△BEC 的周长为26cm 时,则BC= cm ; (3)当BC=15cm ,则△BEC 的周长是 cm.垂直平分线的性质:1.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为2.∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 3.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3cm ,BD =5 cm ,则BC =_____cm .(第1题)4、如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF .角平分线上的点到______________距离相等;到一个角的两边距离相等的点都在_____________. 二、综合应用:1、已知如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC , 求证:AO ⊥B C .2、如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N .求证:CM =2BM .3、如图,AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:DE=DF.E F B C A D4、如图,已知∠1=∠2,试添加一个条件,使得PA=PC.并说明理由。
初中数学知识归纳角平分线和垂直平分线的性质和应用
初中数学知识归纳角平分线和垂直平分线的性质和应用初中数学知识归纳:角平分线和垂直平分线的性质和应用角平分线和垂直平分线是初中数学中两个重要的概念。
它们具有各自独特的性质和应用。
本文将对这两个概念进行归纳总结,并分析它们在数学问题中的实际应用。
一、角平分线的性质和应用角平分线是指把一个角平分成两个相等的角的线段。
下面我们来归纳角平分线的性质和应用。
1. 性质:(1)角平分线把一个角分成两个相等的角。
(2)角平分线上的点到角的两边距离相等。
(3)角平分线是角的内切线。
2. 应用:(1)角平分线的性质可以用于解决角度相等或相似的证明问题,例如证明两条线段的夹角相等,证明两个三角形相似等。
(2)利用角平分线的性质,可以快速求解角平分线在三角形中的位置,从而解决与三角形相关的计算问题。
以上是角平分线的性质和应用的简要介绍。
二、垂直平分线的性质和应用垂直平分线是指垂直于线段并将其平分的线段。
下面我们来归纳垂直平分线的性质和应用。
1. 性质:(1)垂直平分线将线段分成两个相等的部分。
(2)垂直平分线与线段的两个端点和中点连线垂直。
(3)垂直平分线是线段的中垂线。
2. 应用:(1)垂直平分线的性质可用于证明线段的平分线与垂直平分线相交于线段的中点。
(2)利用垂直平分线的性质,我们可以求解线段的中点坐标,从而解决与平面几何相关的计算问题。
以上是垂直平分线的性质和应用的简要介绍。
三、角平分线和垂直平分线的实际应用举例角平分线和垂直平分线不仅在数学问题中有重要的应用,也在实际生活中有着广泛的应用。
以下是两个实际问题的举例:1. 实际问题1:假设我们要设计一个广告牌,使其以某个角度正好对准太阳光的照射方向。
根据角平分线的性质,我们可以确定广告牌的角度,并根据此角度来安装广告牌,以获取最佳的阳光照射效果。
2. 实际问题2:在制作家具的过程中,如果要确保家具的一条边是水平的,可以利用垂直平分线的性质,通过测量线段两个端点到垂直平分线的距离来调整线段的位置,以保证家具制作的精准度。
线段的垂直平分线与角平分线综合压轴题五种模型全攻略(解析版)--初中数学
线段的垂直平分线与角平分线综合压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一利用线段垂直平分线的性质求解】【考点二线段垂直平分线的判定】【考点三利用角平分线的性质求解】【考点四角平分线的判定】【考点五线段的垂直平分线与角平分线的综合问题】【过关检测】【典型例题】【考点一利用线段垂直平分线的性质求解】1(2023春·江苏淮安·七年级校考阶段练习)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB、AC于E,D,连接EC,则∠BEC=.【答案】72°/72度【分析】先根据垂线平分线的定义得到AD=CD,ED⊥AC,进而证明△ADE≌△CDE得到∠DCE =∠A=36°,则由三角形外角的性质可得∠BEC=∠A+∠ACE=72°.【详解】解:∵AC的垂直平分线交AB、AC于E,D,∴AD=CD,ED⊥AC,∴∠ADE=∠CDE=90°,又∵ED=ED,∴△ADE≌△CDE SAS,∴∠DCE=∠A=36°,∴∠BEC=∠A+∠ACE=72°,故答案为:72°.【点睛】本题主要考查了三角形外角的性质,全等三角形的性质与判断,线段垂直平分线的定义,正确推出∠DCE=∠A=36°是解题的关键.【变式训练】1(2023·江苏·八年级假期作业)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【分析】根据题意可知,凳子的位置应该到三个顶点的距离相等,从而可确定答案.【详解】因为三边的垂直平分线的交点到三角形三个顶点的距离相等,这样就能保证凳子到三名同学的距离相等,以保证游戏的公平,故选:D.【点睛】本题主要考查垂直平分线的应用,掌握垂直平分线的性质是关键.2(2023春·山东济南·七年级济南市章丘区第二实验中学校考阶段练习)如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.【答案】8【分析】根据垂直平分线的性质定理,得EA=EB,GA=GC,进而即可求解.【详解】解:∵AB的中垂线交BC于E,AC的中垂线交BC于G,∴EA=EB,GA=GC,∴△AGE的周长=EA+GA+GE=EB+GC+GE=BC=8.故答案是:8.【点睛】本题主要考查垂直平分线的性质定理,掌握垂直平分线的性质定理是解题的关键.线段的垂直平分线上的点到线段的两个端点的距离相等.3(2023春·广东深圳·七年级校考期末)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=10cm,求△CMN的周长;(2)若∠MFN=65o,则∠MCN的度数为°.【答案】(1)10cm(2)50【分析】(1)由线段垂直平分线的性质可得MA=MC,NB=NC,则△CMN的周长=CM+CN+MN= AM+MN+BN=AB;(2)根据等边对等角可得∠A=∠MAC,∠B=∠NCB,根据三角形内角和定理,列式求出∠FMN+∠FNM,再求出∠A+∠B,即可求解.【详解】(1)解:∵DM,EN分别是AC,BC的中垂线∴MA=MC,NB=NC∴C△CMN=CM+MN+CN=AM+MN+BN=AB=10cm;(2)由(1)得MA=MC,NB=NC,由DM,EN分别垂直平分AC和BC,可得∠MDA=∠NEB=90°,∴∠A=∠MCA,∠B=∠NCB,∵在△MNF中,∠MFN=65°,∴∠FMN+∠FNM=115°,根据对顶角的性质可得:∠FMN=∠AMD,∠FNM=∠BNE,在Rt△ADM中,∠A=90°-∠AMD=90°-∠FMN,在Rt△BNE中,∠B=90°-∠BNE=90°-∠FNM,∴∠A+∠B=90°-∠FMN+90°-∠FNM=65°,∴∠MCA+∠NCB=65°,在△ABC中,∠A+∠B=65°∴∠ACB=115°,∴∠MCN=∠ACB-(∠MCA+∠NCB)=50°.故答案为:50.【点睛】本题考查了线段垂直平分线的性质,等边对等角的性质,三角形内角和定理,解题的关键是熟练掌握相关基本性质和整体思想的利用.【考点二线段垂直平分线的判定】1(2023春·陕西西安·七年级校考阶段练习)如图,AD为三角形ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点O.(1)若BE=DE,∠BAC=60°,求∠CDF的度数;(2)写出AD与EF的关系,并说明理由;【答案】(1)15°(2)AD⊥EF,AD平分EF【分析】(1)根据三角形内角和可得∠C,再利用内角和即可得出∠CDF;(2)由角平分线的意义及两个垂直可证明△ADE≌△ADF,从而有AE=AF,DE=DF,由线段垂直平分线的判定知,AD⊥EF,AD平分EF.【详解】(1)解:∵DE⊥AB∴∠BED=90°∵BE=DE∴∠B=45°∵∠BAC=60°∴∠C=180°-45°-60°=75°∵DF⊥AC∴∠DFC=90°∴∠CDF=15°(2)解:AD⊥EF,AD平分EF;理由如下:∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DFA=90°,∵AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴AD是线段EF的垂直平分线,即AD⊥EF,AD平分EF.【点睛】本题考查了全等三角形的证明,等腰三角形的性质,三角形内角和,角平分线的性质.找到Rt△AED和Rt△ADF,通过两个三角形全等,找到各量之间的关系,完成证明是关键.【变式训练】1(2023秋·广西河池·八年级统考期末)如图,在△ABC中,边AB,BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)求证:点P在线段AC的垂直平分线上.【答案】(1)见解析(2)见解析【分析】(1)根据垂直平分线的性质直接可得到答案;(2)根据到线段两个端点的距离相等的点在线段的垂直平分线上即可得到答案;【详解】(1)证明:∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC;(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA =PB ,PB =PC ,∴PA =PC ,∴点P 在AC 的垂直平分线上.【点睛】本题考查垂直平分线的性质及判定,解题的关键是熟练掌握垂直平分线上的点到线段两个端点距离相等及到线段两个端点的距离相等的点在线段的垂直平分线上.2(2023春·全国·八年级专题练习)如图,点D 是等边△ABC 外一点,∠BDC =120°,DB =DC ,点E ,F 分别在AB ,AC 上,连接AD 、DE 、DF 、EF .(1)求证:AD 是BC 的垂直平分线;(2)若ED 平分∠BEF ,BC =5,求△AEF 的周长.【答案】(1)见解析;(2)10.【分析】(1)根据到线段两端距离相等的点在垂直平分线上即可证明;(2)如图,过D 作DM ⊥EF 于M ,结合已知易证∠DBE =90°即DB ⊥AB ,同理可得DC ⊥AC ,易证Rt △DBE ≌Rt △DME HL 得BE =ME ,同理可得CF =MF ,然后转换求周长即可.