光的吸收色散和散射

合集下载

物理光学课件:1_4光的吸收色散和散射

物理光学课件:1_4光的吸收色散和散射
正常色散:dn/d<0,出现于介质的一般吸收光谱区域 反常色散:dn/d>0,出现于介质的选择吸收光谱区域
(2) 准确测定法
利用最小偏向角原理,分别测量出棱镜物质对不同波长单色光的折射
率,从而精确地得到n 曲线。
实验色散曲线
n
重火石玻璃
1.70
1.60
1.50 1.40
0
可见光
轻火石玻璃
水晶 冕玻璃
固有频率0附近的折射率与吸收(经典电子理论)
M
N
在反常色散区MN内出现 折射率c 2
2
n2
反常色散曲线
特点:折射率随波长的增大而增大,即色散率
dn 0
d
一种物质的全部色散曲线:各波段的正常色散曲线与反常色散 曲线之总和
特点:
图11-29 一种介质的全波段色散曲线
特点: 在选择吸收区,折射率随波长出现突变。在选择吸收区两侧, 折射率随波长迅速变化,并且在长波一侧的折射率远大于短波一侧。 远离吸收区处,折射率随波长的变化表现为正常色散特征。
结论:反常色散并不反常。它反映了介质在选择吸收区及其附近的 色散特征。如果介质在某一光谱区出现反常色散,则一定表 明介质在该波段具有强烈的选择吸收特性。而在正常色散的 光谱区,介质则表现为均匀吸收特性。
(一) 物质对光吸收的一般规律 1 朗伯定律:
设光通过厚度为dx的介质层时, 光强由I减少为(I-dI),则有:
dI = Idx
成立,
积分可得通过厚度为L的介质后的光强 I ,
I0
I dI
l
dx
I I0
0
I I0el
—— 吸收系数, 单位长度上的光强吸收率
这就是布格尔定律或朗伯定律。

光的吸收、色散和散射_图文

光的吸收、色散和散射_图文
一连续光谱的光通过有选择性吸收的介质,然后通过分光仪得到的光谱 就是吸收光谱 与 K(ω)-ω 线一致
§6.2 光的色散
光的色散(分光)现象
由折射定律可知:折射率n是随波长分布的:n(λ) 色散率:单位波长差所产生折射率差,是介质色散程度的度量
(6-21)

(6-22)
一、正常色散 折射率随波长增加而减小的色散 ---正常色散
电子离开平衡位置的距离 若单位体积内有N个原子,则单位体积内的平均电偶极矩
(6-2)
2、第二牛顿定律F=ma:受迫振动的电子的运动方程为
受迫力
阻尼力 准弹性力
光波电场强度
将电子振动的运动方程改写为
(6-5)
解方程得
---光与介质相互作用经典理论的基本方程
代入(6-2)式得
由 电极化率 是复数,可写为 并将(6-6)与(6-7)式对照可得
吸收带内为反常色散区 吸收带之间均为正常色散区
钠蒸气由底部向顶部扩散 管内蒸气密度由顶部向底部逐渐增加 这相当于一蒸气棱镜其厚度由上向下增加
分两部分:1)S1,L1,L2,S2 准直聚焦, S1在S2上成像 2)S2,L3,P,L4 分光系统
当管子未加热时,气体均匀 S1的白光成像于S2后, 在分光仪焦面上得一窄的水平光谱带
1、按电磁理论:每个次波的振幅与它频率的平方成正比,光强与振幅成正比 所以散射光强度与频率的四次方成正比
∝∝
∴短波长的光比长波长的光散射更多
解释大气现象: ①为什么天空呈光亮
③中午太阳呈白色
②天空为什么呈蓝色 ④旭日和夕阳呈红色
2、散射光强分布

3、散射光是偏振光
二、米散射 理论尚不成熟,仅适用于导电粒子

光的吸收、散射和色散

光的吸收、散射和色散
光的吸收和散射
光的吸收 光波通过介质时,有一部分光能被吸收,转化为 其他形式的能量。 透明物质:能量损失小。 一般吸收:吸收很小,且在某一给定波段内几乎 是不变的。 选择吸收:吸收很多,且随波长而剧烈地变化。 例如石英对可见光吸收甚微,但是对3.5~5.0m 的红外光却强烈吸收。
ห้องสมุดไป่ตู้ 光的散射
1.光散射的原因 光波在透明介质中传播时,有部分光波偏离原来的传播 方向而向四面八方传播的现象叫光的散射。 2.衍射与散射的区别:
衍射是由于个别的不均匀区域(如孔、缝或障碍物等) 所形成的,这些不均匀区域范围的大小一般可与波长相比拟。
散射则是由于大量排列不规则的非均匀的小“区域”的 集合形成的,这些非均匀小区域的线度一般比波长小。
一、散射问题的描述 散射截面:散射到方向单位立体角中的电磁波能流
S s ds Ss R 2 d
0
s
8 2 4 r0 ( ) 3 0

