最短路径问题-PPT课件
合集下载
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
《最短路径问题》PPT课件
A
a 3、连接PA,PB,由对称轴 的性质知,PA= P1A,
P1
PB=P2B
∴先到点A处吃草,再到点B
处饮水,最后回到营地,
这时的放牧路线总路程最
短,即 (PB+BA+AP)min
• 证明:
P2
b ∵ PA1+A1B1+B1P
B1 B
.P
河
= P1A1+A1B1+B1P2 > P1A+AB+BP2
前面和右面
D D1
③
A 1 A1
C1
2
4
B1
AC1 =√52+22 =√29
左面和上面
• 1、如图是一个长方体木块,已知 AB=5,BC=3,CD=4,假设一只蚂蚁 在点A处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 7 4 。
D
4
C
A
5
B3
• 2、现要在如图所示的圆柱体侧面A点 与B点之间缠一条金丝带(金丝带的宽 度忽略不计),圆柱体高为6cm,底面 圆周长为16cm,则所缠金丝带长度的 最小值为 10cm 。
在河上建一座桥MN,桥造在何处才能使从A到B
的路径最短?(假设河的两岸是平行的直线,桥
要与河垂直)
.A M
作法: 1、将点B沿垂直与河岸的方
向平移一个河宽到E
N
2、. E连接AE交河对岸与点M,则
.点BM为建桥的位置,MN为 所建的桥。
A C
M ND E
B
• 证明: ∵ AC+CD+DB = AC+CD+CE = AC+CE+CD > AE+CD = AM+ME+CD = AM+NB+MN ∴ AC+CD+DB > AM+NB+MN
《最短路径问题》PPT课件
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
一次函数之最短路径问题ppt课件【可编辑全文】
29
课下任务
3、如图,直线y=-x+7与两坐标轴分别交于AB两点,O为坐标原点,点Q 为直线AB上一个动点
y A
Q ● P●
-1 o●
B x
30
课下任务
3、如图,直线y=-x+7与两坐标轴分别交于AB两点,O为坐标原点,点Q 为直线AB上一个动点
y A
垂线段最短
-1 o● P●
Q ●
B x
31
20
任务拓展 变式五:如图,已知平面直角坐标系中,A、B 两点的坐标分别为A(2,—3)B(4, 1), 若点P(m,0)和点Q(m+1,0) 是x轴上的两个动点, 则当m= 时, AP+PQ+QB最小.
21
任务拓展
将点B(4,1)向左平移1个单位到B'(3,1),连接AB'交x轴于点P,再将点P向右平移一 个单位即为点Q
在平面直角坐标系中,矩形 半轴上, , ,
的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正
OACB
D为边OB的中点. (1)若E为边OA上的一个动点,
OA 3 OB 4
y
当△CDE的周长最小时, 求点E的坐标;
B
C
D
O
Ax
E
11
任务演练
如图,作点D关于x轴的对称点 ,
连 由接题意得C与CDx(3轴,4交) D于(0点,2E),即为所求。
2、直线y=kx+b过点A(2,-3)和点B(4,1),则这条直线解析式为:
. 它与
x轴交点(4,坐1)标为
,与y轴交点坐标为
(-4,-1)
( 7 ,0) (0,-7) 自任主务独要立求完:2成
课下任务
3、如图,直线y=-x+7与两坐标轴分别交于AB两点,O为坐标原点,点Q 为直线AB上一个动点
y A
Q ● P●
-1 o●
B x
30
课下任务
3、如图,直线y=-x+7与两坐标轴分别交于AB两点,O为坐标原点,点Q 为直线AB上一个动点
y A
垂线段最短
-1 o● P●
Q ●
B x
31
20
任务拓展 变式五:如图,已知平面直角坐标系中,A、B 两点的坐标分别为A(2,—3)B(4, 1), 若点P(m,0)和点Q(m+1,0) 是x轴上的两个动点, 则当m= 时, AP+PQ+QB最小.