【详解】(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∴A 在BC 的垂直平分线上,又DB =DC ,∴D 在BC 的垂直平分线上,∴AD 是BC 的垂直平分线;(2)如图,过D 作DM ⊥EF 于M ,∵∠BDC =120°,DB =DC∴∠DBC =30°又∵△ABC 是等边三角形,∴∠DBE =∠DBC +∠ABC =90°∴DB ⊥AB同理可得∴DC ⊥AC∵ED 平分∠BEF ,DM ⊥EF∴DB =DM =DC∴DF 平分∠CFE ,在Rt △DBE 与Rt △DME 中,DE =DE DB =DM∴Rt △DBE ≌Rt △DME HL∴BE =ME同理可得CF =MFC△AEF=AE+AF+EF=AE+AF+EM+MF=AE+AF+EB+CF=AE+EB+AF+CF=AB+AC=2BC=10.【点睛】本题考查了垂直平分线的判定,角平分线的判定和性质,全等三角形的判定和性质;解题的关键是通过相关性质构造线段相等、进行转换.【考点三利用角平分线的性质求解】1(2023春·山东威海·七年级统考期末)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AB= 8,DE=4,AC=6,则S△ABC=()A.14B.26C.56D.28【答案】D【分析】如图:作DF⊥AC交AC于点F,根据角平分线的性质可得DF=DE=4,再由S△ABC=S△ADC+S△ADB求解即可.【详解】解:如图,作DF⊥AC交AC于点F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE=4,∴S△ABC=S△ADC+S△ADB=12AC·DF+12AB·DE=12DE AC+AB=12×46+8=28,故选:D.【点睛】本题考查了角平分线的性质定理、三角形的面积公式等知识点,根据角平分线的性质定理得到DF=DE=4是解题的关键.【变式训练】1(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高所在直线的交点D.三角形三条中线的交点【答案】B【分析】根据题意,凉亭到草坪三边的距离相等,凉亭的位置在三角形三条角平分线的交点,据此即可求解.【详解】解:∵凉亭到草坪三边的距离相等,∴凉亭的位置在三角形三条角平分线的交点,故选:B.【点睛】本题考查了三角形角平分线的性质,熟练掌握角平分线的性质是解题的关键.2(2023春·山西运城·七年级统考期末)如图,BD平分∠ABC,P是BD上一点,过点P作PQ⊥BC 于点Q,PQ=5,O是BA上任意一点,连接OP,则OP的最小值为.【答案】5【分析】根据垂线段最短确定点O的位置,再根据角平分线的性质即可得到最短距离.【详解】解:∵O是BA上任意一点,∴当PO⊥BA时,OP的值最小,又∵BD平分∠ABC,P是BD上一点,PQ⊥BC,PQ=5∴OP的最小值为5,故答案为:5.【点睛】本题考查角平分线的性质定理,垂线段最短,解题关键是找到最短距离的位置.3(2023春·陕西榆林·七年级校考期末)如图,在四边形ABCD中,AD∥BC,∠D=90°,∠DAB的平分线与∠CBA的平分线相交于点P,且点P在线段CD上,∠CPB=30°.(1)求∠PAD的度数;(2)试说明PD=PC.【答案】(1)30°(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,以及角平分线的定义,即可作答;(2)过点P作PE⊥AB于点E,再根据角平分线的性质定理即可证明.【详解】(1)∵AD∥BC,∴∠C=180°-∠D=180°-90°=90°.∵∠CPB=30°,∴∠PBC=90°-∠CPB=60°.∵PB平分∠ABC,∴∠ABC=2∠PBC=120°.∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°-120°=60°.∵AP平分∠DAB,∴∠PAD=1∠DAB=30°.2(2)如图.过点P作PE⊥AB于点E.∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD.∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC.【点睛】本题主要考查了平行线的性质,角平分线的性质定理的等知识,掌握角平分线的性质定理,是解答本题的关键.【考点四角平分线的判定】1(2023·全国·八年级假期作业)如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.【答案】证明见解析【分析】作DE⊥BA交BA的延长线于E,DF⊥AC于F,DG⊥BH于G,根据角平分线的性质得到DE=DF,根据角平分线的判定定理证明结论.【详解】证明:作DE⊥BA交BA的延长线于E,DF⊥AC于F,DG⊥BH于G,∵DB平分∠ABC、DC平分∠ACH,∴DE=DG,DF=DG,∴DE=DF,又DE⊥BA,DF⊥AC,∴AD是∠BAC的外角平分线.【点睛】本题考查的是角平分线的性质和判定,掌握角的平分线上的点到角的两边的距离相等、到角的两边的距离相等的点在角的平分线上是解题的关键.【变式训练】1(2023·广东惠州·校联考二模)如图,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1)求证:AC 平分∠DAB ;(2)若AE =10,DE =4,求AB 的长.【答案】(1)见解析(2)6【分析】(1)过C 点作CF ⊥AB ,交AB 的延长线于点F .由AAS 证明△CDE ≌△CBF ,可得CE =CF ,结论得证;(2)证明Rt △ACE ≌Rt △ACF ,可得AE =AF ,可求出AB .【详解】(1)证明:过C 点作CF ⊥AB ,交AB 的延长线于点F .∵CE ⊥AD ,∴∠DEC =∠CFB =90°,∵∠D +∠ABC =180°,∠CBF +∠ABC =180°,∴∠D =∠CBF ,又∵CB =CD ,∴△CDE ≌△CBF ,∴CE =CF ,∴AC 平分∠DAB ;(2)解:由(1)可得BF =DE =4,在Rt △ACE 和Rt △ACF 中,CE =CF AC =AC ,∴Rt △ACE ≌Rt △ACF ,∴AE =AF =10,∴AB =AF -BF =6.【点睛】本题考查了角平分线的判定与性质,全等三角形的判定与性质,关键是作出辅助线构造全等三角形.2(2023·江苏·八年级假期作业)如图,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.【答案】(1)见解析(2)AB +AC =2AE ,证明见解析【分析】(1)根据HL证明Rt△DBE≌Rt△DCF,得到DE=DF,再根据角平分线的判定定理,求证即可;(2)通过HL证明Rt△ADE≌Rt△ADF,得到AE=AF,利用线段之间的关系,求解即可.【详解】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△DBE和Rt△DCF中,BD=CD BE=CF,∴Rt△DBE≌Rt△DCF HL,∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC.(2)解:AB+AC=2AE,证明如下:在Rt△ADE和Rt△ADF中,AD=AD DE=DF,∴Rt△ADE≌Rt△ADF HL,∴AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE.【点睛】此题考查了全等三角形的判定与性质,以及角平分线的判定定理,解题的关键是灵活利用相关性质进行求解.【考点五线段的垂直平分线与角平分线的综合问题】1(2023秋·河北保定·八年级统考期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)连接CE,求证AD垂直平分CE.(3)若AB=10,AF=6,求CF的长.【答案】(1)证明见解析(2)证明见解析(3)CF=2【分析】(1)利用角平分线的性质可得DC=DE,再利用“HL”证明Rt△DCF≌Rt△DEB,即可证明CF=EB;(2)利用“HL”证明Rt△ACD≌Rt△AED,可得AC=AE,所以点A在CE的垂直平分线上,根据DC=DE,可得点D在CE的垂直平分线上,进而可以解决问题;(3)设CF=BE=x,则AE=AB-BE=10-x=AC=AF+FC=6+x,即可建立方程求解.【详解】(1)证明:∵DE⊥AB于点E,∴∠DEB=90°,又AD平分∠BAC,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,DF=DB DC=DE,∴Rt△DCF≌Rt△DEB HL,∴CF=EB.(2)证明:连接CE,如图在Rt△ACD和Rt△AED中,AD=AD DC=DE,∴Rt△ACD≌Rt△AED HL,∴AC=AE∴点A在CE的垂直平分线上,∵DC=DE,∴点D在CE的垂直平分线上,∴AD垂直平分CE(3)解:设CF=BE=x,∵AB=10,AF=6,∴AE=AB-BE=10-x,AC=AF+FC=6+x,∵AE=AC,∴10-x=6+x,解得:x=2∴CF=2【点睛】本题考查了直角三角形全等的判定与性质,角平分线的性质,解题关键是在图形中找到正确的全等三角形以及熟悉以上性质与判定.【变式训练】1(2023秋·河南洛阳·八年级统考期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC 于点F,连接EF.(1)求证:点D在EF的垂直平分线上;(2)若AB+AC=16,S△ABC=24,则DE的长为【答案】(1)见解析(2)3【分析】(1)根据角平分线的性质定理直接得出DE=DF,则问题得解;(2)先得出S△ABD=12×AB×DE,S△ACD=12×AC×DF,结合DE=DF,可得S△ABC=12×AB+AC×DE,问题随之得解.【详解】(1)证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.∴点D在EF的垂直平分线上.(2)∵DE⊥AB,DF⊥AC,∴S△ABD=12×AB×DE,S△ACD=12×AC×DF,∵在(1)中有:DE=DF,∴S△ACD=12×AC×DF=12×AC×DE,∵S△ABC=S△ABD+S△ACD,∴S△ABC=12×AB×DE+12×AC×DE=12×AB+AC×DE,∵AB+AC=16,S△ABC=24,∴24=12×16×DE,∴DE=3,即DE的长为3,故答案为:3.