用向量方法解立体几何的的题目
空间向量在立体几何中的应用和习题(含答案)[1]
![空间向量在立体几何中的应用和习题(含答案)[1]](https://img.taocdn.com/s3/m/2fd760159b89680202d82545.png)
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
用向量法解五类立体几何题的思路

思路探寻立体几何问题的命题形式很多,常见的有求平面外一点到平面的距离,求两条异面直线之间的距离,求直线与平面所成的角,求二面角,证明面面平行、垂直等.有时采用常规方法求解立体几何问题比较复杂,甚至很难获得问题的答案,此时不妨运用向量法,将立体几何问题转化为向量运算问题,通过简单的计算即可解题.向量法是指给线段赋予方向,给各个点赋予坐标,通过向量运算求得问题的答案.下面结合实例探讨一下如何运用向量法求解五类立体几何问题.一、求平面外一点到平面的距离如图1,若点P 为平面α外的任意一点,要求P 到平面α的距离,需先求得向量OP 以及平面α的法向量n .那么法向量n 方向上的正射影长h =|| OP sin <OP ,n >=|| OP ∙n||n ,即为P 到平面α的距离.运用向量法求平面外一点到平面的距离,主要是运用向量数量积的几何意义:一个向量与其在另一个向量方向上的投影的乘积.图1图2例1.在正方体ABCO -A 1B 1C 1O 1中,M 、N 是B 1C 1和C 1O 1的中点,正方体的棱长是1,求A 1与平面OBMN 之间的距离.解:以O 为原点,建立如图2所示的空间直角坐标系,可得 OB =(1,1,0), O N =(0,12,1), OA 1=(1,0,1),设平面OBMN 的法向量是n =(x ,y ,z ),则{n ∙ O B =0,n ∙ ON =0,即ìíîïïx +y =0,12y +z =0,令x =1,y =-1,z =12,则n =(1,-1,12),则A 1到平面OBMN 的距离h =|| OA 1∙n||n =1.由于无法确定点A 1到平面OBMN 的射影,所以根据法向量与射影的关系,运用向量法求解.运用向量法求平面外一点到平面的距离,关键是要根据线面垂直的判定定理求得平面的法向量.在求法向量时,往往要先设出法向量n ;然后在平面内找到两条直线a 、b ,并求得其方向向量a 、b ;再建立方程组{n ∙a =0,n ∙b=0,通过解方程组求得法向量n 的坐标.二、求空间中两条异面直线之间的距离求两条异面直线之间的距离,需运用转化思想,把两条异面直线之间的距离转化为平面外一点到平面的距离.在求两条异面直线之间的距离时,需先求出两条异面直线的方向向量a 、b,并求得两个向量所在平面的法向量n ,那么两条异面直线之间的距离为h =||a ∙n ||n .例2.如图3,正方体ABCO -A 1B 1C 1O 1的棱长为1,求异面直线OA 1和AC 之间的距离.解:以O 为原点,建立如图3所示的空间直角坐标系,可得 AC =(-1,1,0), O 1A =(1,0,-1), AA 1=(0,0,1)设n =(x ,y ,z )为平面A 1C 1O 的法向量,建立方程组得ìíîn ∙ AC =0,n∙O 1A =0,即{-x +y =0,x -z =0,图346思路探寻令x=1,可得法向量n =(1则异面直线OA1和AC.定两条异面直线的公垂线,繁琐.的方向向量及其法向量,求得异面直线之间的距离,果.三、求直线与平面所成的角如图4所示,设直线OP用向量法求直线OP与平面αα的法向量n 和直线OP的数量积公式求得|cos< OP,n >OP与平面α所成角的正弦值为意的是,直线OP与平面α图4例3.如图5,正方体ABCOA1B1的中点为M,试求直线AM的正弦值.解:以O为原点,建立如图5则AB=(0,1,0),AO1=(-1设n =(x,y,z)为平面ABC1O则ìíîn ∙AB=0,n ∙AO1=0,即{y=0,-x+z=0令x=1,可得n =()1,0,1,设AM与面ABC1O1则sinθ=|| AM∙n|| AM∙||n ,即直线AM与平面ABC1O1α-的平面1,.)为平面往往要先求得两个平47探索探索与与研研究究面的法向量,α、β的法向量n α∥ n β,则平面α的法向量 n α⊥ n β,则平面α⊥例5.正方体ABCO -A 1B 1C 1O M 分别是A 1C 1、A 1O 、B 1A 上的任意一点,求证:平面B 1MC ∥平面A 1EF .证明:以O 为原点,建立如图8所示的空间直角坐标系,由题意可得A 1C 1=()-1,1,0,B 1C =()-1,0,-1,A 1O =()-1,0,-1,B 1A =()0,-1,-1,设 A 1E =λ A 1C 1, A 1F =μ A 1ν∈R ,且均不为0),设平面A 1EF 的法向量为n 1则ìíî n 1∙A 1E =0,n 1∙ A 1F =0,可得ìíî n 1∙λ A 1 n 1∙μ A 1则ìíî n 1∙A 1C 1=0, n 1∙ A 1O =0,则{-x +y =0x +z =01EF 的法向量为n 1=(1,1,-1),n 2,ìíî n 2∙ν B 1A =0,n 2∙ B 1C =0,{-y -z =0,-x -z =0,1MC 的法向量n 2=(-1,1,-1),n 1∥ n 2,B 1MC .需熟悉向垂直关系,⊥ n 2; n 1=λ n 2⇔ n 1∥ n 2.需注意以(2)熟练运用(3)明确向量与线段、坐标甘肃省武威铁路中学)求数列前n 项和问题具有较强的综合性,侧重考查等差和等比数列的通项公式、定义、性质以及前n 项和公式.常见的命题形式有:(1)根据数列的递推关系式求数列的前n 项和;(2)根据数列的通项公式求数列的前n 项和;(3)根据一个数列的前n 项和求另一个相关联数列的前n 项和.解答数列求和问题的常用方法有分组求和法、错位相减法、裂项相消法、并项求和法、倒序相加法.下面结合实例,谈一谈这几种途径的特点以及应用技巧.一、分组求和分组求和法是指将数列中的各项分为几组,分别进行求和.在解题时,要先仔细研究数列的通项公式,将其合理地拆分为几个等差、等比、常数数列通项公式的和、差;再将数列划分为多个组,分别根据等差、等比数列的前n 项和公式求得每一组数列的和.例1.已知S n 为数列{}a n 的前n 项和,4a n =3S n +1.48。
立体几何中的向量方法(四)

知ห้องสมุดไป่ตู้益能
1.异面直线所成角的求法
设两异面直线所成角为θ,它们的方向向量分别
为a、b,则cosθ=__|_|a_a|_··b|_b_||_=__|_|aa_|·|_bb_|| _.
2.直线与平面所成角的求法
设直线l与平面α所成角为θ,直线l的方向向量为a,
平面α的法向量为n.
|n·a|
则sinθ=|cos〈n,a〉|=__|n__||a_|__.
〈E→F,A→1D〉=|EE→→FF|·|AA→→11DD|=-35. 所以异面直线 EF 与 A1D 所成角的余弦值为35.
(2)证明:易知A→F=(1,2,1),E→A1=-1,-32,4,E→D =-1,12,0,于是A→F·E→A1=0,A→F·E→D=0.因此,
AF⊥EA1,AF⊥ED. 又 EA1∩ED=E,所以 AF⊥平面 A1ED.
(1)建立空间直角坐标系;
(2)求直线的方向向量A→B;
(3)求平面的法向量 n;
→
(4)计算:设线面角为
θ,则
sinθ=
|n·AB| →
.
|n|·|AB|
例2 正三棱柱 ABC-A1B1C1 的底面边长为 a, 侧棱长为 2a,求 AC1 与侧面 ABB1A1 所成的角.
【思路点拨】 利用正三棱柱的性质,建立适当
sin〈u,A→F〉=
5 3.
所以二面角
A1-ED-F
的正弦值为
5 3.
【解后感悟】
变式训练 如图,在直三棱柱 ABC-A1B1C1 中,AB= 1,AC=AA1= 3,∠ABC=60°. (1)证明:AB⊥A1C; (2)求二面角 A-A1C-B 的余弦值.