21
任务拓展
将点B(4,1)向左平移1个单位到B'(3,1),连接AB'交x轴于点P,再将点P向右平移一 个单位即为点Q
在平面直角坐标系中,矩形 半轴上, , ,
的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正
OACB
D为边OB的中点. (1)若E为边OA上的一个动点,
OA 3 OB 4
y
当△CDE的周长最小时, 求点E的坐标;
B
C
D
O
Ax
E
11
任务演练
如图,作点D关于x轴的对称点 ,
连 由接题意得C与CDx(3轴,4交) D于(0点,2E),即为所求。
2、直线y=kx+b过点A(2,-3)和点B(4,1),则这条直线解析式为:
. 它与
x轴交点(4,坐1)标为
,与y轴交点坐标为
(-4,-1)
( 7 ,0) (0,-7) 自任主务独要立求完:2成
最短路径问题 ppt课件
12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)
13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册
迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
《最短路径问题》课件
参考文献
• 算法导论 • 计算机算法设计与分析 • 图解算法
《最短路径问题》PPT课 件
# 最短路径问题PPT课件
介绍最短路径问题的定义和概念,以及为什么最短路径问题在实际生活中很 重要。 同时,探讨最短路径问题的基本性质。
最短路径的求解
1
暴力算法
枚举所有路径并找到最短路径,但随着
Dijkstra算法
2
节点增多,复杂度呈指数级上升。
介绍算法的原理和步骤,通过不断更新
距离表找到最短路径。
3
Floyd算法
介绍算法的原理和步骤,通过动态规划 计算最短路径。
最短路径问题的应用
铁路、公路、航空、航 海
路线规划在交通行业中的重 要性和应用。
互联网中的路由算法
讲解互联网通信中使用的最 短路径算法。
生命科学领域的基因测 序和蛋白质分析
如何利用最短路径问题的变种
任意两点之间的最短路径问题
探讨在图中找到任意两点之间的最短路径。
带负权边的最短路径问题
介绍具有负权边的图中求解最短路径问题的方法。
一般图的最短路径问题
分析在一般图中求解最短路径的挑战和方法。
更多变种问题的介绍
介绍其他类型的最短路径问题及其应用。
总结
总结最短路径问题的基本概念,分析各种算法的优缺点及适用范围。 同时,展望最短路径问题的未来发展方向。
最短路径PPT课件
小结
本节课,我们通过什么方法解决了最短 路径问题?在解决问题的过程中,你有 哪些收获?
四边形
菱形OBCD在平面直角坐标系中的位置如图所 示,顶点B(2,0),∠DOB=60°,点E坐标 为 (0, 3),点P是对角线OC上一个动点,则 EP+BP最短的最短距离是______。
y
D
C
●
P
●
O
B
x
●
13.4 课题学习
最短路径问题
导入新课
复习引入
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
①
②
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有
线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
八年级八班同学做游戏,在活动区 域边缘放了一些球(如下图),小明按 怎样的路线跑,去捡哪个位置的球, 才能最快拿到球跑到目的地A?
M M1
N
N1
B
理由:另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
∴CB=CB',C'B=C'B'.
B
∴AC+CB=AC+CB'=AB'。
A
人教版八年级数学上册1最短路径问题教学课件
最短路径问题
如图,在直线 上求作一点 ,使得 + 最短.
、 在直线 异侧
′
、 在直线 同侧
例:造桥选址问题
例
如图, 和 两地在一条河的两岸,现要在河上造一座桥
. 桥造在何处可使从 到 的路径 最短(假定
河的两岸是平行的直线,桥要与河垂直)?
作 ′ 关于直线 的对称点 ′′.
′
′
′
′′
连接 ′′,与直线 交于一点即
为所求点 .
问题
在直线 上求作两点 ,,使
得四边形 的周长最小.
练习 已知线段 ,点 、 在直线 的同侧,在直线 上求
作两点 ,(点 在点 的左侧)且 = ,使得
四边形 的周长最小.
思考
哪些点是定点?
哪些点是动点?
思考
问题是否可以简化?
问题转化为:
当点 在什么位置时, + + + 最小.
问题转化为:当点 在什么位置时, + 最小.
′
思考
通过哪种图形的变化(轴对称,平移等),
座桥 .桥造在何处可使从 到 的路径
最短(假定河的两岸是平行的直线,桥要与河垂直)?
当点 在直线 的什么位置时,
+ + 最小?
实际问题用数学语言表达.
如图,在直线 上求作一点 ,使得 + 最短.
、 在直线 异侧
′
、 在直线 同侧
例:造桥选址问题
例
如图, 和 两地在一条河的两岸,现要在河上造一座桥
. 桥造在何处可使从 到 的路径 最短(假定
河的两岸是平行的直线,桥要与河垂直)?
作 ′ 关于直线 的对称点 ′′.
′
′
′
′′
连接 ′′,与直线 交于一点即
为所求点 .
问题
在直线 上求作两点 ,,使
得四边形 的周长最小.
练习 已知线段 ,点 、 在直线 的同侧,在直线 上求
作两点 ,(点 在点 的左侧)且 = ,使得
四边形 的周长最小.
思考
哪些点是定点?
哪些点是动点?
思考
问题是否可以简化?
问题转化为:
当点 在什么位置时, + + + 最小.
问题转化为:当点 在什么位置时, + 最小.
′
思考
通过哪种图形的变化(轴对称,平移等),
座桥 .桥造在何处可使从 到 的路径
最短(假定河的两岸是平行的直线,桥要与河垂直)?
当点 在直线 的什么位置时,
+ + 最小?
实际问题用数学语言表达.
