最新代数式经典练习题
代数式(压轴必刷30题5种题型专项训练)(解析版)
代数式(压轴必刷30题5种题型专项训练)一.列代数式(共7小题)1.(2022秋•拱墅区月考)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a),如图1;取出两张小正方形卡片放入大正方形卡片内拼成的图案如图2;再重新用三张小正方形卡片放入大正方形卡片内拼成的图案如图3.则图3中阴影部分的面积为(用含有a,b的代数式表示);已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.【分析】图2中阴影正方形的边长为(2b﹣a),面积就是(2b﹣a)2;图3中两个阴影部分的面积可以上下拼在一起,也是个正方形,其边长是(a﹣b),面积就是(a﹣b)2.再根据等量关系列方程就可以得出含有a、b的关系式了.【解答】解:图2中阴影部分是正方形,它的边长是(2b﹣a),所以它的面积就是(2b﹣a)2.图3a﹣b),所以它的面积就可以表示为:(a﹣b)2.又因为图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,所以可得:(2b﹣a)2+2ab﹣15=(a﹣b)2,4b2﹣4ab+a2+2ab﹣15=a2+b2﹣2ab,3b2=15,b2=5,故小正方形的面积是5.【点评】本题考查列代数式的能力,用字母表示阴影部分的面积.再根据等量关系进行推导.2.(2022秋•余姚市校级期中)A市、B市和C市分别有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台.已知调运机器的费用如表所示.设从A市、B市各调x台到D市.(1)C市调运到D市的机器为台(用含x的代数式表示);(2)B市调运到E市的机器的费用为元(用含x的代数式表示,并化简);(3)求调运完毕后的总运费(用含x的代数式表示,并化简);(4)当x=5和x=8时,哪种调运方式总运费少?少多少?【分析】(1)用D市需要的总数减去从A市、B市各调的台数即可;(2)求得B市剩下的台数,再乘运费即可;(3)用运送的台数乘运费分别求得各自得运费,再进一步求和即可;(4)把x=5和x=8分别代入求得答案即可.【解答】解:(1)C市调运到D市的机器为18﹣2x台;故答案为:(18﹣2x);(2)B市调运到E市的机器的费用为700(10﹣x)=(7000﹣700x)元(用含x的代数式表示,并化简);故答案为:(7000﹣700x).(3)调运完毕后的总运费为200x+800(10﹣x)+300x+700(10﹣x)+400(18﹣2x)+500[8﹣(18﹣2x)]=17200﹣800x;(4)当x=5时,总运费为17200﹣800×5=13200元;当x=8时,总运费为17200﹣800×8=10800元;10800元<13200元,13200﹣10800=2400,所以当x=8时,总运费最少,最少为10800元,少2400元.【点评】此题考查列代数式,题目关系是比较多,理清顺序,正确利用基本数量关系解决问题.3.(2021秋•陕州区期末)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;故答案为1500a.(1600a﹣1600).(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a(4)①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.(2020秋•衢州期中)甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x ×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);(2)当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元.【点评】5.(2021秋•下城区校级期中)从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:2004年1月至2012年6月执行的收费标准:2012年7月起执行的收费标准:(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.【分析】(1)根据表格中的数据可以计算出小明家2012年7月份的用电量为200度时当月的电费支出和新政前用电量为200度时当月的电费支出,从而可以解答本题;(2)根据表格中的数据可以分别用代数式表示出各个阶段的电费支出.【解答】解:(1)由题意可得,小明家2012年7月份的用电量为200度,小明家7月份的电费支出是:200×0.53=106(元),新政前,用电200度电费支出为:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少华4.5元,即若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是106元,比新政前少了4.5元;(2)由题意可得,当0≤a≤230时,小明家当月的电费支出为:0.53a,当230<a≤400时,小明家当月的电费支出为:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,当a>400时,小明家当月的电费支出为:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用电量为a度,当月支出的费用为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(2023秋•海曙区校级期中)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔的费用;(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.(2021秋•临海市月考)大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?【分析】原有(3a﹣b)人,中途下车(3a﹣b)人,又上车若干人后车上共有乘客(8a﹣5b)人.中途上车乘客数=车上共有乘客数﹣中途下车人数,所以中途上车乘客为,把a=10,b=8代入上式可得上车乘客人数.【解答】解:中途上车乘客是(8a﹣5b)﹣(3a﹣b)=(人),当a=10,b=8时,上车乘客是29人.【点评】要分析透题中的数量关系:中途上车乘客数=车上共有乘客数﹣中途下车人数,用代数式表示各个量后代入即可.二.代数式求值(共7小题)8.(2023秋•西湖区期中)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.【分析】先利用绝对值的性质求得m、n的值,然后根据m<n分类计算即可.【解答】解:由题意可得,m=±2,n=±2,又∵m<n,∴m=﹣3,n=2 或m=﹣3,n=﹣2,当m=﹣3,n=2时,原式=(﹣3)2+(﹣3)×2+22=9﹣6+4=7;当m=﹣3,n=﹣2时,原式=(﹣3)2+(﹣3)×(﹣2)+(﹣2)2=9+6+4=19.【点评】本题主要考查的是求代数式的值,求得m、n的值是解题的关键.9.(2022秋•阳新县期中)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200x﹣10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.10.(2022秋•吴兴区期中)电动车厂计划每天平均生产n辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖55元;少生产一辆扣60元,当n=50时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,在此方式下这一周工人的工资总额与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据正负数的意义分别表示出5天的生产电动车的数量,再求和即可;(2)5天的生产电动车的总数×200元+超出部分的奖励﹣罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【解答】解:(1)n+5+n﹣1+n﹣6+n+13+n﹣2=5n+9;(2)当n=50时,5n+9=5×50+9=259,200×259+55(5+13)+60(﹣1﹣6﹣2)=52250,所以该厂工人这一周的工资总额是52250元.(3)5+(﹣1)+(﹣6)+13+(﹣2)=9,259×200+9×55=52295,∵52250<52295,∴每周计件工资制一周工人的工资总额更多.【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,掌握每日计件工资制的计算方法.11.(2021秋•镇海区校级期中)周末小明陪爸爸去陶瓷商城购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价40元,茶杯每只定价5元,且两家都有优惠,甲商店买一送一大酬宾(买一把茶壶送一只茶杯),乙商店全场九折优惠,小明的爸爸需茶壶5把,茶杯a只(不少于25只)(1)分别用含有a的代数式表示在甲、乙两家商店购买所需的费用;(2)当a=40时,在甲、乙哪个商店购买付款较少?请说明理由.(3)若小明的爸爸准备了1800元钱,在甲、乙哪个商店购买的茶杯多?