【点睛】本题主要考查了角平分线的性质定理,根据角平分线的性质定理直接得出DE=DF是解答本题的关键.2(2023春·全国·八年级专题练习)如图,D为△ABC外一点,DG为BC的垂直平分线,分别过点D 作DE⊥AB,DF⊥AC,垂足分别为点E,F,且BE=CF.(1)求证:AD为∠CAB的角平分线;(2)若AB=8,AC=6,求AE的长.【答案】(1)见解析(2)AE=7【分析】(1)连接CD,BD,根据线段垂直平分线的性质可得CD=BD,再证明Rt△DEB≌Rt△DFC,可得DF=DE,再证明Rt△AFD≌Rt△AED,即可得证;(2)根据全等三角形的性质可得AE=AF,进一步可得AB-AE=AF-AC,从而可得AE=1 2AB+AC.【详解】(1)连接CD,BD,如图所示:∵DG为BC的垂直平分线,∴CD=BD,∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°,在Rt △DEB 和Rt △DFC 中,BE =CF BD =CD ,∴Rt △DEB ≌Rt △DFC∴DE =DF ,在Rt △AFD 和Rt △AED 中,DF =DE AD =AD ,∴Rt △AFD ≌Rt △AED∴∠FAD =∠EAD ,∴AD 为∠CAB 的角平分线;(2)∵Rt △AFD ≌Rt △AED ,∴AE =AF ,又∵BE =CF ,∴AB -AE =AF -AC ,即AE =12AB +AC ,∵AB =8,AC =6,∴AE =7.【点睛】本题考查了全等三角形的判定和性质、角平分线的判定及线段垂直平分线的性质,熟练掌握直角三角形全等的判定方法是解题的关键.3(2023春·全国·八年级开学考试)如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A =78°,∠BPC =39°,BC =7,AB =4.(1)求证:BD 平分∠ABC ;(2)如图2,AC 的垂直平分线交BD 于点Q ,交AC 于点G ,QM ⊥BC 于点M ,求MC 的长度.【答案】(1)见解析(2)MC =1.5【分析】(1)由∠ACF =∠A +∠ABF ,∠ECF =∠BPC +∠DBF ,得∠ABF =∠ACF -78°,∠DBF =∠ECF -39°,再根据CE 平分∠ACF ,得∠ACF =2∠ECF ,则∠ABF =2∠ECF -78°=2(∠ECF -39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt △QNA ≌Rt △QMC ,得NA =MC ,再证明Rt △QNB ≌Rt △QMB (HL ),得NB =MB ,则BC =BM +MC =BN +MC =AB +AN +MC ,从而得出答案.【详解】(1)证明:∵∠ACF =∠A +∠ABF ,∠ECF =∠BPC +∠DBF ,∴∠ABF =∠ACF -78°,∠DBF =∠ECF -39°,∵CE 平分∠ACF ,∴∠ACF =2∠ECF ,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.【点睛】本题主要考查了角平分线的定义和性质,三角形外角的性质,线段垂直平分线的性质,全等三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.【过关检测】一、选择题1(2023春·四川成都·八年级统考期末)如图,在△ABC中,DE是AC边的垂直平分线,分别交BC、AC于D、E两点,连接AD,∠BAD=25°,∠C=35°,则∠B的度数为()A.70°B.75°C.80°D.85°【答案】D【分析】利用垂直平分线的性质,可得∠DAC=∠C=35°,根据三角形内角和定理,可得∠B的度数.【详解】解:∵DE是AC边的垂直平分线,∴∠DAC=∠C=35°,根据三角形内角和定理,可得∠B=180°-∠BAD-∠DAC-∠C=85°,故选:D.【点睛】本题考查了垂直平分线的性质,三角形内角和定理,熟练利用垂直平分线的性质是解题的关键.2(2023春·四川达州·八年级统考期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论中,不正确的是()A.OM +ON 的值不变B.∠PNM =∠POBC.MN 的长不变D.四边形PMON 的面积不变【答案】C【分析】如图作PE ⊥OA 于E ,PF ⊥OB 于F ,于∠EPF +∠AOB =180°,可证∠MPN =∠EPF ,所以∠EPM =∠FPN ,由OP 平分∠AOB ,得证PE =PF ,于是Rt △POE ≌Rt △POF ,所以OE =OF ,同时△PEM ≌△PFN ,所以EM =NF ,PM =PN ,推出∠PMN =∠PNM ,进一步得到∠PNM =12∠AOB ,∠POB =12∠AOB ,所以∠PNM =∠POB ,故B 正确;因为OM +ON =OE +ME +OF -NF =2OE =定值,故A 正确;由三角形全等可知,所以定值,故D 正确;M ,N 的位置变化,所以MN 的长度是变化的,故C 错误.【详解】解:如图作PE ⊥OA 于E ,PF ⊥OB 于F .∵∠PEO =∠PFO =90°,∴∠EPF +∠AOB =180°,∵∠MPN +∠AOB =180°,∴∠MPN =∠EPF ,∴∠EPM =∠FPN ,∵OP 平分∠AOB ,PE ⊥OA 于E ,PF ⊥OB 于F ,∴PE =PF ,在Rt △POE 和Rt △POF 中,OP =OP PE =PF ,∴Rt △POE ≌Rt △POF ,∴OE =OF ,在△PEM 和△PFN 中,∠MPE =∠NPFPE =PF∠PEM =∠PFN∴△PEM ≌△PFN ,∴EM =NF ,PM =PN ,∵PE =PF ,EM =NF ,∴S △PEM =S △PNF ,∴S 四边形PMON =S 四边形PEOF =定值,故D 正确,∵OM +ON =OE +ME +OF -NF =2OE =定值,故A 正确,∵M ,N 的位置变化,∴MN 的长度是变化的,故C 错误.∵PM =PN ,∴∠PMN =∠PNM ,∵∠MPN 与∠AOB 互补,∴∠MPN +∠AOB =180°,∵∠PMN +∠PNM +∠MPN =180°,∴∠PMN +∠PNM =∠AOB ,∵∠PMN =∠PNM ,∴∠PNM =12∠AOB ,∵OP 平分∠AOB ,∴∠POB =12∠AOB ∴∠PNM =∠POB ,故B 正确,故选:C【点睛】本题主要考查角平线的性质定理、全等三角形的判定和性质;能够结合角平分线的性质定理作出角平分线上点到两边的垂线段,构建全等三角形是解题的关键.二、填空题3(2023春·山东青岛·七年级山东省青岛实验初级中学校考期末)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,AF 是△ABC 的中线,AB =16,AC =6,DE =5.则△ADF 的面积为.【答案】12.5【分析】过D 点作DM ⊥AB ,垂足为M ,根据角平分线上的点到角的两边距离相等可得DM =DE =5,然后根据三角形的面积公式可得S △ABD =40,S △ACD =15,可得S △ABC =S △ABD +S △ACD =55,然后由三角形的中线得S △ACF =27.5,根据S △ADF =S △ACF -S △ACD 求解即可.【详解】解:过D 点作DM ⊥AB ,垂足为M ,∵AD 是△ABC 的角平分线,DE ⊥AC ,AB =16,AC =6,DE =5,∴DM =DE =5,∴S △ABD =12AB ⋅DM =12×16×5=40,S △ACD =12AC ⋅DE =12×6×5=15,∴S △ABC =S △ABD +S △ACD =40+15=55,∵AF 是△ABC 的中线,∴S △ACF =12S △ABC =12×55=27.5,∴S △ADF =S △ACF -S △ACD =27.5-15=12.5,∴△ADF 的面积为12.5.故答案为:12.5.【点睛】本题考查角平分线上的点到角的两边距离相等的性质,三角形中线的性质,三角形的面积,作辅助线并利用角平分线的性质是解题的关键.4(2023春·湖南衡阳·七年级校联考期末)如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.【答案】6【分析】过点C作CP⊥AB于点P,交BD于点E,过点E作EF⊥BC于F,则CP即为CE+EF的最小值,再根据三角形的面积公式求出CP的长,即为CE+EF的最小值.【详解】解:过点C作CP⊥AB于点P,交BD于点E,过点E作EF⊥BC于F,∵BD平分∠ABC,PE⊥AB,EF⊥BC,∴PE=EF,∴CP=CE+PE=CE+EF的最小值.∵△ABC的面积为18,AB=6,×6×CP=18,∴12∴CP=6.即CE+EF的最小值为6,故答案为:6.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.三、解答题5(2023春·河南商丘·七年级统考阶段练习)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.【答案】(1)①20,70;②60;(2)存在这样的x的值,使得∠EFD=4∠EDF.当x=68或104时,∠EFD=4∠EDF.【分析】(1)①运用平行线的性质以及角平分线的定义,可得∠DEO 的度数,根据DP ⊥OE 求出x 的值;②根据三角形内角和求出∠FDE ,根据平行的性质∠ODC 的度数,相减即可得x 的值;(2)分两种情况进行讨论:DP 在DE 左侧,DP 在DE 右侧,分别根据三角形内角和定理,可得x 的值.【详解】(1)解:①∵∠AOB =40°,OC 平分∠AOB ,∴∠BOE =20°,∵DE ∥OB ,∴∠DEO =∠BOE =20°;∵∠DOE =∠DEO =20°,∴DO =DE ,∠ODE =140°,当DP ⊥OE 时,∠ODP =12∠ODE =70°,即x =70,故答案为:20,70;②∵∠DEO =20°,∠EDF =∠EFD ,∴∠EDF =80°,又∵∠ODE =140°,∴∠ODP =140°-80°=60°,∴x =60;(2)存在这样的x 的值,使得∠EFD =4∠EDF .分两种情况:①如图2,若DP 在DE 左侧,∵DE ⊥OA ,∴∠EDF =90°-x °,∵∠AOC =20°,∴∠EFD =20°+x °,当∠EFD =4∠EDF 时,20°+x °=490°-x ° ,解得x =68;②如图3,若DP 在DE 右侧,∵∠EDF =x °-90°,∠EFD =180°-20°-x °=160°-x °,∴当∠EFD =4∠EDF 时,160°-x °=4x °-90° ,解得x =104;综上所述,当x =68或104时,∠EFD =4∠EDF .