s
2 2 r0 3 ( 0 ) 2 2 4
2
1 d ( ) r02 (1 cos 2 ) 2
2 2 s r0 0.665 10 28 m 2 3
光的散射分类
一类:散射光的波长不发生变化,如瑞利散射,米氏散射; 另一类:散射光波长发生了变化,如拉曼散射,布里渊散射, 康普顿散射。 ① 非纯净介质中的光散射 如空气中的尘埃、烟雾、小水滴,还有乳浊液、胶体等。 散射规律:a)不变; b)I4(是瑞利散射)

纯净介质中的分子散射
由于纯净介质中分子的无规则热运动,使得分子 密度出现涨落发生的散射叫分子散射。 正午
解释现象:
•晴朗的天空是蓝的; •白昼的天空是亮的;
傍晚

物理光学课件:1_4光的吸收色散和散射

物理光学课件:1_4光的吸收色散和散射
所以透明是一个相对的概念。是由其内部原子结构和电磁波 穿透力决定的。
二,光的色散
❖ 光的色散的定义: 光在物质中传播时,其折射率(传播速度)随 光波频率(波长)而变的现象。 ❖ 光的色散分两种:正常色散、反常色散。
正常色散:折射率随光波长的 增大而减少,其色散曲线 n呈 单调下降。
色散率:dn/d,介质的折射率随波长的变化率
2.物理机制
光通过非均匀物质时,杂质微粒的线度一 般比光的波长小,它们彼此间的距离比波长大, 而且排列毫无规则。因此,当它们在光作用下 振动时彼此间无固定的相位关系,次级辐射的 不相干叠加,各处不会相消,从而形成散射光。
瑞利散射:1) 稀薄气体以及悬浮微粒的散射(d <λ/ 10)
2) 纯净气体或液体的散射(分子散射)
例2. 蜜蜂靠天空光的偏振性辨别方向(蜜蜂的眼睛中 有对偏振敏感的器官)
米氏散射的特点:
(1)散射光的强度与入射光波长的依赖关系不很显著, 因此散射光的颜色与入射光的颜色相近;(白云)
(2)前向散射较多(瑞利散射前后对称,中间最少)
( 极强光, 不再是常数,以上的布格尔定律不成立。)
自变透明现象,自变吸收现象: 非线性效应 比尔定律
比尔(A. Beer)于1852年从实验上证明,稀释溶液 的吸收系数a 正比于溶液的浓度C
C
I I0eCl
式中为与溶液浓度无关的常数,反映了溶液中吸收
物质分子的特征。
仅适用于稀释溶液。
(二) 吸收的波长选择性
选择吸收是光和物质相互作用的普遍规律,由于选择吸收, 任何光学材料在紫外和红外端都有一定的透光极限,这一 点对于制作分光仪器中的棱镜,透镜材料选取显得非常重 要。
光的吸收
❖ (1)对于可见光来说,各种物质的吸收系数

lec2_光的散射、吸收和色散

lec2_光的散射、吸收和色散
24
2.反常色散
光频率(波长 )折射率 勒鲁(Le Roux)于1860年首先在碘蒸气棱镜内 观察到了紫光的折射率比红光的折射率小,由于这 个现象与当时观察到的正常色散现象相反,勒鲁称 它为反常色散. 特点: 不满足正常色散经验公式.色散曲线的形状与 正常色散曲线大不相同,产生严重的扭曲或割断 现象.
14
原子吸收光谱线并 不是严格地几何意 义上的线
15
地球大气层对可见光和波长300nm以上的紫外线 是透明的,波长短于300nm的紫外线将被空气中的臭 氧层强烈吸收。 对于红外辐射,大气层在某些狭窄的波段内是透 明的,透明的波段称为“大气窗口”.波段从1μm到 15μm有七个窗口.
16
Ocean Optics公司生产的 NIR256型光谱分析仪
n 2 n1 n 2 1
dn 或 d
色散率的数值越大,表明介质的折射率随波长变化越快。
22
一块三棱镜,用作分光元件,则采取色散大的材料(火石玻璃); 用来改变光路的方向,如光学仪器中的转像,则采用色散小的材料(冕玻璃)
23
2.2
正常色散和反常色散
1.正常色散
2 2 2 2 2
tg ( ) 2 2 0
33
(1)振幅与阻尼系数、频率的关系 阻尼系数越小,振子的振幅 大小分布图越尖锐. 当入射光波频率处于振子的 固有频率附近时,振幅有极大 值. 振子的最大振幅所对应的角频:
02
2
2
34
(2)相位与阻尼系数、频率的关系 当入射光波频率等于振子的谐 振频率时,振子振荡相位与入射 光波相位相差 π / 2. 对于弱阻尼情形,入射光波频 率小于振子的谐振频率,振子相 位与入射光波相位相同;入射光 波频率大于振子的谐振频率时, 振子相位与入射光波相位相差π 。 对于强阻尼情形,相位随频率的 变化较缓慢而已.