解:(1)证明:∵三棱柱 ABC-A1B1C1 为直三棱柱, ∴AA1⊥AB,AA1⊥AC. 在△ABC 中,AB=1,AC= 3,∠ABC=60°, 由正弦定理得∠ACB=30°, ∴∠BAC=90°,即 AB⊥AC. 建立如图所示空间直角坐标系,
用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
利用法向量解立体几何题

利用法向量解立体几何题一、运用法向量求空间角向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量。
1、运用法向量求直线和平面所成角设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为sin θ= cos(2π-θ) = |cos<AB , n >| = AB AB n n••2、运用法向量求二面角设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。
这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。
二、运用法向量求空间距离1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA '=||||AB n n • 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线,A在a 、b 上任取一点A 、B ,过A 作AA '//EF ,交a '于A ',则¡¯//AA n ,所以∠BAA '=<,BA n >(或其补角)∴异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得n a n a n b n b ⎧⎧⊥•=⎪⎪⇒⎨⎨⊥•=⎪⎪⎩⎩ ① 解方程组可得n 。
向量法解立体几何及经典例题(上课用)

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。
设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。
设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。
若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。
利用 空间向量解立体几何(含综合题

利用空间向量解立体几何问题一、基础知识(一)刻画直线与平面方向的向量1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =--2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线(2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量解:设(),,n x y z =,则有20230x y x y z +=⎧⎨++=⎩ ,解得:2x yz y =-⎧⎨=⎩::2:1:1x y z ∴=- ()2,1,1n ∴=-(二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面,αβ的法向量)1、判定类(1)线面平行:a b a b ⇔∥∥ (2)线面垂直:a b a b ⊥⇔⊥ (3)面面平行:m n αβ⇔∥∥ (4)面面垂直:m n αβ⊥⇔⊥ 2、计算类:(1)两直线所成角:cos cos ,a b a b a bθ⋅==(2)线面角:cos ,sin a m a m a m θ⋅==(3)二面角:cos cos ,m n m n m nθ⋅==或cos cos ,m n m n m nθ⋅=-=-(视平面角与法向量夹角关系而定)(4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为A AP n d nα-⋅=,即AP 在法向量n 上投影的绝对值。
专题复习:用空间向量解立体几何问题

专题复习:用空间向量解立体几何问题空间角1.异面直线所成的角点A ,B ∈直线a,C ,D ∈直线b 。
构成向量CD AB ,。
><⋅>=<CD AB CDAB CD AB CD AB ,,,cos 所对应的锐角或直角即为直线a(AB)与b(CD)所成的角。
2.线面所成的角AP 与平面α的法向量n 所成的角所对应的锐角的余角或直角即为直线AP 与平面α所成的角θ,所以AP 与n 的角的余弦值的绝对值为直线AP 与平面α所成的角的正弦值。
><=∴n AP ,cos arcsin θ3.二面角的求法二面角βα--l ,平面α的法向量m ,平面β的法向量n 。
θ>=<n m ,,则二面角βα--l 的平面角为θ或πθ-。
OAαPnl lαβnm所以,nm n m n m ⋅>=<,cos ,若将法向量的起点放在两个半平面上(不要选择起点在棱上),当两个法向量的方向都向二面角内或外时,则><n m ,为二面角的平面角的补角;当两个法向量的方向一个向二面角内,另一个向外时,则><n m ,为二面角的平面角。
空间距离1.点到面的距离点P 到面α的距离d 可以看成AP 在平面α的法向量n 的方向上的射影的长度。
2. 异面直线间的距离异面直线a,b 之间的距离可以看成),(b F a E EF ∈∈在a,b 的公垂向量n 的方向上的射影的长度。
3.线面距离 直线a 与平面α平行时,直线上任意一点A 到平面α的距离就是直线a 与平面α之间的距离。
其求法与点到面的距离求法相同。
4. 平面与平面间的距离平面α与平面β平行时,其中一个平面α上任意一点到平面β的距离就是平面α与平面β间的距离。
其求法与点到面的距离求法相同。
例题:例1.(07,重庆理19)如题(19)图,在直三棱柱111ABC A B C -中,12AA =,1AB =,90ABC = ∠;点D E ,分别在1BB ,1A D 上,且11B E A D ⊥,四棱锥1C ABDA -与直三棱柱的体积之比为3:5(Ⅰ)求异面直线DE 与11B C 的距离;(Ⅱ)若2BC =,求二面角111A DC B --的平面角的正切值答案:(Ⅰ)22929 (Ⅱ)3322.(07,天津理19)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点EPABC DE 1B1C1Allαβmnn nEF d ⋅=EbaF nnn AP d ⋅=OAαPn(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小答案:(Ⅲ)14arcsin43.(07,四川理19)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60° (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积答案:(Ⅱ) 21arccos7(Ⅲ)3124.(07,陕西理19)如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC平面⊥PA ABCD,32,2,4===AB AD PA ,BC =6(Ⅰ)求证:BD ;PAC BD 平面⊥(Ⅱ)求二面角D BD P --的大小 答案:(Ⅱ) 393arccos315.(07,山东理19)如图,在直四棱柱1111ABCD A BC D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ;(Ⅱ)求二面角11A BD C --的余弦值答案:(Ⅱ)二面角11A BD C --的余弦为336.(07,全国Ⅱ理19)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点 (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小答案:(2)3arccos 37.(07,全国Ⅰ理19)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 已知45ABC =∠,2AB =,22BC =,3SA SB ==BCSABCDEFSBCDA1A1D 1C1BEA B CD EP(Ⅱ)求直线SD 与平面SAB 所成角的大小答案:(Ⅱ)22arcsin118.(07,辽宁理18)如图,在直三棱柱111ABC A B C -中,90ACB ∠= ,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离答案:(Ⅱ)4a 作业:1.(07,江西理20)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC 已知11111A B BC ==,11190A B C ∠=,14AA =,12BB =,13CC =(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小;(3)求此几何体的体积 答案:(2)30(3)322. (07,湖南理18)如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD < 连结2BG ,如图2A BCD EF GFE G 2G 1D CBA图1图2(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角ABCA 1B 1C 1OABC DA 1B 1C 1E M答案:(Ⅱ) 122arcsin253.(07,湖北理18)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围答案:(Ⅱ) π04⎛⎫ ⎪⎝⎭,(07,福建理18)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离 答案:(Ⅱ) 10arcsin4 (Ⅲ)22ABCDA 1B 1C 1ABCDV。
空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
立体几何中的向量方法真题与解析

立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。
高二数学立体几何中的向量方法试题

高二数学立体几何中的向量方法试题1.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60°B.90°C.105°D.75°【答案】B【解析】用立体几何方法。
作BC中点D,连AD, D,易得AD垂直于BC,AD垂直于平面BC, D为A在平面BC上的射影,易证D垂直于B,所以A垂直于B,A与B所成角为90度,故选B。
【考点】本题主要考查正三棱柱的几何性质及异面直线所成角的求法。
点评:根据题目特点,可灵活采用不同方法,这里运用几何方法,使问题得解,体现解题的灵活性。
2.如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()A.B.C.D.【答案】A【解析】以分别为x,y,z轴建立空间直角坐标系设BC="CA=" =2(0.,1,0)A(0,2,2) (1,1,0) B(2,0,2)A向量为(0,1,2)B向量为(1,-1,2)=,故选A。
【考点】本题主要考查空间向量的应用,综合考查向量的夹角公式等基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.在棱长为的正方体中,则平面与平面间的距离()A.B.C.D.【答案】B【解析】建立如图所示的直角坐标系,设平面的一个法向量,则,即,,平面与平面间的距离【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.4.正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小()A.B.C.D.【答案】A【解析】取BC的中点O,连AO.由题意平面平面,,∴平面,以O为原点,建立所示空间直角坐标系,则,,,,∴,,,由题意平面ABD,∴为平面ABD的法向量.设平面的法向量为,则,∴,∴,即.∴不妨设,由,得.故所求二面角的大小为.故选A。
向量法解立体几何 大题