【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.解题时注意分类讨论思想的运用.6(2023春·黑龙江哈尔滨·七年级统考期末)在△ABC 中,∠BAC =60°,线段BF 、CE 分别平分∠ABC 、∠ACB 交于点G .(1)如图1,求∠BGC 的度数;(2)如图2,求证:EG =FG ;(3)如图3,过点C 作CD ⊥EC 交BF 延长线于点D ,连接AD ,点N 在BA 延长线上,连接NG 交AC 于点M ,使∠DAC =∠NGD ,若EB :FC =1:2,CG =10,求线段MN 的长.【答案】(1)120°(2)见解析(3)5【分析】(1)根据三角形内角和定理求出∠ABC +∠ACB =120°,根据BF 平分∠ABC 、CE 平分∠ACB ,得出∠GBC =∠GBE =12∠ABC ,∠GCB =∠GCF =12∠ACB ,求出∠GBC +∠GCB =60°,根据三角形内角和得出∠BGC +∠GBC +∠GCB =180°,即可求出结果;(2)作GH 平分∠BGC 交BC 于点H ,证明△BGE ≌△BGH ,得出EG =GH ,证明△CGF ≌△CGH ,得出FG =GH ,即可证明结论;(3)作DP ⊥BC 交BC 延长线于点P ,作DQ ⊥AB 交BA 延长线于点Q ,作DR ⊥AC 于点R ,证明CD 平分∠ACP ,根据DR ⊥AC ,DP ⊥BC ,得出DR =DP ,根据BF 平分∠ABC ,DR ⊥AC ,DQ ⊥AB ,得出DP =DQ ,证明DR =DQ ,证明△NEG ≌△CFG ,得出NG =CG =10,证明△BEG ≌△MFG ,得出BE =MF ,作FL ⊥NG 于点L ,FK ⊥CG 于点K ,GW ⊥MC 于点W ,根据S △MGF =12MG ⋅FL =12MF ⋅GW ,S △CGF =12GC ⋅FK =12FC ⋅GW ,得出MG GC =MF FC=12,求出MG =5即可得出答案.【详解】(1)解:在△ABC 中,∠BAC +∠ABC +∠ACB =180°,∵∠BAC =60°∴∠ABC +∠ACB =120°,∵BF 平分∠ABC 、CE 平分∠ACB ,∴∠GBC=∠GBE=12∠ABC,∠GCB=∠GCF=12∠ACB,∴∠GBC+∠GCB=60°,在△BGC中,∠BGC+∠GBC+∠GCB=180°,∴∠BGC=120°.(2)解:作GH平分∠BGC交BC于点H,如图所示:∴∠BGH=∠CGH=60°,∵∠BGE=∠CGF=∠GBC+∠GCB=60°,∴∠BGH=∠CGH=∠BGE=∠CGF,∵∠GBC=∠GBE,BG=BG∴△BGE≌△BGH,∴EG=GH,∵∠GCH=∠GCF,CG=CG,∴△CGF≌△CGH,∴FG=GH,∴EG=FG;(3)解:作DP⊥BC交BC延长线于点P,作DQ⊥AB交BA延长线于点Q,作DR⊥AC于点R,如图所示:∵CE平分∠ACB,∴∠ACB=2∠ACE,∵CD⊥EC,∴∠ECD=90°,∴∠ACE+∠ACD=90°,∵∠ACB+∠ACP=180°,∴∠ACP=2∠ACD,∴CD平分∠ACP,∵DR⊥AC,DP⊥BC,∴DR=DP,∵BF平分∠ABC,DR⊥AC,DQ⊥AB,∴DP=DQ,∴DR=DQ,∴AD平分∠QAC,∵∠BAC=60°,∴∠DAQ=∠DAC=60°,∴∠NGD=∠DAC=60°,由(1)得∠BGC=120°,∴∠BEG=∠FGC=180°-∠BGC=60°,∵∠MGF=∠ABF+∠BNG=60°,∠FGC=∠FBC+∠ECB=60°,∠ABF=∠FBC,∴∠BNG=∠ECB,∵∠ECB=∠ACE,∴∠ACE=∠BNG,由(2)得EG=FG,∴△NEG≌△CFG,∴NG=CG=10,∠NEG=∠CFG,∵∠NEG+∠BEG=180°,∠CFG+∠MFG=180°,∴∠BEG=∠MFG,∴△BEG≌△MFG,∴BE=MF,∵BE:FC=1:2,∴MF:FC=1:2,作FL⊥NG于点L,FK⊥CG于点K,GW⊥MC于点W,∵∠MGF=∠CGF=60°,∴FK=FL,S△MGF=12MG⋅FL=12MF⋅GW,S△CGF=12GC⋅FK=12FC⋅GW,∴MG GC =MFFC=12,∴MG=5,∴MN=NG-MG=5.【点睛】本题主要考查了三角形全等的判定和性质,角平分线的判定和性质,三角形面积的计算,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法.7(2023春·八年级课时练习)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,请指出AB与PB的数量关系,并说明理由.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.【答案】(1)AB=PB,理由见解析(2)存在,理由见解析【分析】(1)连接BQ ,根据BC 垂直平分OQ ,可知BO =BQ ,则∠BOQ =∠BQO ,根据OF 平分∠MON ,则∠AOB =∠BOQ ,即∠AOB =∠BQO ,根据OA =QP ,可知△AOB ≌△PQB ,则可知AB =PB ;(2)如图,连接BQ ,根据BC 垂直平分OQ ,可知BQ =BO ,CQ =CO 结合条件可证△BQC ≌△BOC ,则∠BQO =∠BOQ ,根据OF 平分∠MON ,∠BOQ =∠FON ,可知∠AOF =∠FON =∠BOQ ,则∠AOF =∠BQO ,进而可知∠AOB =∠PQB ,由此可证△AOB ≌△PQB (SAS ),则AB =PB .【详解】(1)解:AB =PB理由如下:连接BQ∵BC 垂直平分OQ∴BO =BQ∴∠BOQ =∠BQO∵OF 平分∠MON∴∠AOB =∠BOQ∴∠AOB =∠BQO∵OA =QP∴△AOB ≌△PQB∴AB =PB ;(2)存在,理由:如图,连接BQ ,∵BC 垂直平分OQ ,∴BQ =BO ,CQ =CO在△BQC 和△BOC 中,BC =BCCQ =COBQ =BO∴△BQC ≌△BOC (SSS )∴∠BQO =∠BOQ ,∵OF 平分∠MON ,∠BOQ =∠FON ,∴∠AOF =∠FON =∠BOQ ,∴∠AOF =∠BQO ,∴∠AOB =∠PQB ,在△AOB 和△PQB 中,OA =PQ∠AOB =∠PQBBO =BQ∴△AOB ≌△PQB (SAS ),∴AB =PB .【点睛】本题考查了线段垂直平分线,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,本题属于中考常考问题.8(2023春·浙江宁波·七年级校考期末)角平分线性质定理描述了角平分线上的点到角两边距离的关系,小储发现将角平分线放在三角形中,有一些新的发现,请完成下列探索过程:【知识回顾】(1)如图1,P是∠BOA的平分线上的一点,PE⊥OB于点E,作PD⊥OA于点D,试证:PE=PD【深入探究】(2)如图2,在△ABC中,BD为∠ABC的角平分线交于AC于D点,其中AB+BC=10,AD=2,CD=3,求AB.【应用迁移】(3)如图3,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=4,S△BFP=20,则AB的长度为.【答案】(1)见解析;(2)AB=4;(3)10【分析】(1)根据AAS证明△POD≌△POE即可;(2)作DM⊥AB于点M,作DN⊥BC于点N,由角平分线的性质得DM=DN,由三角形的面积公式可得AD CD =ABBC,结合AB+BC=10即可求解;(3)过E作EG⊥AB于G,连接CF,由P为CE中点,设S△EFP=S△CFP=y,根据BD是AC边上的中线,设S△CDF=S△AFD=z,根据三角形的面积的计算得到S△ABE=S△ABC-S△ACE=40+2y+2z-2y+2z=40,根据角平分线的性质得到EG=CE=2CP=8,于是得到结论.【详解】(1)证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD和△POE中,∠PDO=∠PEO ∠DOP=∠EOP OP=OP,∴△POD≌△POE AAS,∴PE=PD;(2)解:如图,过点D作DM⊥AB于点M,作DN⊥BC于点N,∵BD平分∠BAC,∴DM=DN,∵S△ABD=12AB⋅DM,S△CBD=12BC⋅DN,∴S△ABDS△CBD=ABBC,同理可证S△ABDS△CBD=ADCD,∴AD CD =AB BC.∵AD=2,CD=3,∴AD CD =ABBC=23,设AB=2x,则BC=3x ∵AB+BC=10,∴2x+3x=10,x=2,∴AB=4;(3)解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∴S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=20,∴S△BCD=20+y+z,∴S△ABC=2S△BCD=40+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC-S△ACE=40+2y+2z-2y+2z=40,∵AE是∠CAB的角平分线,CP=4,∴EG=CE=2CP=8,AB⋅EG=40,∴S△ABE=12∴AB=10,故答案为:10.【点睛】本题考查了三角形的面积的计算,全等三角形的判定与性质,角平分线的性质,三角形中线的性质,正确的作出辅助线是解题的关键.9(2023·贵州遵义·校考三模)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【答案】(1)①见解析 ②30°(2)见解析【分析】(1)①本题主要考查通过角度计算求证平行,继而证明△CBP是直角三角形,根据直角三角形斜边中线可得结论.②本题以上一问结论为解题依据,考查平行线以及垂直平分线的应用,根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°.(2)本题主要考查辅助线的做法以及垂直平分线性质的应用,需要延长DE到Q,使EQ=DE,连接CD,。
八年级数学专项练习——垂直平分线与角平分线(含答案解析)