长方体中的路径最短问题PPT课件
建立数学模型,将问题转化为求长方 体表面上两点之间的最短距离,以及 求长方体内部两点之间的最短路径。
考虑长方体的几何特性,最短路径可 能沿着长方体的表面或者通过其内部。
问题的求过计算两点之间的直线距离来 得到最短路径。
02
对于长方体内部的两点,需要采 用图论的方法,将长方体表面展 开为平面图,然后应用平面图中 的最短路径算法求解。
长方体的三个维度
长方体有三个不同的维度,分别是长 度、宽度和高度。
空间几何中的距离概念
01
02
03
距离的定义
在空间几何中,两点之间 的最短路径长度被称为这 两点之间的距离。
距离的测量
距离可以通过多种方式测 量,如直线距离、欧几里 得距离等。
距离的性质
距离具有非负性、对称性、 三角不等式等性质。
空间几何中的最短路径问题
确定长方体中任意点到任意平面的距 离公式。
算法步骤和流程
算法流程 输入长方体的三个边长a、b和c。
输入起点和终点坐标。
算法步骤和流程
根据公式计算起点和终点之间的距离。 根据距离公式计算最短路径。
输出最短路径。
算法实现和代码示例
算法实现 使用Python语言实现算法。 使用NumPy库进行数学计算。
问题的限制条件和特殊情况
限制条件
长方体的边长a、b和c必须大于0,且a、b、c不能为0。
特殊情况
当长方体为正方体时,所有边长相等,此时最短路径问题变得较为简单。
04
解决方案
算法步骤和流程
算法步骤 确定长方体的三个边长,分别为a、b和c。
确定长方体中任意两点间的距离公式。
算法步骤和流程
确定长方体中任意点到任意直线的距 离公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条河的两岸,现要在河
上建一座桥MN,桥造
在何处才能使从A到B的 A· M
路径AMNB最短?(假
设河的两岸是平行的直
线,桥要与河垂直)
N
E
B
作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,
2.连接AE交河对岸与点M,
则点M为建桥的位置,MN为所建的桥。
证明:由平移的性质,得 BN∥EM 且BN=EM,
分析:当AB、BC和AC三条边的长度恰好能够体现在 一条直线上时,三角形的周长最小
D
B
C
E
(Ⅲ)一点在两相交直线内部
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点 B,C,组成三角形,使三角形周长最小.
分别作点A关于OM,ON的对称 点A′,A″;连接A′,A″,分别交 OM,ON于点B、点C,则点B、 点C即为所求
MN=CD, BD∥CE, BD=CE,
所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC.CD.DB.CE, A·
则AB两地的距离为:
AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,
B
·
A
·
l C
B′
知识探究
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
追问1 对于问题2,如何
A
将点B“移”到l 的另一侧B′
·
处,满足直线l 上的任意一点
C,都保持CB 与CB′的长度
相等?
B
·
l
知识探究
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问2 你能利用轴对称的
A
·
有关知识,找到上问中符合条
件的点B′吗?
B
·
l
知识探究
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法: (1)作点B 关于直线l 的对称
点B′; (2)连接AB′,与直线l 相交
于点C. 则点C 即为所求.
B′
知识探究
问题3 你能用所学的知识证明AC +BC最短吗?
A
·
C′ C
B
·
l
B′
知识探究
问题3 你能用所学的知识证明AC +BC最短吗?
证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
A
·
C′ C
B
·
l
B′
知识探究
追问1 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
游戏变型
如图所示,八年级某班同学做游戏,在活动区域l摆 放了一排篮球,小明按怎样的路线跑,去捡哪个位置的 篮球,才能最快拿到球并跑到终点处?
终点
l
小明
知识探究
追问1 这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
·B A·
l
知识探究
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A
·
C′ C
B
·
l
B′
知识探究
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
B′
学以致用
相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
13.4 课题学习 最短路径问题
情境导入
如图所示,八年级某班同学做游戏,在活动区域l摆 放了一排篮球,小明按怎样的路线跑,去捡哪个位置的 篮球,才能最快拿到球并跑到终点处?
终点
l
小明 你能将这个问题抽象为数学问题吗?
你能将这个问题抽象为数学问题吗?
B
l
C
D
E
A
线段AB(连接AB,交直线l与点D,点D即为拾球的位置,原因是“两点之间,线段最短”.
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
学以致用
从图中的A 地出发,到一条笔直的河边l 饮马,然后 淌水到B 地(要求淌水的距离最短).问到河边什么地 方饮马并淌水可使他所走的路线全程最短?
A l
B
1. 如图,A.B两地在一
MC
即AC+CD+DB >AM+MN+BN
ND
所以桥的位置建在CD处,AB两地的路程最短。
E
归纳总结
1.将军饮马类问题解决的基本套路
2.造桥选址问题获得了哪些经验
3.解决最短路径问题,常用的图形变 换是什么?目的何在
(Ⅲ)一点在两相交直线内部
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B,C, 组成三角形,使三角形周长最小.