ADE B C1. 如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2,AP=AD=AB=,∠PAB=∠PAD=α.(1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值;(2)当α=60°时,求证:CD⊥平面PBD.2.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.3. 如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(I)求证:平面AEC⊥平面PDB;(II)当PD=2AB且E为PB的中点时,求AE与平面PDB所成的角的大小.4.如图,在四棱锥BCDEA-中,平面ABC⊥平面BCDE;90CDE BED∠=∠=︒,2AB CD==,1DE BE==,2AC=.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.5.如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(I)证明:PB∥平面AEC;(II)设AP=1,AD=3,三棱锥P-ABD的体积V=43,求A到平面PBC的距离.7. 如图,直四棱柱ABCD – A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=错误!未找到引用源。
,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2) 求点B1 到平面EA1C1的距离APB CDECBDAP8. 如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离9. 如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,22AC =,2PA =,E 是PC 上的一点,2PE EC =。
向量方法解立体几何

用向量方法求空间角和距离空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b 求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n 求二面角 二面角l αβ--的平面角α=1212arccos||||n n n n 求点面距离 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==例题:如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离例题:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
平面平面ABCD B B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II )试问:当A A '的长度为多少时二面角A C A D -'-大小为?60 D A CB P例题:如图,正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA上任意一点. (Ⅰ)求证: 直线1B P 不可能与平面11ACC A 垂直;(II )当11BC B P ⊥时,求二面角11C B P C --的大小. 例题:如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)例题:如图,在直三棱柱111ABC A B C -中,90A ︒∠=,1,,O O G 分别为111,,BC BC AA 的中点,且12AB AC AA ===.(1)求1O 到面11ACB 的距离;(22) (2)求BC 到面11GBC 的距离.(263)空间向量与立体几何例题:已知A ,B ,C 三点不共线,O 是平面外任意一点,若有OC OB OA OP λ++=3251确定的点与A ,B ,C 三点共面,则λ=______.(152因为13251=++λ) 例题:直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点。
2021-高考-立体几何的向量方法-综合应用-含答案word

2021-高考-立体几何的向量方法-综合应用-含答案word一、解答题1. 如图,在直三棱柱ABC―A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1//平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.2. 如图,在四棱锥(Ⅰ) 求证:当(Ⅱ) 当中,底面时,平面时,求二面角面为矩形,;的大小。
面,。
3. 如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AB= PA=1,AD=3,F是PB中点,E为BC上一点.(1)求证:AF⊥平面PBC;(2)当BE为何值时,二面角C-PE-D为45.o4. 已知等腰直角三角形ABC中,?BAC?90?,D为AC的中点,正方形BCC1B1与ABC所在的平面垂直,AB?2.1(1)求证AB1平行平面DBC1;(2)求DC1与平面ABC1夹角的正弦值.5. 如图, 四边形ABCD为正方形, PD⊥平面ABCD, PD∥QA, QA=AB=PD. (Ⅰ) 证明:平面PQC⊥平面DCQ; (Ⅱ) 求二面角Q-BP-C的余弦值.6. 如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.(1)求证:AD⊥BC;(2)求二面角B―AC―D的余弦值.7. 如图,在四棱柱P―ABCD中,底面ABCD为直角梯形,?BAD?90?,AD//BC,AB=BC=a,AD=2a,PA?平面ABCD,PD与平面ABCD成30?角. (1)若AE?PD,E为垂足,求证:BE?PD; (2)求平面PAB与平面PCD所成锐二面角的余弦值.28. 如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(I) 求证:CE//平面PAF;(II) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.9. 如图,三棱锥P?ABC中,PB?底面ABC,?BCA?90?,PB?BC?CA?2,E为PC的中点,点F在PA上,且2PF?FA. (1)求证:平面PAC?平面BEF;(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.10. 如图所示的几何体中,四边形PDCE为矩形,ABCD 为直角梯形,且?BAD = ?ADC= 90°,平面PDCE?平面ABCD,AB?AD?12,PD?2(1)若M为PA的中点,求证:AC?平面MDE;3(2)求平面PAD与平面PBC所成锐二面角的大小.11. 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点. (Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD 的体积.12. 已知某几何体的直观图和三视图如下如所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(I)证明:BN⊥平面C1B1N;(II)设直线C1N与CNB1所成的角为?,求cos?的值.13. 在正方体ABCD?A1B1C1D1中,如图E、F分别是BB1,CD的中点,(1)求证:D1F?平面ADE;(2)cosEF,CB1.zD1A1B1EFBCyC1DAx?14. 如图,在四棱锥P?ABCD中,底面为直角梯形,AD//BC,?BAD?90,PA?底面ABCD,PA?AD?AB?2BC,M,N分别为PC,PB的中点.4(Ⅰ)求证:PB?DM;(Ⅱ)求CD与平面ADMN所成的角的正弦值.15. 如图所示,正四棱锥P-ABCD中,异面直线PD与AE夹角的余弦值为65,点E是PB的中点. 13(1)求二面角P-AC-E的大小;(2)在侧面PAD上是否存在一点F,使EF?侧面PBC.若存在,试确定F点的位置,并加以证明;若不存在,试说明理由.16. 如图,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2.(1)若点E为AB的中点,求证:BD1∥平面A1DE;(2)在线段AB上是否存在点E,使二面角D1?EC?D的大小为在,请说明理由. 17. 如图甲,是边长为6的等边三角形,,点G为BC边的中点,线段AG??若存在,求出AE的长;若不存6交线段ED于点F.将ΔAED沿ED翻折,使平面AED�A平面BCDE,连结AB、AC、AG形成如图乙的几何体.(I)求证:BC�A平面ATG;(II)求二面角B―AE―D的大小.5感谢您的阅读,祝您生活愉快。
高中数学【立体几何中的向量方法】专题练习

高中数学【立体几何中的向量方法】专题练习1.在正方体ABCD-A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2 B.π3 C.π4 D.π6答案 D解析 法一 如图,连接C 1P ,因为ABCD-A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP ,所以C 1P ⊥平面B 1BP .又BP ⊂平面B 1BP ,所以有C 1P ⊥BP .连接BC 1,则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角.设正方体ABCD-A 1B 1C 1D 1的棱长为2,则在Rt △C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D.法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD-A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2).设直线PB 与AD 1所成的角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32.因为θ∈⎝ ⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三 如图,连接BC 1,A 1B ,A 1P ,PC 1,则易知AD 1∥BC 1,所以直线PB 与AD 1所成的角等于直线PB 与BC 1所成的角.由P 为正方形A 1B 1C 1D 1的对角线B 1D 1的中点,知A 1,P ,C 1三点共线,且P 为A 1C 1的中点.易知A 1B =BC 1=A 1C 1,所以△A 1BC 1为等边三角形 ,所以∠A 1BC 1=π3,又P 为A 1C 1的中点,所以可得∠PBC 1=12∠A 1BC 1=π6,故直线PB 与AD 1所成的角为π6,故选D.2.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN 与平面PDM 所成角的正弦值.(1)证明 因为底面ABCD 是平行四边形,∠ABC =120°,BC =4,AB =1,且M 为BC 的中点,所以CM =2,CD =1,∠DCM =60°, 易得CD ⊥DM .又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN 与平面PDM 所成角的正弦值为156.法二 因为PM ⊥MD ,由(1)知PM ⊥DC ,又MD ,DC ⊂平面ABCD ,MD ∩DC =D ,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM . 因为∠ABC =120°,AB =1, BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E ,则ME ⊥MD .故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2. 易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AN →·n |AN →|·|n |=5215=156. 故直线AN 与平面PDM 所成角的正弦值为156.3.在四棱锥Q-ABCD 中,底面ABCD 是正方形,若AD =2,QD =QA =5,QC=3.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B -QD -A 的平面角的余弦值. (1)证明 取AD 的中点为O ,连接QO ,CO .因为QA =QD ,OA =OD ,则QO ⊥AD , 又AD =2,QA =5, 故QO =5-1=2. 在Rt △ODC 中, CO =OD 2+CD 2= 5.