八年级数学专项练习——垂直平分线与角平分线(含答案解析)1.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在PA、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°2.如图所示,已知AB=AB1,A1B1=B1B2,A2B2=B2B3,A3B3=B3B4…,以此规律操作下去,若∠B=50°,则∠A n-1B n B n-1(n≥2)的度数为()A.B.C.D.3.如图,∠BAC=120°.若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.30°B.40°C.50°D.60°4.如图,在△ABC中,AC的垂直平分线PD与BC的垂直平分线PE交于点P,垂足分别为D,E,连接PA,PB,PC,若∠PAD=45°,则∠ABC=.5.如图,已知BD平分∠ABC,AD=CD,DE⊥AB于点E,DF⊥BC于点F,BC=12cm,AB=6cm,那么AE的长度为cm.6.△ABC的外角∠DAC的平分线交BC的垂直平分线线于P点,PD⊥AB于D,PE⊥AC于E.⑴求证:BD=CE;⑵若AB=5cm,AC=10cm,求AD长.答案解析1.解:∵∠ABC=80°,∴∠BMN+∠BNM=180°-80°=100°,∵M、N分别在PA、PC的中垂线上,∴MA=MP,NC=NP,∴∠MPA=∠MAP,∠NPC=∠NCP,∴∠MPA+∠NPC=12(∠BMN+∠BNM)=50°,∴∠APC=180°-50°=130°,故选:C.2.解:在△ABB1中,AB=AB1,∠B=50°,∴∠AB1B=50°,∵A1B1=B1B2,∠AB1B是△A1B1B2的外角,3.解:∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=120°,∴∠B+∠C=60°,∴∠PAB+∠QAC=60°,∴∠PAQ=60°,故选:D.4.解:∵AC的垂直平分线PD与BC的垂直平分线PE交于点P,∴PA=PB=PC,∴∠PCA=∠PAD=45°,∠PAB=∠PBA,∠PCB=∠PBC,∵∠PCA+∠PAD+∠PAB+∠PBA+∠PCB+∠PBC=180°,∴∠PAB+∠PBA+∠PCB+∠PBC=90°,∴∠PBC+∠PBA=45°,∴∠ABC=45°,故答案为:45.5.解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,又∵AD=CD,∴Rt△ADE≌Rt△DFC(HL),∴AE=CF,∴Rt△BDE≌Rt△BDF(HL),∴BE=BF,∵BE=AB+AE=6+AE,∴BF=6+AE.∴BC=6+AE+CF=12,即12=6+2AE,解得:AE=3(cm),故答案为:3cm.6.⑴证明:如图,连接BP、PC.∵PQ垂直平分线段BC,∴PB=PC,∵∠PAD=∠PAE,PD⊥AD,PE⊥AE,∴PD=PE,∠PDB=∠PEC=90°,在Rt△PBD和Rt△PCE中,∴Rt△PBD≌Rt△PCE(HL),∴BD=CE.⑵解:在Rt△APD和Rt△APE中,∴Rt△APD≌Rt△APE,∴AD=AE,设AD=AE=x,∵△PBD≌△PCE,∴BD=EC,∴AB+AD=AC-AE,∴5+x=10-x,∴x=2.5,∴AD=2.5.。
线段的垂直平分线和角平分线重难点专练
专题02线段的垂直平分线和角平分线重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·上海市曹杨第二中学附属学校八年级期中)如图,D 为BAC Ð的外角平分线上一点,过D 作DE AC ^于E ,DF AB ^交BA 的延长线于F ,且满足FDE BDC Ð=Ð,则下列结论:①CDE V ≌BDF V ;②CE AB AE =+;③BDC BAC Ð=Ð;④DAF CBD Ð=Ð.其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】D【分析】根据角平分线上的点到角的两边距离相等可得DE=DF ,再证明FDB EDC Ð=Ð,即可证明Rt △CDE 和Rt △BDF 全等;根据全等三角形对应边相等可得CE=BF ,利用“HL”证明Rt △ADE 和Rt △ADF 全等,可得AE=AF ,然后求出CE=AB+AE ;∠FDE 与∠BAC 都与∠FAE 互补,可得∠FDE=∠BAC ,于是可证BDC BAC Ð=Ð;利用外角定理得2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC +∠ACB ,由Rt △CDE ≌Rt △BDF 可得∠ABD=∠DCE ,BD=DC ,故∠DBC=∠DCB ,于是可证明∠DAF=∠CBD .【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,DFB DEC Ð=Ð=90o∵FDE BDC Ð=Ð,∴FDB EDC Ð=Ð,在Rt △CDE 和Rt △BDF 中FDB CDE DFB DEC Ð=ÐìïÐ=Ðí,∴Rt △CDE ≌Rt △BDF ,故①正确;∴CE=BF ,在Rt △ADE 和Rt △ADF 中,,AD AD DE DF =ìí=î∴Rt △ADE ≌Rt △ADF ,∴AE=AF ,∴CE=AB+AF=AB+AE ,故②正确;∵DFA DEA Ð=Ð=90o ,∴∠EDF+∠FAE=180o ,∵∠BAC+∠FAE=180o ,∴∠FDE=∠BAC ,∵∠FDE=∠BDC ,∴∠BDC =∠BAC ,故③正确;∵∠FAE 是△ABC 的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC +∠ACB ,∵Rt △CDE ≌Rt △BDF ,∴∠ABD=∠DCE ,BD=DC ,∴∠DBC=∠DCB ,∴2∠DAF=∠DCE +∠DBC +∠ACB=∠DBC +∠DCB=2∠DBC ,∴∠DAF=∠CBD ,故④正确;综上所述,正确的结论有①②③④共4个.故选:D .【点睛】要二次证明三角形全等.2.(2021·上海金山区·八年级期末)下列命题中,是假命题的是()A .两条直角边对应相等的两个直角三角形全等 ;B .每个命题都有逆命题;C .每个定理都有逆定理;D .在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.【答案】C【分析】根据全等三角形的判定,命题与定理及角平分线的判定等知识一一判断即可.【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是正确;B 、每个命题都有逆命题,所以B 选项正确;C 、每个定理不一定有逆定理,所以C 选项错误;D 、在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,正确.故选C .【点睛】本题考查了全等三角形的判定,命题与定理以及角平分线的判定方法,熟练利用这些判定定理是解题关键.3.(2021·上海市康城学校八年级期末)下列命题的逆命题是真命题的是( ).A .若a b =,则a b=B .同位角相等,两直线平行C .对顶角相等D .若0a >,0ba >,则0a b +>【答案】B【分析】分别写出各选项中命题的逆命题,然后判断其真假即可.【详解】解:A 、逆命题为:若∣a ∣=∣b ∣,则a=b ,是假命题;B 、逆命题为:两直线平行,同位角相等,是真命题;故选:B.【点睛】本题考查了互逆命题的知识,会判断命题的真假,正确写出原命题的逆命题是解答的关键.4.(2021·上海八年级期末)下列命题中,是真命题的是()A.三角形的外角大于三角形的任何一个内角B.线段的垂直平分线上的任一点与该线段两个端点能构成等腰三角形C.三角形一边的两个端点到这边上的中线所在的直线的距离相等D.面积都相等的两个三角形一定全等【答案】C【分析】A、B、D均可举反例说明错误,C选项可构造图形证明.【详解】解:A.钝角三角形与钝角相邻的外角小于该角,原命题是假命题,故该选项不符合题意;B.如果该点在线段上,那么不能构成等腰三角形,原命题是假命题,故该选项不符合题意;C.当该中线为等腰三角形底边上的中线时,根据三线合一即可得出这两个端点到这边上的中线所在的直线的距离相等,当三角形不是等腰三角形或中线不是等腰三角形底边上的中线时,如图所示,AD为△ABC的中线,BF⊥AD,CE⊥AD,∵AD为△ABC的中线,∴BD=CD,∵BF⊥AD,CE⊥AD,∴∠BFD=∠CED=90°,∵∠ADB=∠EDC,∴△BDF≌△CDE(AAS),∴BF=CE,综上,三角形一边的两个端点到这边上的中线所在的直线的距离相等,原命题是真命题,故该选项符合题意;D.如果是一个钝角三角形和锐角三角形,某边相等且该边上的高相等,但它们不全等,原命题是假命题,故该选项不符合题意;故选:C.【点睛】本题考查判断命题的真假,主要考查三角形外角的性质,等腰三角形的性质和判定,垂直平分线的性质,全等三角形的判定与性质.说明一个命题是假命题只需要举一个反例,判断一个命题是真命题需要证明它.5.(2020·上海市曹杨第二中学附属学校八年级期中)下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.6.(2019·上海全国·八年级课时练习)如图,在△ABC中,AD平分∠BAC,DE⊥AB 于E,ABCS V=15,DE=3,AB=6,则AC长是( )A.4B.5C.6D.7【答案】A【分析】根据角平分线上的点到角的两边的距离相等可得AC边上的高,再利用S△ABD+S△ACD=S△ABC,即可得解.【详解】解:作DF⊥AC于F,如图:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=3,∵S△ABD+S△ACD=S△ABC,∴1163AC315 22´´+´´=,∴AC=4.故选:A.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.7.(2020·上海闵行区·八年级期中)如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足E ,那么下列结论中一定正确的是( )A .DA=DEB .AC=EC C .AH =EHD .CD =ED【答案】D【分析】根据题意可以分析出A 、B 、C 三个选项要成立同时成立,所以D 选项一定正确,可以通过证明()ACD AED AAS @V V ,验证D 选项正确.【详解】解:可以分析出A 、B 、C 选项任何一个成立,那么都可以得到CH 是AE 的垂直平分线,那么就可以推出其他两个选项也都成立,但这是不可能的,所以A 、B 、C 都不一定正确,D 选项一定正确,证明如下:∵//DE BC ,∴AED ABC Ð=Ð,∵CH AB ^,∴90ABC BCH Ð+Ð=°,∵90ACB Ð=°,∴90ACD BCH Ð+Ð=°,∴ABC ACD AED Ð=Ð=Ð,∵AD 平分BAC Ð,∴CAD EAD Ð=Ð,在ACD △和AED V 中,CAD EAD ACD AED AD AD Ð=ÐìïÐ=Ðíï=î,∴()ACD AED AAS @V V ,∴CD ED =.本题考查全等三角形的性质和判定,垂直平分线的性质,解题的关键是掌握这些性质定理进行证明.8.