请说明理由.【分析】(1)根据实际付款数得到甲店购买需付款为5(a﹣5)+40×5=(5a+175)(元),乙店购买需付款为(5a+40×5)×0.9=(4.5a+180)(元);(2)将a=40分别代入(1)中所求的两式子,得出的值在哪家少就在那家买;(3)令甲乙的付款数都为1800,然后解方程5a+175=1800和4.5a+135=1800,根据a的大小进行判断.【解答】解:(1)设购买茶杯a只(不少于25只),甲商店买一送一大酬宾(买一把茶壶送一只茶杯),且茶壶每把定价40元,茶杯每只定价5元,故在甲店购买需付:5(a﹣5)+40×5=(5a+175)(元);乙商店全场九折优惠,故在乙店购买需付:(5a+40×5)×0.9=(4.5a+180)(元);(2)在乙商店购买付钱较少.理由如下:当a=40时,在甲店购买需付:5×40+175=375元,在乙店购买需付:4.5×40+180=360元,∵375>360,∴在乙商店购买付款较少;(3由5a+175=1800,得a=325;由4.5a+180=1800,得a=360.所以在乙商店购买的茶杯多.【点评】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题,注意细心求解即可.12.(2023秋•下城区校级月考)如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x为4时,求最后输出的结果y是.【分析】根据题中的程序流程图,将x=4代入计算,得到结果为﹣2小于1,将x=﹣2代入计算得到结果为1,将x=1代入计算得到结果大于1,即可得到最后输出的结果.【解答】解:输入x=4,代入(x2﹣8)×(﹣)得:(16﹣8)×(﹣)=﹣2<1,将x=﹣2代入(x2﹣8)×(﹣)得:(4﹣8)×(﹣)=1=1,将x=1代入(x2﹣8)×(﹣)得:(1﹣8)×(﹣)=>1,则输出的结果为.故答案为:.【点评】此题考查了代数式求值,弄清题中的程序流程是解本题的关键.13.(2021秋•诸暨市期中)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【分析】(1)根据平移计算出地毯总长,然后再根据长×宽可得面积;(2)把已知数据代入(1)中求出答案.【解答】解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.【点评】此题主要考查了生活中的平移现象、代数式求值,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.14.(2021秋•椒江区校级期中)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示.例如x=﹣1时多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.已知g(x)=﹣2x2﹣3x+1,h(x)=ax3+2x2﹣x﹣12.(1)求g(﹣2)值;(2)若h()=﹣11,求g(a)的值.【分析】(1)根据举的例子把x=﹣2代入求出即可;(2)把x=代入h(x)=ax3+2x2﹣x﹣12得出一个关于a的方程,求出a的值,把a的值代入g(x)=﹣2x2﹣3x+1即可.【解答】解:(1)g(﹣2)=﹣2×(﹣2)2﹣3×(﹣2)+1=﹣2×4﹣3×(﹣2)+1=﹣8+6+1=﹣1;(2)∵h()=﹣11,∴a×()3+2×()2﹣﹣12=﹣11,解得:a=1,即a=8∴g(a)=﹣2×82﹣3×8+1=﹣2×64﹣24+1=﹣128﹣24+1=﹣151.【点评】本题考查了有理数的混合运算和新定义,关键是培养学生的阅读能力和理解能力,也培养学生的计算能力,题目比较典型,是一道比较好的题目.三.多项式(共1小题)15.(2021秋•越城区期中)关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项时,求m、n的值.【分析】利用多项式的定义得出二次项与一次项系数为0,进而求出即可.【解答】解:∵关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项,∴﹣5﹣(2m﹣1)=0,2﹣3n=0,解得:m=﹣2,n=.【点评】此题主要考查了多项式的定义,得出各项系数之间关系是解题关键.四.整式的加减(共9小题)16.(2020秋•西湖区校级期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于2即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.17.(2021秋•婺城区校级期中)已知整式M=x2+5ax﹣x﹣1,整式M与整式N之差是3x2+4ax﹣x (1)求出整式N;(2)若a是常数,且2M+N的值与x无关,求a的值.【分析】(1)根据题意,可得N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x),去括号合并即可;(2)把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【解答】解:(1)N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x)=x2+5ax﹣x﹣1﹣3x2﹣4ax+x=﹣2x2+ax﹣1;(2)∵M=x2+5ax﹣x﹣1,N=﹣2x2+ax﹣1,∴2M+N=2(x2+5ax﹣x﹣1)+(﹣2x2+ax﹣1)=2x2+10ax﹣2x﹣2﹣2x2+ax﹣1=(11a﹣2)x﹣3,由结果与x值无关,得到11a﹣2=0,解得:a=.【点评】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.18.(2021秋•临海市校级期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值;(3)如果A+2B+C=0,则C的表达式是多少?【分析】(1)先把A、B的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A+6B的表达式,再令a的系数等于0,求出b的值即可;(3)先把A、B C的表达式即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴3A+6B=3(2a2+3ab﹣2a﹣1)+6(﹣a2+ab﹣1)=6a2+9ab﹣6a﹣3﹣6a2+6ab﹣6=15ab﹣6a﹣9;(2)3A+6B=15ab﹣6a﹣9=a(15b﹣6)﹣9,∵3A+6B的值与a无关,∴15b﹣6=0,∴b=;(3)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,A+2B+C=0,∴C=﹣A﹣2B=﹣(2a2+3ab﹣2a﹣1)﹣2(﹣a2+ab﹣1)=﹣2a2﹣3ab+2a+1+2a2﹣2ab+2=﹣5ab+2a+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.19.(2020秋•奉化区校级期末)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2021秋•嵊州市期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【分析】x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),根据新数减去原数等于99建立方程求解.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.【点评】本题利用了整式来表示每位上的数,整式的减法,建立方程求解.21.(2021秋•嵊州市期中)符号“”称为二阶行列式,规定它的运算法规为:=ad﹣bc.(1)计算:=;(直接写出答案)(2)化简二阶行列式:.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=10﹣12=﹣2;故答案为:﹣2;(2)根据题中的新定义得:原式=(a+2b)(a﹣2b)﹣4b(0.5a﹣b)=a2﹣4b2﹣2ab+4b2=a2﹣2ab.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(2023秋•象山县校级期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.【点评】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.23.(2020秋•婺城区期末)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)用含a,b的代数式表示A.(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.【解答】解:(1)∵A﹣2B=7a2﹣7ab,∴A=7a2﹣7ab+2B,=7a2﹣7ab+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14;(2)根据题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,∴A=﹣a2+5ab+14=﹣(﹣1)2+5×(﹣1)×2+14=﹣1﹣10+14=3.