因为QC =3,故QC 2=QO 2+OC 2,故△QOC 为直角三角形且QO ⊥OC . 因为OC ∩AD =O ,OC ,AD ⊂平面ABCD ,故QO ⊥平面ABCD . 因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)解 在平面ABCD 内,过O 作OT ∥CD ,交BC 于T ,则OT ⊥AD ,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系,则D (0,1,0),Q (0,0,2),B (2,-1,0),故BQ →=(-2,1,2),BD →=(-2,2,0).设平面QBD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BQ →=0,n ·BD →=0,即⎩⎨⎧-2x +y +2z =0,-2x +2y =0,取x =1,则y =1,z =12, 故n =⎝ ⎛⎭⎪⎫1,1,12.易知平面QAD 的一个法向量为m =(1,0,0), 故cos 〈m ,n 〉=m ·n |m ||n |=11×32=23. 又二面角B-QD-A 的平面角为锐角,故其余弦值为23.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2. 直线与直线所成的角、直线与平面所成的角、平面与平面的夹角计算 设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线角设l ,m 所成的角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22.(2)线面角设直线l 与平面α所成的角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 sin θ=|a ·μ||a ||μ|=|cos a ,μ|.(3)面面角设平面α与平面β的夹角为θ(0≤θ≤π2), 则cos θ=|μ·v ||μ||v |=|cosμ,v|.3. 空间中的距离主要包括:点点距、点线距、线线距、点面距、线面距、面面距.热点一 利用空间向量证明平行、垂直【例1】 如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以向量AB→=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面PAD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面PAD 而致误.【训练1】 如图,在底面为直角梯形的四棱锥P-ABCD 中,AD ∥BC ,∠ABC =90°,PD ⊥平面ABCD ,AD =1,AB =3,BC =4.(1)求证:BD ⊥PC .(2)设点E 在棱PC 上,PE→=λPC →,若DE ∥平面PAB ,求λ的值.解 如图,在平面ABCD 内过点D 作直线DF ∥AB ,交BC 于点F ,以D 为坐标原点,DA ,DF ,DP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).设PD =a ,则P (0,0,a ),(1)证明 BD →=(-1,-3,0),PC →=(-3,3,-a ), 因为BD →·PC →=3-3=0, 所以BD ⊥PC .(2)由题意知,AB →=(0,3,0),DP →=(0,0,a ),PA →=(1,0,-a ),PC →=(-3,3,-a ),因为PE→=λPC →,所以PE →=(-3λ,3λ,-aλ), 则DE→=DP →+PE →=(0,0,a )+(-3λ,3λ,-aλ) =(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面PAB 的法向量, 则⎩⎪⎨⎪⎧AB →·n =0,PA →·n =0,即⎩⎨⎧3y =0,x -az =0.令z =1,得x =a ,所以n =(a ,0,1), 因为DE ∥平面PAB ,所以DE →·n =0, 所以-3aλ+a -aλ=0,即a (1-4λ)=0, 因为a ≠0,所以λ=14.故λ的值为14. 热点二 利用向量求线线角、线面角【例2】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,边长为4,E 为AB 的中点,PE ⊥平面ABCD .(1)若△PAB 为等边三角形,求四棱锥P-ABCD 的体积;(2)若CD 的中点为F ,PF 与平面ABCD 所成角为45°,求PC 与AD 所成角的余弦值.解 (1)∵正方形ABCD 的边长为4,且△PAB 为等边三角形,E 为AB 的中点, ∴PE =PB ·sin ∠PBE =AB ·sin 60°=23, 又PE ⊥平面ABCD , ∴四棱锥P-ABCD 的体积 V P -ABCD =13×42×23=3233. (2)如图,连接EF ,∵PE ⊥平面ABCD , EF ,AB ⊂平面ABCD , ∴PE ⊥EF ,PE ⊥AB , 又四边形ABCD 为正方形, E ,F 分别为AB ,CD 的中点, ∴EF ⊥AB ,∴AB ,EF ,PE 两两垂直.以E 为坐标原点,EB ,EF ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则C (2,4,0),A (-2,0,0),D (-2,4,0), ∵PF 与平面ABCD 所成角为45°,∴∠PFE =45°, ∴PE =EF ·tan ∠PFE =4,∴P (0,0,4), ∴PC→=(2,4,-4),AD →=(0,4,0).设PC 与AD 所成的角为θ,则 cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PC →·AD →|PC →|·|AD →|=166×4=23, 即PC 与AD 所成角的余弦值为23.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【训练2】在直角梯形ABCD 中,∠ABC =90°,BC ∥AD ,AD =4,AB =BC =2,M 为线段AD 中点.将△ABC 沿AC 折起,使平面ABC ⊥平面ACD ,得到几何体B-ACD .(1)求证:AB ⊥平面BCD ;(2)求直线BD 与平面BCM 所成角的正弦值.(1)证明 在直角梯形ABCD 中,∠ABC =90°,AB =BC =2,AD =4, ∴AC =22,CD =2 2.因此在△ACD 中,AD 2=CD 2+AC 2,从而CD ⊥AC .又∵平面ABC ⊥平面ACD ,且平面ABC ∩平面ACD =AC ,CD ⊂平面ACD , ∴CD ⊥平面ABC ,又AB ⊂平面ABC ,∴CD ⊥AB . 又AB ⊥BC ,且BC ∩CD =C ,∴AB ⊥平面BCD .(2)解 取AC 的中点O ,连接OB ,由题设可知△ABC 为等腰直角三角形,∴OB ⊥平面ACM .连接OM ,∵M ,O 分别为AD 和AC 的中点, ∴OM ∥CD .由(1)可知OM ⊥AC ,故以OM ,OC ,OB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则D (22,2,0),B (0,0,2),C (0,2,0),M (2,0,0), ∴CB→=(0,-2,2),CM →=(2,-2,0),BD →=(22,2,-2). 设平面BCM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB →=-2y +2z =0,n ·CM →=2x -2y =0,取x =1,则求得平面BCM 的一个法向量n =(1,1,1). 设直线BD 与平面BCM 所成的角为θ, 则直线BD 与平面BCM 所成角的正弦值为 sin θ=|cos 〈BD →,n 〉|=|BD →·n ||BD →|·|n |=23.故直线BD 与平面BCM 所成角的正弦值为23. 热点三 利用向量求平面与平面的夹角【例3】如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,AB ∥CD ,AB =2DC =23,AC ∩BD =F ,且△PAD 与△ABD 均为正三角形,G 为△PAD 的重心.(1)求证:GF ∥平面PDC ;(2)求平面PAD 与平面PBC 的夹角的余弦值.(1)证明 取PD 的中点E ,连接AE ,CE . 因为AB ∥CD ,AB =2DC =23,AC ∩BD =F , 所以AF FC =ABCD =2.又G 为△PAD 的重心,知AGGE =2. 因此AG GE =AFFC =2,所以GF ∥CE . 又GF ⊄平面PDC ,CE ⊂平面PDC , 所以GF ∥平面PDC .(2)解 设O 为AD 的中点,因为△PAD 为正三角形,则PO ⊥AD ,又因平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .过O 分别作BC ,AB 的平行线,建立如图所示的空间直角坐标系,则P (0,0,3),B ⎝ ⎛⎭⎪⎫32,332,0,C ⎝ ⎛⎭⎪⎫-32,332,0. 所以PB →=⎝ ⎛⎭⎪⎫32,332,-3,BC →=(-3,0,0). 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎨⎧PB →·n =32x +332y -3z =0,BC →·n =-3x =0,不妨取y =2,得n =(0,2,3).又OB ⊥平面PAD ,则取平面PAD 的一个法向量 n 0=23OB →=(1,3,0),所以cos 〈n,n0〉=n·n0|n||n0|=237×2=217.所以平面PAD与平面PBC的夹角的余弦值为21 7.探究提高两平面的夹角是指两平面相交所形成的四个二面角中不大于90°的二面角,它可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.【训练3】如图,已知三棱锥S-ABC中,△ABC是边长为2的等边三角形,且SB=SC=4,点D为SC的中点,DA=2.(1)求证:平面SAB⊥平面ABC;(2)求平面SAB与平面ABD的夹角的余弦值.(1)证明因为SC=4,且点D为SC的中点,所以SD=DC=2.又AC=DA=2,所以△ADC是等边三角形,所以∠DCA=π3,在△SAC中,由余弦定理,得SA=23,从而SC2=SA2+AC2,则SA⊥AC.又△SAB≌△SAC,得SA⊥AB,又AB∩AC=A,AB,AC⊂平面ABC,所以SA⊥平面ABC,又SA⊂平面SAB,所以平面SAB⊥平面ABC.(2)解以A为坐标原点,AB所在直线为x轴,在平面ABC内过点A垂直于AB 的直线为y轴,AS所在直线为z轴,建立如图所示空间直角坐标系.则A (0,0,0),B (2,0,0),C (1,3,0),S (0,0,23), 从而D ⎝ ⎛⎭⎪⎫12,32,3.所以AB →=(2,0,0),AD →=⎝ ⎛⎭⎪⎫12,32,3.设m =(x ,y ,z )为平面ABD 的法向量, 由⎩⎪⎨⎪⎧m ·AB→=0,m ·AD →=0,得⎩⎨⎧2x =0,12x +32y +3z =0. 令z =1,得m =(0,-2,1).又平面SAB 的一个法向量n =(0,1,0), 所以cos 〈m ,n 〉=m ·n |m ||n |=-255.所以平面SAB 与平面ABD 的夹角的余弦值为255. 热点四 利用空间向量求空间距离【例4】 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,PA ⊥平面ABCD ,且PA =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图.则A (0,0,0),B (a ,0,0),C (a ,a ,0),D (0,3a ,0),P (0,0,a ). 设F (0,m ,0),则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ).∵PC ⊥CF ,∴CF→⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0,∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎨⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP→=(-a ,0,a ),BC →=(0,a ,0),AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎨⎧x 0=z 0,y 0=0.