光的吸收、色散和散射

光的吸收、色散和散射

当光束通过理想均匀的透明介质时, 除了传播方向外, 其它方向看不到光 当光束通过浑浊液体或具有悬浮粒和气溶胶的大气时能看到光束轨迹 光的散射---
光束通过不均匀介质所产生的偏离原来传播方向而向四周散射的现象
散射分类: 1.k变化,波长不变
廷德尔散射 分子散射
瑞利散射, 米氏散射
2. k变化,波长也变化
i 2 z
eikz e 0 / n eik0nz
E0ek0z eik0nz
消光系数,与前一致,衰减系数K 2k 为吸收曲线
n 折射率实部,n 为色散曲线,由于在振子固有频率0处会产生共振吸收, 所以在0附近为反常色散,远离0为正常色散
§6.4 光的散射
§ 6.4.1 光的散射现象
(6-25)
二、反常色散
1862年勒鲁实验: 碘蒸汽三棱镜分光,紫光折射率比红光折射率小 与正常色散相反,因此称其为反常色散, 波长↓:折射率↓
反常色散与选择吸收有关, 也属正常
波长↑:折射率↑
反常色散都发生在吸收带内
图为石英的色散曲线, 测量扩展到红外吸收区
吸收带内为反常色散区 吸收带之间均为正常色散区
(6-6) (6-7)
(6-8) (6-9)
折射率 n 为复折射率
n2
r
1
1
Ne2
0m
1
02 2
i
同理 n 可写为
n n i
n2 n2 2 i2n
将(6-11)与(6-10)相对照, 可得
n2 2 1 Ne2
0m
02 2 02 2 2 22
2n Ne2
0m
如:石英对可见光波段 选择吸收---对某些波段的光有强烈的吸收
如:石英对3.5~5.0μm吸收

光的吸收色散和散射

光的吸收色散和散射

a
0ldx
ln I ,I=I ea
I
a
0
0
⒉比尔定律
I= I e ACl 0
吸收系数. a
AC A - 与浓度无关的常数. a
吸收系数. a
C 溶液的浓度.
A - 与浓度无关的常数.
稀溶液 : C
a
a
C 溶液的浓度.
光的吸收特性
❖ (1)穿透深度的物质依赖
金属 10 6 cm 1 、玻璃 10 2 cm 1
(1 )
RS RS ( s ) ( As )
BS BS
第一章作业: 1 7 10 12 15 24 28
瑞利散射
1) 稀薄气体以及悬浮微粒的散射(d <λ/ 10) 2) 纯净气体或液体的散射(分子散射)
散射光强度的波长依赖
I
1
4
,(I
4)
例:朝阳、夕阳、蓝天(分子散射),红路灯.
散射光的偏振性
o
y
x
z
散射光强的角度依赖 I ( ) I /2 (1 cos2 )
散射光偏振性的应用
例1. 南北极探险用: “太阳罗盘”(利用阳光散射的 偏振性)辨别方向(因磁罗盘在南北极无用).
A
exp [ i ( k~
z
t )]
A
exp( nkz)
exp[i(nk z
t )]
则平面波的强度 :I
E E*
2
A exp( 2nkz)
令 a 2nk
则有 I I0 exp( a z)
式中I0是z=0处的光强, a为物质的吸收系数。
⒈朗伯定律
dI I
a
d
x, I I0