【点评】本题考查了整式的加减,代数式求值,非负数的性质,实质就是去括号,合并同类项的过程,熟记去括号法则和合并同类项法则是解题的关键.24.(2022秋•鄞州区校级期中)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.五.整式的加减—化简求值(共6小题)25.(2020秋•永嘉县校级期末)先化简再求值:2(x2+3y)﹣(2x2+3y﹣x),其中x=1,y=﹣2.【分析】先去括号,再合并同类项即可化简原式,继而将x、y的值代入计算可得.【解答】解:原式=2x2+6y﹣2x2﹣3y+x=3y+x,当x=1、y=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算整式加减运算顺序和法则是解本题的关键.26.(2020秋•诸暨市期中)化简求值:5(3a2b﹣2ab2)﹣4(﹣2ab2+3a2b),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(15a2b﹣10ab2)﹣(﹣8ab2+12a2b)=15a2b﹣10ab2+8ab2﹣12a2b=3a2b﹣2ab2,当a=﹣2,b=1时,原式=16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.(2020秋•富阳区期中)化简并求值:[2b2﹣3+2(a2﹣1)]﹣(4a2﹣3b2),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2b2﹣3+2a2﹣2﹣4a2+3b2=5b2﹣2a2﹣5,当a=﹣2,b=1时,原式=5﹣8﹣5=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2020秋•温州月考)求多项式的值,其中x=5,y=﹣8.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,当x=5时,原式=﹣50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.(2020秋•长兴县期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(2021秋•椒江区校级期中)已知|x+2|+(y﹣)2=0,求代数式(x3+2x2y)+x3﹣(﹣3x2y+5xy2)﹣(7﹣5xy2)的值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,则原式=x3+2x2y+x3+3x2y﹣5xy2﹣7+5xy2=x3+5x2y﹣7=﹣8+10﹣7=﹣5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
代数式经典测试题及答案
代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
代数式及其运算练习题
代数式及其运算练习题一、选择题(每题2分,共20分)1. 以下代数式中,不是同类项的是:A. 3x², 5x²B. 2y, -3yC. 4a, -aD. 7b, -3b²2. 若a + b = 10,a - b = 2,求a² - b²的值:A. 20B. 36C. 40D. 803. 计算下列代数式的值:(3x - 2)(3x + 2):A. 9x² - 4B. 9x² + 6x - 4C. 6x² - 4D. 6x² + 12x + 44. 合并同类项:2x³ + 5x² - 3x + 7x² - x³ + 2x - 5:A. x³ + 12x² + x - 5B. x³ + 12x² + 3x - 5C. 12x² + 3x - 5D. 12x² + 2x - 55. 已知x = 2,求代数式3x - 2的值:A. 4B. 6C. 8D. 10二、填空题(每题2分,共20分)6. 若2x + 3y = 7,3x - 2y = 8,求5(x + y)的值:________。
7. 将代数式(2x + 1)(4x - 3)展开,结果为:________。
8. 已知x² - 5x + 6 = 0,求x的值:________。
9. 计算代数式(3x - 1)²的展开结果:________。
10. 若代数式ax² + bx + c可以分解为(2x - 1)(x + 3),求a + b + c的值:________。
三、解答题(每题15分,共60分)11. 已知a = 3,b = -2,求代数式(a + b)³ - a²b的值。
12. 给定代数式x³ - 3x²y + 3xy² - y³,证明它是一个完全平方公式。
代数式练习题(打印版)
代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。
2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。
3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。
4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。
5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。
#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。
7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。
8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。
9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。
10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。
#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。
12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。
13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。
14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。
15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。
#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。
17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
初一代数式计算题50道
初一代数式计算题50道一、整式的加减1.化简:3x + 2x - 5x。
2.化简:4y - 3y + 2y。
3.化简:2a + 3b - a + 2b。
4.化简:5m - 3n - 2m + 4n。
5.化简:3(x + 2y) - 2(x - y)。
6.化简:2(3a - 2b) + 3(2a + b)。
7.化简:-(2x - 3y) + 4(3x - 2y)。
8.化简:5(a - b) - 2(a + 3b)。
9.化简:3x² + 2x² - 4x²。
10.化简:4y² - 3y² + 2y²。
二、整式的乘法11.计算:2x·3x。
12.计算:-3a·2a²。
13.计算:4m·(-2m²n)。
14.计算:5xy·(-3x²y)。
15.计算:(2a²b)·(-3ab³)。
16.计算:(-3x²y³)·2xy²。
17.计算:(4m²n)·(-2m³n²)。
18.计算:(-5a²b³)·(3a³b²)。
19.计算:(2x + 3)(x - 1)。
20.计算:(3x - 2)(2x + 1)。
三、整式的除法21.计算:6x²÷2x。
22.计算:-12a³b²÷(-3ab²)。
23.计算:24m³n²÷(-8m²n)。
24.计算:30x³y²÷(-5x²y)。
25.计算:(15a³b⁴c)÷(-5a²b²c)。
26.计算:(-24x⁴y⁵z²)÷(-8x²y³z)。
代数式典型例题专项练习30题(有答案)
代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
代数式求值经典题型(含详细答案)
代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。
解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。
2、已知a+b=3ab,求代数式a+b的值。
解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。
解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。
解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。
代数式经典测试题附答案
A.7
B.12
C.13
D.25
【答案】C
【解析】
【分析】
设正方形 A 的边长为 a,正方形 B 的边长为 b,根据图形列式整理得 a2+b2−2ab=1,2ab
=12,求出 a2+b2 即可.