取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,∴AD ∥平面PBC , ∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .探究提高 1.利用向量法求相关距离的一般步骤(1)建立空间直角坐标系. (2)求出相关的向量. (3)计算距离.2.线面距、面面距可转化为点面距.【训练4】 如图,P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,若已知AB =3,AD =4,PA =1,求点P 到BD 的距离.解 如图,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0),D (0,4,0), ∴PB→=(3,0,-1),BD →=(-3,4,0), 取a =PB→=(3,0,-1), u =BD →|BD →|=⎝⎛⎭⎪⎫-35,45,0,则a 2=10,a ·u =-95,所以点P 到BD 的距离为a 2-(a · u )2=10-8125=135.热点五 利用空间向量求解探索性问题【例5】如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠ABC =60°,AB =PA =2,PA ⊥平面ABCD ,E ,M 分别是BC ,PD 的中点,点F 在棱PC 上移动.(1)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ;(2)是否存在点F ,使得直线AF 与平面PCD 所成的角最大,若存在,试确定点F 的位置.(1)证明 如图所示,连接AC . ∵底面ABCD 为菱形,∠ABC =60°, ∴△ABC 为正三角形, ∵E 是BC 的中点,∴AE ⊥BC . 又AD ∥BC ,∴AE ⊥AD .∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE , ∵PA ∩AD =A ,PA ,AD 在平面PAD 内, ∴AE ⊥平面PAD .∵AE ⊂平面AEF ,∴平面AEF ⊥平面PAD .(2)解 由(1)知,AE ,AD ,AP 两两垂直,故以AE ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),P (0,0,2),M (0,1,1),E (3,0,0). ∴PC→=(3,1,-2),PD →=(0,2,-2),AP →=(0,0,2). 设PF→=λPC →=(3λ,λ,-2λ), 则AF→=AP →+PF →=(3λ,λ,2-2λ). 设平面PCD 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=3x 1+y 1-2z 1=0,m ·PD →=2y 1-2z 1=0,令z 1=3,则x 1=1,y 1=3,∴m =(1,3,3). 设直线AF 与平面PCD 所成角为θ,则sin θ=|cos 〈AF →,m 〉|=|AF →·m ||AF →||m |=|3λ+3λ+23-23λ|(3λ)2+λ2+(2-2λ)2×7=237×22⎝ ⎛⎭⎪⎫λ-122+12≤427. 当λ=12时,sin θ取最大值427.故存在点F ,使得直线AF 与平面PCD 所成的角最大,此时F 为PC 的中点. 探究提高 1.空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.利用空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【训练5】 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面SAC 的夹角的大小; 所以平面PAC 与平面SAC 的夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O-xyz ,如图.设底面边长为a ,则高SO =62a ,则S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS→=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD→=⎝ ⎛⎭⎪⎫-22a ,0,0, 则cos 〈DS →,OD →〉=DS →·OD →|DS →||OD →|=-12,所以平面PAC 与平面SAC 的夹角的大小为60°.(3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下: 由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC→=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE→=tCS →,t ∈[0,1],则BE→=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13.故侧棱SC 上存在一点E ,使得BE ∥平面PAC , 此时SC ∶SE =3∶2.一、选择题1.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的正弦值为( ) A.12 B.53 C.33 D.22答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的法向量为n 1=(1,y ,z ), 则有⎩⎨⎧A 1D →·n 1=0,A1E →·n 1=0,即⎩⎨⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的法向量为n 2=(0,0,1), ∴|cos 〈n 1,n 2〉|=23×1=23, 故平面A 1ED 与平面ABCD 所成角的正弦值为sin 〈n 1,n 2〉=1-⎝ ⎛⎭⎪⎫232=53.2.如图,在四棱锥S-ABCD 中,SD ⊥平面ABCD ,AB ∥CD ,AD ⊥CD ,SD =CD ,AB =AD ,CD =2AD ,M 是BC 中点,N 是线段SA 上的点,设MN 与平面SAD 所成角为α,则sin α的最大值为( )A.357B.337C.257D.237答案 A解析 以D 为坐标原点,DA 所在直线为x 轴建立如图所示的空间直角坐标系D-xyz ,设DA =2,则D (0,0,0),S (0,0,4),A (2,0,0),B (2,2,0),C (0,4,0),M (1,3,0),所以SA→=(2,0,-4).设SN→=λSA →(0≤λ≤1),则N (2λ,0,4-4λ),则MN →=(2λ-1,-3,4-4λ). 平面SAD 的一个法向量为DC→=(0,4,0),所以sin α=|MN →·DC →||MN →|·|DC →|=32(10λ2-18λ+13).因为0≤λ≤1,所以当λ=910, 即SN =9NA 时,sin α取得最大值357.3.(多选)如图,四边形ABCD 是边长为1的正方形,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且ED =FB =1,G 为线段EC 上的动点,下列结论正确的是( )A.EC ⊥AFB.该几何体外接球的表面积为3πC.若G 为线段EC 的中点,则GB ∥平面AEFD.AG 2+BG 2的最小值为3 答案 ABC解析 如图,几何体可补成正方体,以D 为原点,DA→,DC →,DE →分别为x 轴,y轴,z 轴的正方向建立空间直角坐标系D-xyz ,由正方体的性质可知EC ⊥AF ,故A 正确;该几何体的外接球即为正方体的外接球,所以外接球的直径为正方体的体对角线长3,所以该几何体的外接球的半径为32,从而外接球的表面积为3π,故B 正确;连接HC ,BG ,由正方体性质可知,HC ⊥平面AEF ,所以HC →即为平面AEF 的一个法向量,又H (1,0,1),C (0,1,0),所以HC→=(-1,1,-1).若G 为线段EC 的中点,则G ⎝ ⎛⎭⎪⎫0,12,12,又B (1,1,0),则GB →=⎝ ⎛⎭⎪⎫1,12,-12. 因为GB →·HC →=0,又GB ⊄平面AEF ,所以GB ∥平面AEF ,故C 正确;设G (0,t ,1-t )(0≤t ≤1),又B (1,1,0),A (1,0,0),所以AG→=(-1,t ,1-t ),BG→=(-1,t -1,1-t ),所以AG 2+BG 2=(-1)2+t 2+(1-t )2+(-1)2+(t -1)2+(1-t )2=4t 2-6t +5,故当t =34时,AG 2+BG 2取得最小值为114,故D 错误.故选ABC. 二、填空题4.如图所示,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 因为AE ∶ED ∶AD =1∶1∶2,所以AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),所以AF →=(-1,2,0),EC →=(0,2,1), 所以cos 〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,所以AF 与CE 所成角的余弦值为45.5.如图所示,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为________.答案 13解析 如图,以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0). 则D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1). 设平面ACD 1的法向量为n =(a ,b ,c ),则⎩⎨⎧n ·AC →=-a +2b =0,n ·AD 1→=-a +c =0,取a =2,得n =(2,1,2),∴点E 到平面ACD 1的距离 h =|D 1E →·n ||n |=|2+1-2|3=13.三、解答题6.如图,已知三棱柱ABC-A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M-xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形, 故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a 2.故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.7.如图,四棱锥P-ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的中点,且PB ⊥AM .(1)求BC ;(2)求二面角A-PM-B 的正弦值. 解 (1)连接BD 交AM 于点E ,因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD ⊥AM ,又因为PB ⊥AM ,PB ∩PD =P ,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD ,因为BD ⊂平面PBD ,所以AM ⊥BD . 设BC =x ,因为M 为BC 的中点, 则BM =MC =12BC =12x ,因为AB ⊥AD ,AM ⊥BD ,所以△DAB ∽△ABM , 所以AD BA =AB BM ,即x 1=112x ,解得x = 2.所以BC = 2.(2)由题意DA ,DC ,DP 两两互相垂直,以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴建立如图空间直角坐标系.所以A (2,0,0),P (0,0,1), B (2,1,0),M ⎝ ⎛⎭⎪⎫22,1,0,所以AP→=(-2,0,1),AM →=⎝ ⎛⎭⎪⎫-22,1,0,BP →=(-2,-1,1),BM→=⎝ ⎛⎭⎪⎫-22,0,0. 设平面APM 的法向量m =(x 1,y 1,z 1), 可得⎩⎪⎨⎪⎧m ·AP →=0,m ·AM →=0,即⎩⎨⎧-2x 1+z 1=0,-22x 1+y 1=0,令y 1=1,得到⎩⎨⎧x 1=2,y 1=1,z 1=2,所以m =(2,1,2),设平面BPM 的法向量n =(x 2,y 2,z 2), 所以⎩⎪⎨⎪⎧n ·BP→=0,n ·BM →=0,即⎩⎨⎧-2x 2-y 2+z 2=0,-22x 2=0, 令y 2=1,得到⎩⎨⎧x 2=0,y 2=1,z 2=1,所以n =(0,1,1),所以cos 〈m ,n 〉=m ·n |m ||n |=1+27×2=31414,所以sin 〈m ,n 〉=7014, 即二面角A-PM-B 的正弦值为7014.8.