(2019·上海市市西初级中学八年级期末)下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +>【答案】B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.(2019·上海七年级期末)如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )A .ASAB .SASC .SSSD .AAS如图,根据题意可得:OE=OD,EG=DG,OG=OG,进一步即可根据SSS判定△OEG≌△ODG,可得∠BOC=∠AOC,从而可得答案.【详解】解:如图,由作图可知:OE=OD,EG=DG,OG=OG,所以△OEG≌△ODG(SSS),所以∠BOC=∠AOC,即OC是∠AOB的平分线.所以用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题考查了尺规作角平分线以及全等三角形的判定与性质,属于基本题型,正确理解题意、熟练掌握基础知识是解题的关键.10.(2020·上海市静安区实验中学八年级课时练习)如果三角形二条边的中垂线的交点在第三条边上,那么,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】A【分析】根据题意,画出图形,用线段垂直平分线的性质结合等腰三角形的性质,三角形内角和定理解答.【详解】如图,CA、CB的中点分别为D、E,CA、CB的垂直平分线OD、OE相交于点O,且点O落在AB边上,连接CO,∵OD 是AC 的垂直平分线,∴OC=OA ,∠A=∠ACO ,同理OC=OB ,∠B=∠BCO ,∵∠A+∠ACO+∠B+∠BCO=180°,∴∠ACO +∠BCO=12´180°=90°,∴∠C 是直角.故选:A .【点睛】本题主要考查了线段的垂直平分线的性质,等腰三角形的性质,三角形内角和定理.熟记线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.(2020·上海市云岭实验中学八年级月考)如图,已知ABC V ,求作一点P ,使P 点到CAB Ð的两边的距离相等,且PA PB =.下列确定P 点的方法正确的是( )A .P 为CAB Ð,ABC Ð两角平分线的交点B .P 为CAB Ð的平分线与AB 的垂直平分线的交点C .P 为AC ,AB 两边上的高的交点D .P 为AC ,AB 两边的垂直平分线的交点【答案】B【分析】根据角平分线及线段垂直平分线的判定定理作答.【详解】∵P 点到CAB Ð的两边的距离相等,∴P 在CAB Ð的平分线上.∵PA PB =,∴P 在AB 的垂直平分线上.即P 为CAB Ð的平分线与AB 的垂直平分线的交点.故选:B .【点睛】线及线段垂直平分线的性质是解答此题的关键.12.(2019·上海全国·八年级课时练习)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点.【答案】C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.13.(2020·上海虹口区·九年级二模)已知在ABC中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如表),那么交点O是△ABC的()示意图作图步骤(1)分别以点B、C为圆心,大于12BC长为半径作圆弧,两弧分别交于点M、N,联结MN 交BC于点D;(2)分别以点A、C为圆心,大于12AC长为半径作圆弧,两弧分别交于点P、Q,联结PQ 交AC于点E;(3)联结AD、BE,相交于点OA .外心B .内切圆的圆心C .重心D .中心【答案】C【分析】根据尺规作图得到AD 、BE 是△ABC 的中线,根据重心的概念判断即可.【详解】解:由尺规作图可知,MN 、PQ 分别是线段BC 、AC 的垂直平分线,∴点D 、E 分别是BC 、AC 的中点,∴AD 、BE 是△ABC 的中线,∴点O 是△ABC 的重心,故选:C .【点睛】本题考查的是中线的尺规作图及三角形重心的概念:三角形的重心是三角形三条中线的交点,掌握三角形重心的概念是解题的关键.14.(【新东方】初中数学1234初二上)如图在ABC V 中,ABC Ð和ACB Ð的平分线交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ^于D ,下列四个结论:其中正确的结论有( )个.①EF BE CF =+;②90BGC A Ð=°+Ð;③点G 到ABC V 各边的距离相等;④设GD m =,AE AF n +=,则AEF S mn =△;⑤AEF V 的周长等于+AB AC 的和.A .1B .2C .3D .4【答案】C【分析】①根据∠ABC 和∠ACB 的平分线相交于点G 可得出∠EBG =∠CBG ,∠BCG =∠FCG ,再由EF ∥BC 可知∠CBG =∠EGB ,∠BCG =∠CGF ,故可得出BE =EG ,GF =CF ,由此可得出结论;②先根据角平分线的性质得出∠GBC +∠GCB =12(∠ABC +∠ACB ),再由三角形内角和定理即可得出结论;③根据三角形角平分线的性质即可得出结论;④连接AG ,由三角形的面积公式即可得出结论;⑤根据BE=EG,GF=CF,进行等量代换可得结论.【详解】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故①正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=12(∠ABC+∠ACB)=12(180°-∠A),∴∠BGC=180°-(∠GBC+∠GCB)=180°-12(180°-∠A)=90°+12∠A,故②错误;③∵∠ABC和∠ACB的平分线相交于点G,∴点G也在∠BAC的平分线上,∴点G到△ABC各边的距离相等,故③正确;④连接AG,作GM⊥AB于M,如图所示:∵点G是△ABC的角平分线的交点,GD=m,AE+AF=n,∴GD=GM=m,∴S△AEF=12AE•GM+12AF•GD=12(AE+AF)•GD=12nm,故④错误.⑤∵BE=EG,GF=CF,∴AE+AF+EF=AE+AF+EG+FG=AE+AF+BE+CF=AB+AC,即△AEF的周长等于AB+AC的和,故⑤正确,故选:C.【点睛】本题考查了等腰三角形的判定与性质、角平分线的性质、平行线的性质、三角形内角和定理等知识;熟练掌握角平分线的性质、三角形内角和定理及三角形内心的性质是解题的关键.15.(【新东方】初中数学1222初二上)如图,在ABC V 中,45,ABC AD BEÐ=°,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC Ð=Ð;③CF AB ^;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④【答案】B【分析】证明△BDF ≌△ADC ,可判断①;求出∠FCD =45°,∠DAC <45°,延长CF 交AB 于H ,证明∠AHC =∠ABC +∠FCD =90°,可判断③;根据①可以得到E 是AC 的中点,然后可以推出EF 是AC 的垂直平分线,最后由线段垂直平分线的性质可判断④.【详解】解:∵△ABC 中,AD ,BE 分别为B C 、AC 边上的高,∠ABC =45°,∴AD =BD ,∠DAC 和∠FBD 都是∠ACD 的余角,而∠ADB =∠ADC =90°,∴△BDF ≌△ADC (ASA ),∴BF =AC ,FD =CD ,故①正确,∵∠FDC =90°,∴∠DFC =∠FCD =45°,∵∠DAC =∠DBF <∠ABC=45°,∴∠FCD ≠∠DAC ,故②错误;延长CF 交AB 于H ,∵∠ABC =45°,∠FCD =45°,∴∠AHC =∠ABC +∠FCD =90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=12 AC,∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.【点睛】本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<二、解答题16.(2020·上海市曹杨第二中学附属学校八年级期中)如图,在ABCV中,2ACB BÐ=Ð,BACÐ平分线AO交BC于点D,点H为AO上一动点,过H作直线l AO^于H,分别交直线AB、AC、BC于点N、E、M.=;(1)当直线l经过点C时(如图2),求证:BN CD(2)当M是线段BC的中点时,写出线段CE和线段CD之间的数量关系,并证明;(3)请直接写出BN、CE和CD之间的数量关系.【答案】(1)见解析;(2)CD=2CE,证明见解析;(3)当点M在线段BC上时,CD=BN+CE;当点M在BC的延长线上时,CD=BN-CE;当点M在CB的延长线上时,CD=CE-BN.【分析】(1)连接ND,先由已知条件证明DN=DC,再证明BN=DN即可;(2)当M是BC中点时,CE和CD之间的等量关系为CD=2CE,过点C作CN'⊥AO交AB于N'.过点C作CG∥AB交直线l于G,再证明△BNM≌△CGM问题得证;(3)BN、CE、CD之间的等量关系要分三种情况讨论:①当点M在线段BC上时;②当点M在BC的延长线上时;③当点M在CB的延长线上时;由(2)即可得出结论.【详解】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH ,∴AN=AC ,∴NH=CH ,∴AH 是线段NC 的中垂线,∴DN=DC ,∴∠DNH=∠DCH ,∴∠AND=∠ACB ,∵∠AND=∠B+∠BDN ,∠ACB=2∠B ,∴∠B=∠BDN ,∴BN=DN ,∴BN=DC ;(2)解:当M 是BC 中点时,CE 和CD 之间的数量关系为CD=2CE ,理由如下:过点C 作CN'⊥AO 交AB 于N',过点C 作CG ∥AB 交直线l 于点G ,如图3所示:由(1)得:BN'=CD ,AN'=AC ,AN=AE ,∴∠ANE=∠AEN ,NN'=CE ,∵CG ∥AB ,∴∠ANE=∠CGE ,∠B=∠BCG ,∴∠CGE=∠AEN ,∴CG=CE ,∵M 是BC 中点,∴BM=CM ,在△BNM 和△CGM 中,B BCG BM CM NMB GMC Ð=Ðìï=íïÐ=Ðî∴△BNM ≌△CGM (ASA ),∴BN=CG,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN-CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN-CE;当点M在CB的延长线上时,CD=CE-BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE-BN.