【详解】
解:设正方形 A 的边长为 a,正方形 B 的边长为 b,
由图甲得:a2−b2−2(a−b)b=1,即 a2+b2−2ab=1, 由图乙得:(a+b)2−a2−b2=12,即 2ab=12, 所以 a2+b2=13,即正方形 A,B 的面积之和为 13, 故选:C. 【点睛】 本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.
7.下列运算正确的是 ( )
A. a2 a3 a6
B. a6 a3 a2
C. 2a2 2a2
D. a2 3 a6
【答案】D 【解析】 【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最 后进一步判断即可. 【详解】
A: a2 a3 a5 ,计算错误;
11.若 x+y=3+2 2 ,x﹣y=3﹣2 2 ,则 x2 y2 的值为( )
A.4 2
【答案】B 【解析】
B.1
【分析】
根据二次根式的性质解答.
【详解】
解:∵x+y=3+2 2 ,x﹣y=3﹣2 2 ,
C.6
D.3﹣2 2
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
4.下列图形都是由面积为 1 的正方形按一定的规律组成的,其中,第 1 个图形中面积为 1 的正方形有 9 个,第 2 个图形中面积为 1 的正方形有 14 个,……,按此规律,则第几个图 形中面积为 1 的正方形的个数为 2019 个( )
代数式练习题
代数式练习题一、选择题:1. 若代数式 \(a^2+2a+1\) 可以化简为 \((a+1)^2\),则下列哪个代数式不能化简为完全平方形式?A. \(b^2+4b+4\)B. \(c^2-6c+9\)C. \(d^2+10d+25\)D. \(e^2-8e+16\)2. 已知 \(x+y=5\),\(x-y=3\),求 \(x^2+y^2\) 的值。
A. 7B. 13C. 16D. 253. 若 \(a\) 和 \(b\) 是方程 \(x^2+5x-6=0\) 的根,则 \(a^2+5a-6\) 的值为:A. 0B. -6C. 6D. 无法确定二、填空题:4. 若 \(x\) 的平方根是 \(\pm2\),则 \(x\) 的值是________。
5. 代数式 \(\frac{1}{2}x^2-3x+2\) 可以分解为________。
6. 若 \(a\) 和 \(b\) 是方程 \(x^2-4x+1=0\) 的根,且 \(a>b\),则 \(a-b\) 的值为________。
三、计算题:7. 计算 \(\frac{1}{x-1}+\frac{1}{x+1}\) 的值,当 \(x=2\)。
8. 已知 \(\frac{1}{x}-\frac{1}{y}=\frac{1}{x+y}\),求\(\frac{xy}{x+y}\) 的值。
四、解答题:9. 某工厂生产一种产品,其成本函数为 \(C(x)=0.1x^2-20x+1000\),其中 \(x\) 代表生产的产品数量。
求该工厂在生产多少件产品时,成本最低。
10. 已知 \(a\)、\(b\)、\(c\) 是三角形的三边长,且满足\(a^2+b^2=c^2\),求证 \(a+b\) 的值大于 \(c\)。
五、应用题:11. 一个长方形的长和宽分别为 \(l\) 和 \(w\),其面积为 \(36\)平方厘米。
如果长和宽都增加 \(2\) 厘米,求新的长方形的面积。
最新初中数学代数式经典测试题含解析(3)
最新初中数学代数式经典测试题含解析(3)一、选择题1.多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.2,3 B.2,2 C.3,3 D.3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.2.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502的和为250+251+252+…+299+21002、⋅⋅⋅、992、1002、512、52==a+(2+22+…+250)a,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a+2a+22a+ (250)=a+(2+22+…+250)a,∵23+=-,2222234++=-,222222345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.6.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618; 故选C .【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.7.计算的值等于( )A .1B .C .D .【答案】C【解析】【分析】 直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】 原式= ==.故选C .【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.8.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【答案】A【解析】【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果是( )A.3 B.27 C.9 D.1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.15.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED=11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.16.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列计算正确的是()A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算. 点拨:根据幂的运算法则. 解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a +=()3263a b a b = 故选B .。
代数式的练习题及答案
代数式的练习题及答案代数式的练习题及答案一、选择题1、下列代数式x不能取2的是()A、B、C、D、2、如果甲数为x,甲数是乙数的2倍,则乙数是()A、B、2xC、x+2D、3、一批电脑按原价的85%出售,每台售价为y元,则这批电脑原价为()A、元B、元C、元D、元4、一个长方形的周长为30cm,若长方形的一边长用字母a(cm)表示,则长方形的面积是()A、a(15-a)cm2B、a(30-a)cm2C、a(30-2a)cm2D、a(15+a)cm25、甲种糖果每千克a元,乙种糖果每千克b元,若买甲种糖果m千克,乙种糖果n千克,混合后的糖果每千克()A、元B、元C、元D、元二、填空题1、一枚古币的正面是一个半经为r的圆形,中间有一边长为a 厘米的正方形孔,则这枚古币正面的面积为2、某校共有a名学生,其中男生人数占55%,则女生人数为3、当a=2,b=-3时,代数式的值为4、若则4a+b=5、如果不论x取什么数,代数式的值都是一个定值,那么,代数式的`值为三、做一做1、2只猴子发现山坡上有一堆熟透的红果子共有m个,第一只猴子吃掉了其中的,又扔掉了一个果子,第二只猴子吃掉了其中的,也扔掉了一个果子,最后还剩多个果子?2、一台电视机成本价为a元,销售价比成本价增长25%,因库存积压,所以就接销售价的70%出售,问每台电视机的实际售价是多少元?3、找规律(用n表示第n个数)(1)1,4,9,16,25,…,请写出第n个数,(2)2,5,10,17,26,…,请写出第n个数,(3)3,6,9,12,15,18,…,请写出第n个数,(4)2,4,8,16,32,64,…,请写出第n个数,4、(1)分别求出代数式和值其中(1)(2)a=5,b=3(2)观察(1)中的(1)(2)你发现了什幺?5、治理沙漠的植树活动中,某县今年派出的青年志愿者为100人,每人完成植树任务50棵,计划明年派出人数增加p%,每人植树任务增加q%(1)写出明年计划的总植树的代数式(2)并求出当p=10,q=20时的植树总数参考答案[一、1、D2、A3、B4、A5、C二、1、2、45%a3、-12三、1、2、70%(1+25%)a3、(1)(2)+1(3)3n(4)2n4、(1)(2)=5、(1)50(1+q%)100(1+p%)(2)6600[。