如图,在三棱锥A-BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E-BC-D 的大小为45°,求三棱锥A-BCD 的体积.(1)证明 因为AB =AD ,O 为BD 的中点,所以OA ⊥BD , 又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD , AO ⊂平面ABD ,所以AO ⊥平面BCD , 又CD ⊂平面BCD ,所以AO ⊥CD .(2)解 如图所示,以O 为坐标原点,OB ,OA 所在直线分别为x ,z 轴,在平面BCD 内,以过点O 且与BD 垂直的直线为y 轴建立空间直角坐标系.因为△OCD 是边长为1的正三角形,且O 为BD 的中点,所以OC =OB =OD =1,所以B (1,0,0),D (-1,0,0),C ⎝ ⎛⎭⎪⎫-12,32,0.设A (0,0,a ),a >0,因为DE =2EA , 所以E ⎝ ⎛⎭⎪⎫-13,0,2a 3.由题意可知平面BCD 的一个法向量为n =(0,0,1). 设平面BCE 的法向量为m =(x ,y ,z ), 因为BC →=⎝ ⎛⎭⎪⎫-32,32,0,BE →=⎝ ⎛⎭⎪⎫-43,0,2a 3, 所以⎩⎪⎨⎪⎧m ·BC →=0,m ·BE →=0,即⎩⎪⎨⎪⎧-32x +32y =0,-43x +2a 3z =0,令x =1,则y =3,z =2a ,所以m =⎝ ⎛⎭⎪⎫1,3,2a .因为二面角E-BC-D 的大小为45°, 所以cos 45°=⎪⎪⎪⎪⎪⎪m ·n |m ||n |=2a4+4a 2=22, 得a =1,即OA =1.由(1)得OA ⊥平面BCD , 又因为S △BCD =12BD ·CD sin 60°=12×2×1×32=32, 所以V A-BCD =13S △BCD ·OA =13×32×1=36.9.已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?(1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2,侧面AA 1B 1B 为正方形,所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF 2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC . ∵三棱柱ABC-A 1B 1C 1为直三棱柱,∴BB 1⊥AB 且BB 1⊥BC ,则BA ,BC ,BB 1两两互相垂直,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系B -xyz ,则B (0,0,0),E (1,1,0),F (0,2,1),BF→=(0,2,1). 设B 1D =m (0≤m ≤2),则D (m ,0,2),于是DE→=(1-m ,1,-2). 所以BF →·DE→=0,所以BF ⊥DE . (2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0).设平面DFE 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0, 又由(1)得DE→=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0, 令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2〉=32⎝ ⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ,则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272, 故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.如图所示,在四棱锥P-ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD ⊥BC .(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 的夹角为π3若存在,求CM CP 的值;若不存在,请说明理由.(1)证明 由AB ∥DC ,AB =AD =2,∠ADC =π2.根据勾股定理,得BD =AB 2+AD 2=2 2.又CD =4,∠BDC =π4,所以根据余弦定理得BC =2 2.所以CD 2=BD 2+BC 2,故BC ⊥BD .又BC ⊥PD ,PD ∩BD =D ,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .(2)解 设E 为BD 的中点,连接PE .因为PB =PD =6,所以PE ⊥BD ,PE =2.由(1)得BC ⊥平面PBD ,又BC ⊂平面ABCD ,所以平面ABCD ⊥平面PBD . 又平面ABCD ∩平面PBD =BD ,PE ⊂平面PBD ,所以PE ⊥平面ABCD .如图所示,以A 为坐标原点,分别以AD →,AB →和EP →的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A-xyz .则A (0,0,0),B (0,2,0),C (2,4,0),D (2,0,0),P (1,1,2).假设存在满足条件的M ,使得锐二面角为π3.设CM CP =λ(0≤λ≤1),即CM→=λCP →, 所以M (2-λ,4-3λ,2λ).易得平面PBD 的一个法向量为BC→=(2,2,0). 设n =(x ,y ,z )为平面ABM 的法向量,AB→=(0,2,0),AM →=(2-λ,4-3λ,2λ).由⎩⎪⎨⎪⎧n ·AB →=0,n ·AM →=0,得⎩⎨⎧2y =0,(2-λ)x +(4-3λ)y +2λz =0, 取x =2λ,得平面ABM 的一个法向量n =(2λ,0,λ-2).因为平面PBD 与平面ABM 的夹角为π3,所以|cos 〈BC →,n 〉|=cos π3,所以|4λ|22×4λ2+(λ-2)2=12,解得λ=23或λ=-2(舍去). 故在线段PC 上存在点M ,使得平面ABM 与平面PBD 的夹角为π3,且CM CP =23.。
立体几何中的向量方法——求空间角与距离-2023届高考数学一轮复习(新高考)

考点专练38:立体几何中的向量方法一、选择题1.在三棱锥A-BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2.若〈n 1,n 2〉=π3,则二面角A-BD-C 的大小为( ) A .π3 B .2π3 C .π3或2π3 D .π6或π32.如图,点A ,B ,C 分别在空间直角坐标系Oxyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2, 1, 2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A .43B .53C .23D .-233.如图,在长方体ABCD-A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A .33535B . 277C .33D .244.在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12B .23C .33D .225.在直三棱柱ABC-A 1B 1C 1中,AA 1=2,二面角B-AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A .7B .6C .5D .26.(多选)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱V A 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B的平面角为γ,则α,β,γ大小关系正确的是() A.α>β B.α=βC.γ>β D.γ≥β二、填空题7.如图,在正方形ABCD中,EF∥AB.若沿EF将正方形折成一个二面角后,AE∶ED∶AD=1∶1∶2,则AF与CE所成角的余弦值为________→8.正四棱锥P-ABCD,底面四边形ABCD是边长为2的正方形,PA=5,其内切球为球G,平面α过AD与棱PB,PC分别交于点M,N,且与平面ABCD所成二面角为30°,则平面α截球G所得的图形的面积为___________三、解答题9.(2021·全国甲卷)已知直三棱柱ABC -A1B1C1中,侧面AA1B1B为正方形,AB =BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?10.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求a的值;(3)在(2)的条件下求直线PA与平面EAC所成角的正弦值.11.如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=3,AC=2,点E是PD的中点.(1)求证:PB∥平面AEC.(2)在线段PB上(不含端点)是否存在一点M,使得二面角M-AC-E的余弦值为10 10若存在,确定M的位置;若不存在,请说明理由.12.如图,已知△ABC是以AC为底边的等腰三角形,将△ABC绕AB转动到△PAB位置,使得平面PAB⊥平面ABC,连接PC,E,F分别是PA,CA的中点.(1)证明:EF⊥AB;(2)在①S△ABC=33,②点P到平面ABC的距离为3,③直线PB与平面ABC所成的角为60°这三个条件中选择两个作为已知条件,求二面角E-BF-A的余弦值.13.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为π6,③∠ABC=π3.如图,在四棱锥P ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA =AB=2,PD的中点为F.(1)在线面AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB 上的位置并给以证明;若不存在,请说明理由.(2)若________,求二面角F-AC-D的余弦值.参考答案:一、选择题1.C2.C3.A4.B5.A6.AC 二、填空题7.答案:45 8.答案:π3 三、解答题9.(1)证明:因为侧面AA 1B 1B 为正方形,所以A 1B 1⊥BB 1.又BF ⊥A 1B 1,而BF ∩BB 1=B ,BF ⊂平面BB 1C 1C ,BB 1⊂平面BB 1C 1C ,所以A 1B 1⊥平面BB 1C 1C .又ABC -A 1B 1C 1是直三棱柱,BC =AB ,所以平面BB 1C 1C 为正方形. 取BC 中点为G ,连接B 1G ,EG . 因为F 为CC 1的中点,所以BF ⊥B 1G . 又BF ⊥A 1B 1,且EG ∥A 1B 1,所以BF ⊥EG .又B 1G ∩EG =G ,B 1G ⊂平面EGB 1D ,EG ⊂平面EGB 1D ,所以BF ⊥平面EGB 1D . 又DE ⊂平面EGB 1D ,所以BF ⊥DE .(2)解:因为侧面AA 1B 1B 是正方形,所以AB ∥A 1B 1,由(1)知,A 1B 1⊥平面BB 1C 1C , 所以AB ⊥平面BB 1C 1C .又BC ⊂平面BB 1C 1C ,所以AB ⊥BC .设B 1D =x ,以B 为原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E(1,1,0),F(0,2,1),D(x,0,2),所以EF →=(-1,1,1),FD →=(x ,-2,1).易知,平面BB 1C 1C 的一个法向量可为n 1=(1,0,0).设平面DFE 的法向量n 2=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·FD →=0,即⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,xx 1-2y 1+z 1=0.不妨取z 1=1,则x 1=32-x ,y 1=x +12-x,即n 2=⎝⎛⎭⎫32-x ,x +12-x ,1.