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质、平行线的性质等知识;熟练掌握等腰三角形的判定与性质是解17.(2020·上海同济大学附属实验中学)如图,△ABC 中,AB =AC ,∠BAC +∠BDC=180°.(1)求证:AD 为∠BDC 的平分线;(2)若∠DAE=12∠BAC ,且点E 在BD 上,直接写出BE 、DE 、DC 三条线段之间的等量关系_______.【答案】(1)见解析;(2)DE= B E+DC.【分析】(1)过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,先证明∠BAG=∠CAF ,然后证明△BAG ≌△CAF得到AG=AF ,最后由角平分线的判定定理即可得到结论;(2)过A 作∠CAH=∠BAE ,证明△EAD ≌△HAD ,得到AE=AH ,再证明△EAB ≌△HAC 中,即可得出BE 、DE 、DC 三条线段之间的等量关系.【详解】证明:(1)如图1,过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,∵AG ⊥BD ,AF ⊥DC ,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC ,∴∠GAF-∠GAC=∠BAC-∠GAC ,∴∠BAG=∠CAF ,在△BAG 和△CAF 中90AGB F BAG CAFAB AC ìÐ=Ð=ïÐ=Ðíï=îo∴△BAG ≌△CAF (AAS ),∴AG=AF ,∴∠BDA=∠CDA ,(2)BE 、DE 、DC 三条线段之间的等量关系是DE= B E+DC ,理由如下:如图2,过A 作∠CAH=∠BAE 交DC 的延长线于H ,∵∠DAE=12∠BAC ,∴∠DAE=∠BAE+∠CAD ,∵∠CAH=∠BAE ,∴∠DAE=∠CAH+∠CAD=∠DAH ,在△EAD 和△HAD 中EAD HAD AD ADADE ADH Ð=Ðìï=íïÐ=Ðî,∴△EAD ≌△HAD (ASA ),∴DE=DH ,AE=AH ,在△EAB 和△HAC 中AB AC BAE CAH AE AH =ìïÐ=Ðíï=î,∴△EAB ≌△HAC (SAS ),∴BE=CH ,∴DE=DH=DC+CH=DC+BE ,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.18.(2019·上海外国语大学秀洲外国语学校八年级期中)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【答案】(1)见解析;(2)见解析.【分析】(1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小.【详解】(1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.【点睛】本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.19.(2019·上海外国语大学附属大境初级中学八年级月考)如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n°.(1)求∠BPC的度数(用含n的代数式表示),写出推理过程.(2)当∠BPC=125°时,∠A= .(3)当n=60°时,EB=7,BC=12,DC的长为.【答案】(1)∠BPC=90°+12n,推理过程见解析;(2)70°;(3)5.【分析】(1)根据角平分线的性质得∠ABC=2∠PBC,∠ACB=2∠PCB,再根据三角形内角和定理求得∠A=-180°+2∠BPC,即可求证∠BPC=90°+12 n;(2)根据(1)可知∠BPC=90°+12n,把∠BPC=125°代入原式求出n即为∠A的度数;(3)当n=60°时,即可求出∠BPC=120°,作辅助线在CB上截取CG=CD,可证出△CPG≌△PCD(SAS),即可得出∠DPO=∠GPC,PD=PG,再可证出△BEP≌△BGP,即可得出BE=BG,即可求出DC.【详解】解:(1)∵DB 、CE 分别为∠ABC ,∠ACB 的平分线,∴∠ABC=2∠PBC ,∠ACB=2∠PCB.∵∠A=180°-(∠ABC+∠ACB),∴∠A=180°-2(∠PBC+∠PCB),∴∠A=180°-2(180°-∠BPC),∴∠A=-180°+2∠BPC ,∴2∠BPC=180°+∠A ,∴∠BPC=90°+ 12∠A,∴∠BPC=90°+12n (2)由(1)知∠BPC=90°+12∠A ∴当∠BPC=125°时,∠A =2×(125°-90°)= 70°;(3)在CB 上截取CG=CD ,连接GP ,Q CE 平分BCA Ð∴∠GCP=∠PCD ,在△PCD 和△PCG 中,CD CG GCP PCD PC PC ìïÐÐíïî===∴△PCD ≌△CGP (SAS ),∴∠GPC=∠CPD ,PG=PD ,由∠BPG+∠GPC=120°,又∵∠BPG+2∠GPC=180°,解得:∠BPG=∠GPC=∠FPC=60°在△BEP 和△BGP 中,EBP GBP BP BPBPE BPG ÐÐìï=íïÐÐî== ∴△BEP ≌△BGP (ASA ),∴BE=BG ,∴CG=BC-BG=BC-BE=12-7=5∴CD=CG=5.【点睛】本题考查了三角形的内角和定理,角平分线的定义以及三角形全等的判定与性质,难度较大.20.(2021·上海浦东新区·七年级期末)如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,DB =DC .(1)求证:BE =CF ;(2)如果BD//AC ,∠DAF =15°,求证:AB =2DF .【答案】(1)见解析;(2)见解析.【分析】(1)证明DE DF =,90E DFC Ð=Ð=°;进而证明 Rt BDE Rt DFC D @D ,即可解决问题;(2)根据平行线的性质和含30°的直角三角形的性质解答即可.【详解】证明:(1)AD Q 平分BAC Ð,DE AB ^, DF AC ^,DE DF \=,90BED DFC Ð=Ð=°;在Rt BDE D 和Rt DFC D 中,BD CD DE DF =ìí=î,Rt BDE Rt DFC(HL)\D @D,BE CF \=;(2)AD Q 平分BAC Ð,15DAF Ð=°,30BAC \Ð=°,BAD DAF Ð=Ð,//BD AC Q ,30DBE BAC \Ð=Ð=°,DAF BDA Ð=Ð,BAD BDA \Ð=Ð,AB BD \=,在Rt BDE D 中,30DBE Ð=°,2BD DE \=,2AB DE \=,AD Q 平分BAC Ð,DE AB ^, DF AC ^,DE DF \=,2AB DF \=.【点睛】本题主要考查了全等三角形的判定、角平分线的性质及其应用等几何知识点,熟悉相关性质是解题的关键.21.(2021·上海金山区·八年级期末)已知:如图,ABC D 中,,,AB AC BD CE =分别是,AC AB 上的中线,,BD CE 相交于点O ,联结OA DE ,.求证:(1)OB OC =;(2)OA 垂直平分DE .【答案】(1)见解析;(2)见解析.【分析】(1)利用三角形的全等,得到一对对应角,后利用等角对等边证明即可;(2)逆用线段垂直平分线的判定证明即可.【详解】(1)∵,,AB AC BD CE =分别是,AC AB 上的中线,∴BE=CD ,∠EBC=∠DCB ,∵BC=CB ,∴△EBC ≌△DCB ,∴∠ECB=∠DBC ,∴OB=OC ;(2)设AO 与DE 的交点为F ,∵△EBC ≌△DCB ,∴EC=DB ,∵OB=OC ;∴OD=OE ,∴点O 在线段DE 的垂直平分线上,∵AE=AD ,∴点A 在线段DE 的垂直平分线上,∴直线AO 是线段DE 的垂直平分线,∴OA 垂直平分DE .【点睛】本题考查了等腰三角形的性质,三角形的全等,中线的定义,垂直平分线的判定和性质,同一个三角形中,等角对等边,熟练掌握线段垂直平分线的逆定理是解题的关键.22.(2019·上海七年级单元测试)如图,直线AB 、CD 交于点O ,∠AOM =90°(1)如图1,若OC 平分∠AOM ,求∠AOD 的度数;(2)如图2,若∠BOC =4∠NOB ,且OM 平分∠NOC ,求∠MON 的度数【答案】(1)135°;(2)54°【分析】(1)根据角平分线的定义求出∠AOC =45°,然后根据邻补角的定义求解即可;(2)设∠NOB =x °,∠BOC =4x °,根据角平分线的定义表示出∠COM =∠MON =12∠CON ,再根据∠BOM 列出方程求解x ,然后求解即可.【详解】解(1)∵∠AOM =90°,OC 平分∠AOM ,∴∠AOC =12∠AOM =12×90°=45°,∵∠AOC +∠AOD =180°,∴∠AOD =180°-∠AOC =180°-45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC =4∠NOB∴设∠NOB =x °,∠BOC =4x °,∴∠CON =∠COB -∠BON =4x °-x °=3x °,∵OM 平分∠CON ,∴∠COM =∠MON =12∠CON =32x °,∵∠BOM =32x +x =90°,∴x =36°,∴∠MON =32x °=32×36°=54°,即∠MON 的度数为54°.【点睛】本题考查了对顶角、邻补角,角平分线的定义,此类题目熟记概念并准确识图是解题的关键,(2)难点在于根据∠BOM 列出方程.23.(2021·上海八年级期末)作图:已知ABC V 和线段r ,请在ABC V 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)【答案】图见解析.【分析】根据题意点P 到AC 和BC 的距离相等,可知点P 在ACB Ð的角平分线上,点A 到点P 的距离等于定长r ,可知点P 在以点A 为圆心,以定长r 为半径的圆上,由此作图即可.【详解】如图,先作ACB Ð的角平分线,再以点A 为圆心,以定长r 为半径作圆弧,圆弧与ACB Ð角平分线的交点即为点P .【点睛】本题主要考查角平分线的画法,属于基础题,需要有一定的画图能力,熟练掌握角平分线的画法是解题的关键.24.(2020·上海市松江区民办茸一中学八年级月考)已知:如图,在△EBC 中,作∠EBA =∠C ,AB 交EC 于点A ,作BD 平分∠ABC 交AC 于点B ,F 是BD 上一点,联结EF ,点G 是EF 上一点,且有GB =GD .