代数式测试题
代数式测试题1. 代数式简化题:给定代数式 \( 3x^2 - 7x + 5 \),简化 \( 9x^2 - 21x + 15 \)。
2. 代数式求值题:若 \( a = 4 \) 和 \( b = -3 \),求 \( 2a^2 - 3ab + b^2 \)的值。
3. 多项式乘法题:计算 \( (x + 2)(x - 3) \) 的结果。
4. 因式分解题:将多项式 \( 4x^3 - 16 \) 进行因式分解。
5. 代数式比较题:比较 \( 5x^2 + 3x - 2 \) 和 \( 3x^2 + 5x + 1 \) 的大小。
6. 代数式应用题:某工厂生产产品的成本函数为 \( C(x) = 0.5x^2 - 100x + 1000 \),求当产量 \( x \) 为多少时,成本最低。
7. 代数式方程题:解方程 \( 2x^2 + 3x - 5 = 0 \)。
8. 代数式不等式题:解不等式 \( 3x - 4 > 2x + 1 \)。
9. 代数式范围题:若 \( x \) 的取值范围是 \( -2 \leq x \leq 3 \),求 \( x^2- 4x + 4 \) 的最大值和最小值。
10. 代数式图形题:给定函数 \( y = x^2 - 4x + 3 \),求该函数与 \( x \) 轴的交点坐标。
11. 代数式变换题:将 \( 2x^3 - 5x^2 + 3x + 1 \) 按照 \( x - 1 \) 进行因式分解。
12. 代数式综合题:已知 \( x + y = 5 \) 和 \( 2x - y = 1 \),求 \( x^2 + y^2 \) 的值。
13. 代数式证明题:证明对于任意实数 \( x \),\( x^3 - 3x \) 总是能被 \( x -1 \) 整除。
14. 代数式最优化题:若 \( f(x) = -x^2 + 4x - 3 \),求 \( f(x) \) 在区间 \( [0, 5] \) 上的最大值。
初一代数式试题及答案
初一代数式试题及答案一、选择题(每题2分,共10分)1. 下列代数式中,不是同类项的是()A. 3x^2y 和 5x^2yB. 2x^2 和 3x^2C. 4xy 和 4x^2yD. 7xy 和 7x^2y答案:C2. 合并同类项后,代数式 5x^2 - 3x^2 + 2x^2 的结果是()A. 4x^2B. 6x^2C. 0D. 无法确定答案:A3. 下列代数式中,不是单项式的是()A. 3x^2B. -5x^3y^2C. 7D. 2x^2 + 3x答案:D4. 代数式 2x^2 - 3x + 1 中,常数项是()A. 2B. -3C. 1D. 2x^2答案:C5. 代数式 4x^2y - 3xy^2 + 2x^2y - 5xy^2 中,合并同类项后,结果是()A. x^2y - 8xy^2B. 6x^2y - 8xy^2C. 2x^2y - 8xy^2D. 6x^2y - 3xy^2答案:C二、填空题(每题2分,共10分)6. 代数式 3x^2 - 2x + 1 中,一次项的系数是 _______。
答案:-27. 代数式 5x^3y^2 - 7xy^3 + 2x^2y 中,最高次项是 _______。
答案:5x^3y^28. 代数式 4x^2 - 3x + 5 中,常数项是 _______。
答案:59. 代数式 2x^2 + 3x - 1 中,合并同类项后,结果是 _______。
答案:2x^2 + 3x - 110. 代数式 6x^2 - 4x^2 + 2x^2 中,合并同类项后,结果是_______。
答案:4x^2三、解答题(每题10分,共30分)11. 计算代数式 3x^2 - 2x + 5 - (x^2 - 4x + 3) 的值,其中 x = 2。
解:原式 = 3x^2 - 2x + 5 - x^2 + 4x - 3= 2x^2 + 2x + 2当 x = 2 时,原式 = 2 × 2^2 + 2 × 2 + 2 = 8 + 4 + 2 = 14。
代数式的题
代数式的题选择题1.下列式子中,是代数式的是()A. a+b=5B. 3>2C. x−2yD. m的2倍与n的差不大于5答案:C2.下列代数式中,单项式有()①a2b②−32xy③x1④0 ⑤3x2−y2⑥πA. 2个B. 3个C. 4个D. 5个答案:B(①②④⑥)填空题3.单项式−52πxy2的系数是____,次数是____。
答案:−52π;34.多项式3x2y−7x4y2−31xy3+27是____次____项式,最高次项是____,最高次项的系数是____。
答案:六;四;−7x4y2;−7计算题5.若∣m−2∣+(n+3)2=0,先化简,再求值:m3−4m2n+4mn2−n3。
解答:由于∣m−2∣+(n+3)2=0,根据非负数的性质,有:∣m−2∣=0(n+3)2=0解得:m−2=0n+3=0从而得到:m=2n=−3原式可以写为:m3−4m2n+4mn2−n3=m2(m−4n)+n2(4m−n)=m2(m−4n)+n2[4m−(m+3n)]=m2(m−4n)−n2(m−4n)=(m−4n)(m2−n2)=(m−4n)(m+n)(m−n)代入m=2和n=−3,得到:=(2+12)(2−3)(2+3)=−14×1×5=−70应用题6.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元。
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来。
(2)设生产A、B两种产品的总利润为y元,其中A种产品生产件数为x件,试写出y与x之间的关系式,并利用这个关系式说明那种方案获利最大?最大利润是多少?解答:(1)设安排生产A种产品x件,则生产B种产品为(50−x)件。
根据题意,有以下不等式组:{9x+4(50−x)≤3603x+10(50−x)≤290解这个不等式组,得到:30≤x≤32由于x为整数,所以x=30,31,32。
初一代数式测试题及答案
初一代数式测试题及答案
一、选择题
1. 下列代数式中,不是同类项的是()
A. 3x^2y 和 2xy^2
B. 5x^2 和 3x^2
C. 4xy 和 2xy
D. 7xy 和 5x^2y
答案:A
2. 合并同类项 3x^2 - 5x^2 + 2x^2 的结果是()
A. 0
B. -2x^2
C. -x^2
D. x^2
答案:D
二、填空题
1. 代数式 4x - 2y + 3x - 5y 合并同类项后为____。
答案:7x - 7y
2. 代数式 3a^2 - 2ab + 4b^2 - 3a^2 + 2ab - 4b^2 的值是____。
答案:0
三、解答题
1. 计算代数式 2x^2 - 3xy + 5y^2 - 2x^2 + 3xy - 5y^2 的值。
答案:0
2. 若 2x + 3y = 5,求 4x + 6y 的值。
答案:10
四、应用题
1. 某商店进行促销活动,规定购买商品满100元减10元,满200元减20元,以此类推。
小华购买了150元的商品,小李购买了300元的商品,请计算他们各自实际支付的金额。
答案:小华实际支付140元,小李实际支付260元。
2. 一个长方形的长是宽的两倍,若长方形的周长为24厘米,求长方形的长和宽。
答案:长为8厘米,宽为4厘米。
代数式练习题_代数式经典习题
22.a 的相反数是 a,b 的绝对值是 b,则 ab= 。
23.某数表示的点在数轴离开原点的距离为 5,则此数是 。
24.一个数的相反数是 5,另一个数的相反数为-7,则两数的和为 。
25、用四舍五入法取近似值:372503(保留三个有效数字),372503=
26.a>0,b>0,a>b,则1
。
38.计算:(a-b)-(放在前面带有“-”号的括号内是 。 40.三个连续的整数第一个为 n,则其它两个分别是 和 。 41.三个连续奇数,第二个为 n,则其它两个分别是 和 。 42.三个连续偶数,第三个为 2n+1,则其它两个分别是 和 。 43.一元一次方程的标准形式是 。 44.某数的一半比某数的 3 倍大 4,设某数为 x,则可得方程为 。 45.有一项工程,甲独作 12 天完成,乙独作 10 天完成,设两人合作 x 天完