设〈n 1,n 2〉=θ,则cos θ=⎪⎪⎪⎪⎪⎪32-x⎝⎛⎭⎫32-x 2+⎝⎛⎭⎫x +12-x 2+1=11+⎝⎛⎭⎫32-x -12⎝⎛⎭⎫32-x 2+1⎝⎛⎭⎫32-x 2.令32-x=t ,则cos θ=11+(t -1)2t 2+1t2=12t 2-2t+2=12()1t -122+32.当1t =12时,(cos θ)max =23=63,此时(sin θ)min =33. 故当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.10.(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =4,AD =CD =2,所以AC =22, 取AB 的中点为N ,则可得CN ∥AD ,则CN ⊥AB ,所以BC =CN 2+NB 2=22,所以AC 2+BC 2=AB 2,所以AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC .因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)解:以点C 为原点,CN →,CD →,CP →分别为x 轴、y轴、z 轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),设P(0,0,2a)(a>0),则E(1,-1,a),CA →=(2,2,0),CP →=(0,0,2a),CE →=(1,-1,a).设m =(x 0,y 0,z 0)为平面PAC 的法向量,则m ·CA →=m ·CP →=0,即⎩⎪⎨⎪⎧2x 0+2y 0=0,2az 0=0,取m =(1,-1,0).设n =(x ,y ,z)为平面EAC 的法向量,则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2). 依题意|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2. (3)解:由(2)可得n =(2,-2,-2),PA →=(2,2,-4).设直线PA 与平面EAC 所成角为θ,则sin θ=|〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.11.(1)证明:连接BD 交AC 于点F ,连接EF .在△PBD 中,由已知得EF ∥PB . 又EF ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解:由题意知,AC ,AB ,AP 两两垂直,所以以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz .则C(2,0,0),D(2,-3,0),P(0,0,3),B(0,3,0),E ⎝⎛⎭⎫1,-32,32. 设M(x 0,y 0,z 0),PM →=λ PB →(0<λ<1),则(x 0,y 0,z 0-3)=λ(0,3,-3),得M(0,3λ,3-3λ). 设平面AEC 的法向量为n 1=(x 1,y 1,z 1),由n 1·AE →=0,n 1·AC →=0,AE →=⎝⎛⎭⎫1,-32,32,AC →=(2,0,0),得⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2x 1=0,取y 1=1,得n 1=(0,1,1).设平面MAC 的法向量为n 2=(x 2,y 2,z 2).由n 2·AM →=0,n 2·AC →=0,AM →=(0,3λ,3-3λ),AC →=(2,0,0),得⎩⎪⎨⎪⎧3λy 2+(3-3λ)z 2=0,2x 2=0,取z 2=1,得n 2=⎝⎛⎭⎫0,1-1λ,1.设二面角M-AC-E 的大小为θ.因为二面角M-AC-E 的余弦值为1010,所以θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=2-1λ2·⎝⎛⎭⎫1-1λ2+1=1010, 化简得9λ2-9λ+2=0,解得λ=13或λ=23.易知当λ=23时,θ为钝角,所以λ=13,所以PM →=13PB →.故存在点M ,当PM →=13PB →时,二面角M-AC-E 的余弦值为1010.12.(1)证明:如图(1),过点E 作ED ⊥AB ,垂足为D ,连接DF .由题意知,△PAB ≌△CAB ,易证△EDA ≌△FDA ,所以∠EDA =∠FDA =π2,即FD ⊥AB .因为ED ⊥AB ,ED ∩FD =D ,所以AB ⊥平面EFD . 又因为EF ⊂平面EFD ,所以EF ⊥AB .图(1)(2)解:过点P 作PO ⊥AB ,垂足为O ,连接CO ,则CO ⊥AB .因为平面PAB ⊥平面ABC ,所以PO ⊥平面ABC .以O 为坐标原点,以OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图(2)所示的空间直角坐标系.图(2)设AB =a ,∠ABC =θ,由条件①得S △ABC =12a 2sin θ=33,由条件②得PO =asin θ=3,由条件③得∠PBO =60°,即θ=120°.若选条件①②,可求得a =23,B(3,0,0),A(33,0,0),P(0,0,3),C(0,3,0). 因为E ⎝⎛⎭⎫332,0,32,f ⎝⎛⎭⎫332,32,0,所以BF →=⎝⎛⎭⎫32,32,0,BE →=⎝⎛⎭⎫32,0,32.设平面BEF 的一个法向量m =(x ,y ,z),由⎩⎪⎨⎪⎧m ·BF →=0,m ·BE →=0,得⎩⎨⎧32x +32y =0,32x +32z =0,取m =(-3,1,1),又易知平面BFA 的一个法向量n =(0,0,1), 故cos 〈m ,n 〉=m ·n |m ||n |=15=55,所以二面角E-BF-A 的余弦值为55.若选①③或②③均可求得a =23,下同.13.解:(1)在线段AB 上存在点G ,使得AF ∥平面PCG ,且G 为AB 的中点. 证明如下:设PC 的中点为H ,连接FH ,GH ,如图.易证四边形AGHF 为平行四边形, 则AF ∥GH .又GH ⊂平面PCG ,AF ⊄平面PGC ,所以AF ∥平面PGC . (2)选择①.因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AD . 由题意可知,AB ,AD ,AP 两两垂直,故以A 为坐标原点,AB →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(2,2,0),D(0,2,0),P(0,0,2),F(0,1,1), 所以AF →=(0,1,1),CF →=(-2,-1,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎪⎨⎪⎧y +z =0,-2x -y +z =0.令y =1,则x=-1,z =-1,则u =(-1,1,-1). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=33,即二面角F AC D 的余弦值为33. 选择②.设BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥PA ,且FM =1. 因为PA ⊥平面ABCD ,所以FM ⊥平面ABCD ,FC 与平面ABCD 所成的角为∠FCM , 故∠FCM =π6.在直角三角形FCM 中,CM =3.又因为CM =AE ,所以AE 2+BE 2=AB 2, 所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3).易知平面ACD 的一个法向量为v =(0,0,2). 设二面角F AC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角FACD 的余弦值为217. 选择③.因为PA ⊥平面ABCD ,所以PA ⊥BC . 取BC 中点E ,连接AE .因为底面ABCD 是菱形,∠ABC =π3,所以△ABC 是正三角形.又E 是BC 的中点,所以BC ⊥AE ,所以AE ,AD ,AP 两两垂直.故以A 为坐标原点,AE →,AD →,AP →的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为PA =AB =2,所以A(0,0,0),C(3,1,0),D(0,2,0),P(0,0,2),F(0,1,1),所以AF →=(0,1,1),CF →=(-3,0,1).设平面FAC 的法向量为u =(x ,y ,z),则⎩⎪⎨⎪⎧ u ·AF →=0,u ·CF →=0,即⎩⎨⎧y +z =0,-3x +z =0.令x =3,则y =-3,z =3,则u =(3,-3,3). 易知平面ACD 的一个法向量为v =(0,0,2),设二面角FAC D 的平面角为θ,则cos θ=|u·v ||u||v |=217,即二面角F AC D 的余弦值为217。
用空间向量解立体几何问题方法归纳

1.如图,在三棱柱ABC A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),n ·B =0,n ·11A C =0.3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625.由题知二面角A 1BC 1B 1为锐角,所以二面角A 1BC 1B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC .所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.2.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD =2.将图(1)沿直线BD 折起,使得二面角A BD C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°.由余弦定理知AE =12+122-2×1×12cos 60°32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF .又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2,即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F ,∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC .(2)以E 为原点建立如图所示的空间直角坐标系,则0,0,32C -1,12,01,-12,0,D -1,-12,0DB =(2,0,0),DA 1,12,32AC =-1,12,-32.设平面ABD 的法向量为n =(x ,y ,z ),n ·DB =0n ·DA =02x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·|n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.3.如图,在四棱锥P ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值;(2)求B 点到平面PCD 的距离;解:(1)在△PAD 中,PA =PD ,O 为AD 中点,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量,cos 〈PB ,OA 〉=·|PB ||OA |=33.∴直线PB 与平面POC 所成角的余弦值为63.(2)PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ),u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33.4、.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点.(1)求证:AC ⊥DE ;(2)已知二面角A PB D 的余弦值为155,若E 为PB 的中点,求EC 与平面PAB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC ,∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD ,∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0)E0,0,t 2P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ).由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面PAB 的法向量为n 2=(x ,y ,z ),则n 2·AB =0,n 2·AP =0-x +3y =0,-x -3y +tz =0,令y =1,得n 2=31,23t ∵二面角A PB D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23).设EC 与平面PAB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面PAB 所成角的正弦值为155.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用向量方法求空间角和距离前言:在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角.(1)求异面直线所成的角设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||a ba b(2)求线面角设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin ||||||l nl n(3)求二面角a l ⊥,在β内b l ⊥,其方向如图,则二方法一:在α内平面角α=arccos||||a ba b 面角l αβ--的方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角α=1212arccos||||n n n n2.求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO .(2)求异面直线的距离方法一:找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法).例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.(Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离 记异面直线1DE FC与所成的角为α,解:(Ⅰ)则α等于向量1DE FC 与的夹角或其补角,11||||111111cos ||()()||||||DE FC DE FC DD D E FB B C DE FC α∴=++=(II )如图建立空间坐标系D xyz -, 则(1,0,2)DE =,(2,2,0)DB =设面EFBD 的法向量为(,,1)n x y = 由0DE n DB n ⎧⋅=⎪⎨⋅=⎪⎩得(2,2,1)n =- 又1(2,0,2)BC =- 记1BC 和面EFBD 所成的角为θ 则 1112sin |cos ,|||2||||BC n BC n BC n θ⋅=〈〉== ∴ 1BC 和面EFBD 所成的角为4π. (III )点1B 到面EFBD 的距离d等于向量1BB 在面EFBD 的法向量上的投影的绝对值,1||||BB n d n ∴==23 点评:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―正方体为载体, 来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决,向量方法可以人人学会,它程序化,不需技巧.例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B BA A '' 是矩形,。
平面平面ABCDB B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II ) 试问:当A A '的长度为多少时,二面角A C A D -'-的大小为? 60解:(Ⅰ)如图建立空间坐标系A xyz -, 则 '(1,0,)DA a =- (0,1,0)DC =设面'DAC 的法向量为1(,,1)n x y = 则'1100DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩得1(,0,1)n a =直线AB 到面'DAC 的距离d就等于点A到面'DAC 的距离,也等于向量AD 在面'DAC 的法向量上的投影的绝对值,11||22||AD n d n ∴== (II )易得面'AAC 的法向量2(1,1,0)n =-∴向量12,n n 的夹角为60 由12122121cos ,2||||12n n a n n n n a ⋅-〈〉===+⋅ 得 1a = ∴ 当A A '=1时,二面角A C A D -'-的大小为60.点评:1.通过(Ⅰ),复习线面距离转化为点面距离再转化为一向量在一向量(法向量)投影的绝对值的解题思路与方法. 2.通过(II ),复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.例3.正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点.(Ⅰ)求证: 直线1B P 不可能与平面11ACC A 垂直; (II )当11BC B P ⊥时,求二面角11C B P C --的大小.证明:(Ⅰ)如图建立空间坐标系O xyz -,设AP a = 则1,,,A C B P 的坐标分别为(0,1,0),(0,1,0),(3,0,2)(0,1,)a --1(0,2,0),(3,1,2)AC B P a ∴==--- 120AC B P =-≠,1B P ∴不垂直AC ∴直线1B P 不可能与平面11ACC A 垂直.(II )1(3,1,2)BC =-,由11BC B P ⊥,得110BC B P = 即22(2)0a +-= 1a ∴= 又11BC B C ⊥ 11BC CB P ∴⊥面∴1(3,1,2)BC =-是面1CB P 的法向量设面11C B P 的法向量为(1,,)n y z =,由11100B P n BC n ⎧⋅=⎪⎨⋅=⎪⎩得(1,3,23)n =-,设二面角11C B P C --的大小为α 则116cos 4||||BC n BC n α==∴二面角11C B P C --的大小为6arccos4. 点评:1.前面选择的两个题,可有现成的坐标轴,但本题x、z轴需要自己添加(也可不这样建立).2.第(1)小题是证明题,同样可用向量方法解答,是特殊情况;本小题也可证明这条直线与这个面的法向量不平行.例4(安徽卷)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
xyz NMABD C OP解:作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系22222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1),(1,,0)22244A B P D O M N --, (1)22222(1,,1),(0,,2),(,,2)44222MN OP OD =--=-=-- 设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==即 2202222022y z x y z ⎧-=⎪⎪⎨⎪-+-=⎪⎩取2z =,解得(0,4,2)n =22(1,,1)(0,4,2)044MN n =--=∵ MN OCD ∴平面‖(2)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵ 1cos ,23AB MDAB MD πθθ===⋅∴∴ , AB 与MD 所成角的大小为3π(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23例5(福建•理•18题)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。
(Ⅰ)求证:AB 1⊥面A 1BD ;(Ⅱ)求二面角A -A 1D -B 的大小; (Ⅲ)求点C 到平面A 1BD 的距离; 解:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B . 取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,, zA1A1(123)AB ∴=-,,,(210)BD =-,,,1(123)BA =-,,.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(113)AD =--,,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,.令1z =得(301)=-,,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1ABD 的法向量. cos <n ,1113364222AB AB AB -->===-n n . ∴二面角1A A D B --的大小为6arccos4. (Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(123)BC AB =-=-,,,,,. ∴点C 到平面1A BD 的距离1122222BC AB d AB -===. 总结:通过上面的例子,我们看到向量方法(更确切地讲,是用公式: ||||cos a b a b θ=)解决空间角和距离的作用,当然,以上所举例子,用传统方法去做,也是可行的,甚至有的(例2)还较为简单,用向量法的好处在于克服传统立几以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强―――运算过程公式化、程序化,有效地突破了立体几何教学和学习中的难点,是解决立体几何问题的重要工具.充分体现出新教材新思想、新方法的优越性.这是继解析几何后用又一次用代数的方法研究几何形体的一块好内容,数形结合,在这里得到淋漓尽致地体现.1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理,12cos cos cos θθθ=),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等⇒斜线在平面上射影为角的平分线.3.计算二面角的大小主要有:定义法(先作其平面角后计算大小)、公式法(cos S S θ=影原)、向量法(两平面法向量的夹角)、等价转换法等等.二面角平面角的主要作法有:定义法(取点、作垂、构角)、三垂线法(两垂一连,关键是第一垂(过二面角一个面内一点,作另一个面的垂线))、垂面法.4.计算空间距离的主要方法有:定义法(先作垂线段后计算)、等积法、转换(平行换点、换面)等.5.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,模式是:线线关系线面关系面面关系,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.特别声明:①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.6.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.练习:1.在正四面体S ABC -中,棱长为a ,E,F分别为SA 和BC 的中点,求异面直线BE 和SF所成的角.(2arccos 3)2.在边长为1的菱形ABCD 中,60ABC ︒∠=,将菱形沿对角线AC 折起,使 折起后BD =1,求二面角B AC D --的余弦值.(13) 3.在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)DCP4.在直三棱柱111ABC A B C -中,90A ︒∠=,1,,O O G 分别为111,,BC BC AA 的中点,且12AB AC AA ===. (1) 求1O 到面11ACB 的距离;(22) (2) 求BC 到面11GBC 的距离.(263)5.如图,在几何体ABCDE 中,△ABC 是等腰直角三角形, ∠ABC =900,BE 和CD 都垂直于平面ABC ,且BE =AB =2, CD =1,点F 是AE 的中点. (Ⅰ)求证:DF ∥平面ABC ;(Ⅱ)求AB 与平面BDF 所成角的大小. (arcsin 23)ACDBEF。