求证:EF ⊥BD .【答案】证明见解析.【分析】先利用三角形外角的性质和角平分线的定义得出EBD EDB Ð=Ð,从而得出BE DE =,再根据GB =GD 可得E 、G 在BD 的垂直平分线上,从而可得结论.证明:∵BD 平分∠ABC ,∴ABD DBC Ð=Ð,∵EBA C Ð=Ð,∵,EBD ABD EDB D EB C BC A Ð+=ÐÐ=Ð+ÐÐ,∴EBD EDB Ð=Ð,∴BE DE =,∵GB =GD ,∴E 、G 在BD 的垂直平分线上,即EF ⊥BD .【点睛】本题考查线段垂直平分线的判定,三角形外角的性质,等角对等边.理解到线段两端距离相等的点到线段的垂直平分线上是解题关键.25.(2019·上海同济大学实验学校八年级月考)已知点P 是ABC V 的BAC Ð平分线上一点,连接PB ,PC .(1)如图1,若AB AC =,证明:PB PC=(2)如图2,若PB PA =,45ABC Ð=°,2Ð=ÐPBC PAC ,证明:BP BC =(3)如图,若AB BC AC ==,点E 是AC 的中点,当PC PE +的最小时PE CP 值为______.【答案】(1)见解析;(2)见解析;(3)12【分析】(1)要求证PB PC =,根据全等三角形的判定证明≌BAP CAP △△即可;(2)根据等腰三角形的性质以及角平分线的性质可得出3ABC ABP Ð=Ð,可得:30CBP Ð=°,要证BP BC =,继续做辅助线求证三角形全等,即可求解;(3)根据AB BC AC ==可知ABC V 是等边三角形,由题意PC PE +的最小时,即BE 为直线时,根据正三角形重心的性质求解.(1)证明:∵AP 平分BAC Ð∴BAP CAP Ð=Ð∴在BAP △和CAP V 中AB AC BAP CAP AP AP =ìïÐ=Ðíï=î∴≌BAP CAP △△(SAS )∴PB PC=(2)令2Ð=PBC α,PAC a Ð=∵45ABC Ð=°∴452Ð=-ABP α°∵AP BP=∴452Ð=Ð=-ABP BAP α°∵AP 平分BAC Ð∴BAP PAC Ð=Ð即452-=αα°15a =°∴15Ð=Ð==ÐBAP PAC ABP °,30CBP Ð=°在75=Rt KPB △°作PK AC ^于G连BG∵有等腰ABP△∴PK ^平分AB∴AG BG =,Ð=ÐBAC APG∵30Ð==Ð+ÐBAC ABP GBP °∴15Ð=GBP °∴在Rt AKG △中,60Ð=AGK °Rt KGB △中,60Ð=KGB °∴60BGC Ð=°∴BG 平分ÐKGC作BQ AC ^延长线于Q ,∴=BK BQ∴在Rt CBQ V 中,30Ð==Ð+ÐGBC GBC CBQ°∵15Ð=GBC °∴15Ð=CBQ °在Rt QBC V 中75Ð=BCQ °∴在BKP △和QBC V 中KPB BCQ KBP CBQBK BQ Ð=ÐìïÐ=Ðíï=î∴≌BKP QBC△△∴BP BC=成立得证.(3)∵AB BC AC ==,∴ABC V 是等边三角形,∵AP 是BAC Ð的平分线,∴延长AP 交BC 于点D ,则AD 是BC 垂直平分线,∴PB CP =,∴PC PE +最小即为PB PE +最小,∴BE 为一条线段时PB PE +最小,∵BE 、AD 是BAC V 的中线交于点P ,∴P 为BAC V 的重心,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的垂直平分线与角平分线专题复习
知识点复习:
1、线段垂直平分线的性质
(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点
的距离相等.
定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD
∴ AC =BC.
定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.
2、线段垂直平分线的判定定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
定理的数学表示:如图2,∵ AC =BC
∴ 点C 在线段AB 的垂直平分线m 上.
定理的作用:证明一个点在某线段的垂直平分线上.
3、关于线段垂直平分线性质定理的推论
(1)关于三角形三边垂直平分线的性质:
三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.
性质的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;
若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:
图1
图2
角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的数学表示:如图4,
∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB 于点D , ∴ CF =DF.
定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.
5、角平分线性质定理的逆定理:
角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,
∵点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,且PC =PD , ∴点P 在∠AOB 的平分线上.
定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线
6、关于三角形三条角平分线的定理:
(1)关于三角形三条角平分线交点的定理:
三角形三条角平分线相交于一点,并且这一点到三边的距离相等.
定理的数学表示:如图6,如果AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ABC 、∠ACB 的平分线,那么:
① AP 、BQ 、CR 相交于一点I ;
② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. (2)三角形三条角平分线的交点位置与三角形形状的关系:
三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).
7、关于线段的垂直平分线和角平分线的作图:
(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.
图4
精品习题:
1.在△ABC 中,∠C=90º,BD 是∠ABC 的平分线.已知,AC=32,且AD :DC=5:3,则点D 到AB 的距离为_______.
2.如图,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图,ΔABC 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将ΔABD 分为三个三角形,则S ABO ∆:S BCO ∆:S CAO ∆等于______.
4.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .则∠PAQ 的度数为 .
5.AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的关系是( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断
6.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修一个超市,使超市到三个小区的距离相等,则超市应建在( )
A .在AC 、BC 两边高线的交点处 B.在AC 、BC 两边中线的交点处
C .在AC 、BC 两边垂直平分线的交点处 D.在∠A 、∠B 的角平分线的交点处
7.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( )
A.25º B.30º C.45º D.60º
8.AC=AD,BC=BD,则有()
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
9.如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()
A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP
10.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。
A、1
B、2
C、3
D、4
11.在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC 于E点,求PE的长.
12.如图,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你判断线段AC与BH有什么关系?并说明理由.
13.如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.
14.如图,AD为△ABC的角平分线,AD的中垂线交AB于点E、交BC的延长线于点F,AC于EF交于点O.
(1)求证:∠3=∠B;
(2)连接OD,求证:∠B+∠ODB=180°.
15.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.
(1)如图1,当∠B=∠D时,求证:AB+AD=AC;
(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变?说明理由.
16.小明做了一个如图所示的“风筝”骨架,其中AB =AD ,CB =CD .
(1)小芳同学观察了这个“风筝”骨架后,他认为AC ⊥BD ,垂足为点E ,并且BE =ED ,你同意小德的判断吗?为什么?
(2)设AC =a ,BD =b ,请用含a ,b 的式子表示四边形ABCD 的面积.
17.如图,AB ∥CD ,AE 、DE 分别平分∠BAD 和∠ADE ,求证:AD=AB+CD 。
A
B
E
C
D
18.如图,AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。
19.已知:如图在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,求证:BC=AB+AD D
A
E C
B
A
B C
D。