第二章 代数式练习题
一、填空题。
1.梯形的上底为 10cm,下底为 12cm, 高为 3cm,则面积为
。
2.棱长为 acm 的正方体的表面积是
cm2。
3.一个环形,外圆的半径 R=15cm,内圆半径 r=5cm,则环形面积为
。
4.比 x 的平方的 1 少3的数是
。
2
5.a、b 两数的平方差是
。
6.产量由 nkg 增长 15%,就达到了
。
33.a 离开原点的距离为 0,b 离开原点的距离为 1,且 b>0,则 a+b=
。
34.数 a 的平方是 36,则 a=
。
35.把-3x2y-4xy2-x3+y3 按 x 的降幂排列
。
36.把多项式 6x3y2-3x2y3-5xy-3x-6y4,按 y 的升幂排列
(完整版)代数式练习题
七上代数式练习题一.选择题(共14小题)1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元2.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣33.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元4.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元5.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣26.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.47.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定8.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或309.如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa10.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)11.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.612.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元13.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元14.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b元,则原售价为()A.(a+b)元B.(a+b)元C.(b+a)元D.(b+a)元二.填空题(共9小题)15.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.17.一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.18.端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.19.若a﹣2b=3,则9﹣2a+4b的值为.20.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.21.已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为.22.三个连续整数中,n是最大的一个,这三个数的和为.23.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共6小题)24.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a﹣1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米,(1)用含a的代数式表示s;(2)已知a=11,求s的值.25.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.26.某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.若2元的奖品购买a 件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.27.(A类)已知a2+2a+1=0,求2a2+4a﹣3的值.(B类)已知a2+b2+2a﹣4b+5=0,求2a2+4b﹣3的值.解:我选做的是类题.28.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).29.某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?2017年10月20日133****2286的初中数学组卷参考答案与试题解析一.选择题(共14小题)1.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.2.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【分析】首先根据“折”的含义,可得x变成x,是把原价打8折后,然后再用它减去10元,即是x﹣10元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣10)元出售,是把原价打8折后再减去10元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.3.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选A【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.4.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【分析】求用买1个面包和2瓶饮料所用的钱数,用1个面包的总价+三瓶饮料的单价即可.【解答】解:买1个面包和3瓶饮料所用的钱数:(a+3b)元;故选D.【点评】此题考查列代数式,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.5.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+b)元B.(a+b)元C.(b+a)元D.(b+a)元【分析】可设原售价是x元,根据降价a元后,再次下调了20%后是b元为相等关系列出方程,用含a,b的代数式表示x即可求解.【解答】解:设原售价是x元,则(x﹣a)(1﹣20%)=b,解得x=a+b,故选A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解6.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣2【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.7.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?()A.甲B.乙C.一样D.无法确定【分析】先求出它们的面积,再求出每平方厘米的卖价,即可比较那种煎饼划算.【解答】解:甲的面积=100π平方厘米,甲的卖价为元/平方厘米;乙的面积=225π平方厘米,乙的卖价为元/平方厘米;∵>,∴乙种煎饼划算,故选:B.【点评】本题考查了列代数式,是基础知识,要熟练掌握.9.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.10.如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.11.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.12.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.13.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【解答】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.故选:A.【点评】此题主要考查了列代数式,正确得出各种颜色珠子的数量是解题关键.14.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣90%)(1+85%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元【分析】由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:4月的产值×(1+15%),进而得出答案.【解答】解:由题意可得:4月份的产值为:a(1﹣10%),5月份的产值为:a (1﹣10%)(1+15%),故选:C.【点评】此题主要考查了列代数式,正确理解增长率的定义是解题关键.二.填空题(共9小题)15.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a万元.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.17.一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a元.【分析】现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.【解答】解:2500a×80%=2000a(元).故答案为2000a元.【点评】本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.18.端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.【分析】8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.【解答】解:8折=80%,a÷80%=,故答案为:.【点评】本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.19.若a﹣2b=3,则9﹣2a+4b的值为3.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.21.已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为3.【分析】根据非负数的性质,得出m=﹣1,n=0,由此即可解决问题.【解答】解:∵多项式x2+2x+n2=(x+1)2+n2﹣1,∵(x+1)2≥0,n2≥0,∴(x+1)2+n2﹣1的最小值为﹣1,此时m=﹣1,n=0,∴x=﹣m时,多项式x2+2x+n2的值为m2﹣2m+n2=3故答案为3.或解:∵多项式x2+2x+n2的值为﹣1,∴x2+2x+1+n2=0,∴(x+1)2+n2=0,∵(x+1)2≥0,n2≥0,∴,∴x=m=﹣1,n=0,∴x=﹣m时,多项式x2+2x+n2的值为m2﹣2m+n2=3故答案为3.【点评】本题考查代数式求值,非负数的性质等知识、学会整体代入的思想解决问题是解题的关键.22.三个连续整数中,n是最大的一个,这三个数的和为3n﹣3.【分析】先利用连续整数的关系用n表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是表示出最小整数.23.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三.解答题(共6小题)24.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a﹣1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米,(1)用含a的代数式表示s;(2)已知a=11,求s的值.【分析】(1)中直接利用:总路程=市区的传递路程+三峡坝区的传递路程,代入相应的代数式,去括号,合并同类项,即可.(2)已知a的值,求s,直接把a的值代入(1)中所得出的式子,即可求出s 的值.【解答】解:(1)s=700(a﹣1)+(881a+2309),=1581a+1609;(2)a=11时,s=1581a+1609=1581×11+1609,=19000.【点评】此题的关键是找到题目中给出的三个量的关系:总路程=市区的传递路程+三峡坝区的传递路程.然后把对应的数值或式子代入,根据要求解题即可.代数式求值问题是把字母的值直接代入相应的代数式即可.25.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【分析】(1)把a与b的值代入计算即可求出值;(2)原式利用完全平方公式变形,将a与b的值代入计算即可求出值.【解答】解:(1)当a=3,b=﹣1时,原式=2×4=8;(2)当a=3,b=﹣1时,原式=(a+b)2=22=4.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.26.某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.若2元的奖品购买a件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.【分析】(1)应设出另外两种奖品的件数,根据件数和钱数来解答;(2)根据取值范围及整数值来确定购买方案.【解答】解:(1)设三种奖品各a,b,c件则a≥1,b≥1,c≥1,解方程组得:b=.c=.(2)因为b≥1,b=,所以55﹣4a≥3,解得a≤13,因为c≥1,c=,所以a﹣7≥3,a≥10,解得,10≤a≤13,当a=10时,b和c有整数解,则a=10,b=5,c=1;当a=13时,b和c有整数解,则a=13,b=1,c=2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.根据取值范围及整数值来确定购买方案.27.(A类)已知a2+2a+1=0,求2a2+4a﹣3的值.(B类)已知a2+b2+2a﹣4b+5=0,求2a2+4b﹣3的值.解:我选做的是A或B类题.【分析】A、将a2+2a+1=0看作一个整体,把2a2+4a﹣3转化为2a2+4a+2﹣5的形式解答.B、将a2+b2+2a﹣3b+5=0转化为完全平方的形式,分析后解答.【解答】解:A、∵a2+2a+1=0,∴2a2+4a﹣3=2a2+4a+2﹣5=2(a2+2a+1)﹣5=2×0﹣5=﹣5.B、∵a2+b2+2a﹣4b+5=0,∴(a+1)2+(b﹣2)2=0.∴a=﹣1,b=2,∴2a2+4b﹣3=2+8﹣3=7.【点评】此题考查了对完全平方公式和对整体思想的掌握情况,难度不大,是一道好题.28.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).【分析】(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.【解答】解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.29.某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?【分析】(1)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费;(2)分别计算x=20时对应的费用,再进行比较.【解答】解:(1)采用计时制应付的费用为:0.05•x•60+0.02•x•60=4.2x(元).采用包月制应付的费用为:50+0.02•x•60=(50+1.2x)(元);(2)若一个月内上网的时间为20小时,则计时制应付的费用为84元,包月制应付的费用为74元,很明显,包月制较为合算.【点评】表示费用的时候注意单位的统一,正确代值计算比较大小.解决问题的关键是读懂题意,找到所求的量的等量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点1代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式-43242z y x 的次数是2+3+4=9而不是13次。
(4)单项式通常根据实验室的次数进行命名。
如x 6是一次单项式,xyz 2是三次单项式。
知识点5、多项式的有关概念(1)多项式:几个单项式的和叫做多项式。
(2)多项式的项:多项式中的每个单项式叫做多项式的项。
(3)常数项:不含字母的项叫做常数项。
(4)多项式的次数:多项式里次数最高项的次数叫做多项式的次数。
(5)整式:单项式与多项式统称整式。
注意:a 、概念中“几个单项式的和”是指两个或两个以上的单项式相加。
如x a a 432++,2+3-7等这样的式子都是多项式。
b 、多项式的每一项都包含前面的符号,如多项式-9623-+a xy 共有三项,它们分别是-32xy ,a 6,-9,一个多项式中含有几个单项式就说这个多项式是几项式如-9623-+a xy 共有三项,所以就叫三项式。
c 、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数,如多项式-9623-+a xy 是由三个单项式-32xy ,a 6,-9组成,而在这三个单项式中-32xy 的次数最高,且为4次,所以这个多项式的次数就是4.这是一个四次三项式。
对于一个多项式而言是没有系数这一说法的。
知识点6、整式的书写(1)书写含乘法运算的式子a 、省乘号要小心。
当式子中出现乘法运算时,有些乘号可以省略不写。
字母与字母相乘、数字与字母相乘、数字(字母)与带括号的式子相乘、带括号的式子之间相乘时,其乘号可以不写或写作“⋅”,但对于数字与数字相乘时乘号则不能省略,也不能用“⋅”。
b 、数字在前,字母在后。
数字与字母相乘,数字与带括号的式子相乘时除中间乘号可以省略不写之外,还必须把数字写在字母或括号的前面。
c 、带分数一定要化成假分数。
(2)书写含除法运算的式子当式子中出现含有字母的除法运算时,结果一般不用“÷”,而改成分数线,如4÷ab 应写作4ab ,()73÷+a 应写作73+a (3)书写含单位名称的式子 a 、遇和差,括号加 b 、是积商,直接放知识点7、同类项的概念像m 25与-m 40,24ab 与232ab 这样,所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:a 、同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。
二者缺一不可。
b 、同类项与系数、字母的排列顺序无关。
c 、所有的常数项都是同类项,单独的一项不能说是同类项,同类项至少针对两项而言。
知识点8、合并同类项(1)定义:把多项式中的同类项合并成一项,叫做合并同类项。
(2)法则:合并同类项后,所得系数是合并前各同类项系数的和,且字母部分不变。
它可以用“一变”、“两不变”来概括。
“一变”是指同类项的系数变;“两不变”是指相同字母和相同字母的指数不变。
口诀:同类项,需判断,两相同,是条件。
合并时,需计算,系数加,两不变。
注意:a 、系数相加时,一定要带上各项前面的符号。
b 、合并同类项一定要完全、彻底,不能有漏项。
c 、只有是同类项才能合并。
d 、合并同类项的结果可能是单项式也可能是多项式。
知识点9、去括号法则:括号前面是正号,去掉括号不变号;括号前面是负号,去掉括号要变号。
代数式经典练习题1. 在式子m+5,ab,a=1,0,π,3(x+y), 2n k 180π,x>3中,是代数式的有( ) A 6个 B 5个 C 4个 D 3个2. 下列式子中不是整式的是( )A -23xB x 1C 12x +5xD 0 3.下列判断:(1)π2xy -不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)x x +1是整式,其中正确的有( )A 1个B 2个C 3个D 4个4. 在下列代数式:x y x abc ab3,,0,32,4,3---中,单项式有( )A 3个B 4个C 5个D 6个5. 单项式7243xy -的次数是( )A 8次B 3次C 4次D 5次6. 下列说法中正确的是( )A 代数式一定是单项式B 单项式一定是代数式C 单项式x 的次数是0D 单项式-π2x 2y 2的次数是67. 在下列代数式:1,212,3,1,21,2122+-+++++x x b ab b a ab ππ中,多项式有A 2个B 3个C 4个D 5个8.下列说法正确的是( )A .单项式23x -的系数是3-B .单项式3242π2ab -的指数是7C .1x 是单项式 D .单项式可能不含有字母9. 下列多项式次数为3的是( )A -5x 2+6x -1B πx 2+x -1C a 2b +ab +b 2D x 2y 2-2xy -110. 下列说法正确的是( )A 3x -5的项是3x 和5B 21+x 和3xy都是单项式 C z yx +和222y xy x ++都是多项式 D 212-x 和7ab都是整式11. 若m 、n 都是自然数,多项式222m n m n a b ++-的次数是( )A mB 2nC 2m n +D m 、2n 中较大的数12. 多项式8x 2+mxy-5y 2+xy-8中不含xy 项,则m 的值为( )A 0B 1C -1D -513. 当x =1时,代数式px 3+qx +1的值为2003,则当x =-1时,代数式px 3+qx +1的值A -2001B-2002 C -2003 D 200114.甲数为a ,甲数是乙数的8倍小3,用甲数表示乙数 ,乙数是甲数的8倍小3,用甲数表示乙数 。
15.若m 1ab 6--是四次单项式,则m 的值是 ,系数是 。
16. 单项式32b a -的系数是 ,次数是 。
17. 单项式243ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 。
18. 若单项式()122n n x y --是关于x y ,的三次单项式,则n =19. 当2y -x =5时,100)2(3)2(52-+---y x y x 的值是______20. 已知3a b a b -=+,代数式2()4()3()a b a b a b a b +---+的值为 。
21. 当1x =,时 5313ax bx cx +++=,当1x =-,时 531ax bx cx +++= 。
22. 写出系数是-2,且含有字母a 、b 的所有4次单项式:_____23. 已知关于x 的多项式(a -1)x 5+x |b +2|-2x +b 是二次三项式,则a =____,b =____。
24. 受洪水影响,我国南方某市有x 人急需转移到安全地带,原计划转移时间是a 小时,由于天气原因,必须提前2小时转移完毕,那么每小时需多转移______人.25. 已知多项式-6xy-7x 3m-1y 2+34x y 3-x 2y-5是七次多项式,求m 值. 26.已知式子74692=--y y ,求7322++y y 的值27. 当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,求代数式31235ax bx -- 的值。
28. 已知代数式4323ax bx cx dx ++++,当2x =时它的值为20;当2x =-时它的值为16,求2x =时,代数式423ax cx ++的值29. 已知3xy x y =+,求代数式3533x xy y x xy y-+-+-的值。
30. 若多项式()22532m x y n y +--是关于x y ,的四次二项式,求222m mn n -+的值31. 已知单项式4312x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值。
32. 当多项式()()13212x 522--+---x n x m 不含二次项和一次项时,求m 、n 的值。
33. 有一串单项式:-x ,2x 2,-3x 3,4x 4,…,-19x 19,20x 20.①你能说出它们的规律是什么吗? ② 写出第2007个单项式; ③写出第n 个,第(n +1)个单项式。