物理光学-第5章 光的吸收、色散和散射

物理光学-第5章 光的吸收、色散和散射

§5-2 介质的吸收与色散
不过,一般吸收和选择吸收的区别是相对的、有条件的。任何物质,在 一个波段范围内表现为一般吸收,在另一个波段范围内就可能表现为选 择吸收,例如,普遍光学玻璃,对可见光吸收很弱,是为一般吸收;而 在紫外红外波段,则表现出强烈的吸收,亦即选择吸收。任一介质对光 的吸收都是由这样两种吸收组成的 。 描述光波通过介质时的衰减特性。) 。)之间有如 吸收系数和消光系数 η(描述光波通过介质时的衰减特性。)之间有如 下的关系 复折射率:复折射率的实部就是通常所说的折射率, 复折射率:复折射率的实部就是通常所说的折射率,其虚部则是描述线 性吸收的参量。 性吸收的参量。
v=
dn dλ
在实际工作中,选用光学材料时应注意其色散的大小,例如,同样是 一块三棱镜,若是用作分光元件,则采取色散大的材料(火石玻璃); 若是用来改变光路的方向,如光学仪器中的转像棱镜等,则需用色散 小的材料(冕玻璃等)。
§5-2 介质的吸收与色散
实际上由于随变化的关系较复杂,无法用一个简单的函数表示出来,而 且这种变化关系随材料而异。因此一般都是通过实验测定随变化的关系, 并作成曲线,这种曲线就是色散曲线。 色散曲线的波长缩短时,折射率增大;且波长愈短,折射率增加的幅度 也愈大。这种波长变小,折射率变大的色散一般称之为正常色散。 除色散曲线外,还可利用经验公式求出不同波长时的折射率。在正常色 散区这种经验公式最早是由科希于1836年通过实验总结得出的,其公式 B C 为 n = A+ 2 + 4
§5-2 介质的吸收与色散
一般吸收: 一般吸收:有些媒质,在一定波长范围内,吸收系数不随 波长而变(严格说来是随波长的变化可以忽略不计),这 种吸收就称为一般吸收。 选择吸收: 选择吸收:有些媒质,在一定波长范围内,吸收系数随波 长而变,这种吸收就称为选择吸收。 例:

光的吸收、散射、色散

光的吸收、散射、色散

特性(频率、波长、振动方向等),按照自己的传播
方向继续前进。
叠加原理也是介质对光波的线性响应的一种反映。
2.1 两个同频率、同振动方向单色光波的叠加和干涉 一、代数加法: 设两个频率相同、振动方向相同的单色光波 分别发自光源S1和S2,在空间某点P相遇,P到S1和 S2的距离分别为r1和r2。 则两光波各自在P点产生的光振动可以写为

I1 I 2 2 I1 I 2 cos
I E E I1 I 2 2 I1 I 2 cos

式中
I1 a , I 2 a2
2 1
2
2 1
讨论
在P点叠加的合振动的光强I取决于两光波在叠加点的相位差。
对于I1 I 2 I 0
2m
(λ=0.72μm)为紫光波长(λ=0.4μm)的1.8倍, 因此紫光散射强度约
为红光的 (1.8)4≈10 倍。所以,太阳散射光在大气层内层,蓝色 的成分比红色多,使天空呈蔚蓝色。另外,为什么正午的太阳
基本上呈白色,而旭日和夕阳却呈红色 ? 正午太阳直射,穿过
大气层厚度最小,阳光中被散射掉的短波成分不太多,因此垂 直透过大气层后的太阳光基本上呈白色或略带黄橙色。早晚的
E1 a1 exp[i (kr1 t )] E2 a2 exp[i (kr2 t )]
两列波交叠区域任意一点p的合振动?
根据叠加原理,P点的合振动为
E E1 E2 a1 exp[i (1 t )] a2 exp[i (2 t )]
式中 1 kr1 ,
光强为
2 kr2
I E E a1 exp[i (1 t )] a2 exp[i (2 t )]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ind[(tz)k]
dk
dtz
ei(0tk0z)
dk
d
群速度 vg dk
vg
d
dk
d (vPk) dk
vP
k
dvP dk
2
k dk
d ( 2
)
d
vg ddkvPddP v
Rayleigh的群速度公式
vP
c n
vg
c(1
nn
dn)
d
c vg
1
n
dn
n[1nd dn ]nd dn
n d
物体由于对光的吸收不同,而呈现出不同的颜色 发光体由于辐射波长范围的不同,也呈现出不同的
颜色
入 射 光 (
吸 收 体 (
透 射 光
入 射 狭 缝
白样
光品
))
吸收带
I
能带
单色仪

I



器 记录仪器
出 射 狭 缝
带线 状状 谱谱
吸收光谱
暗线 能级
受激吸收
Au
A l2O 3 刚玉 白宝石
Al2O3:Fe3,Ti3
第七章 光的吸收、色散和散射
光的吸收 光的色散 光的群速度 光的散射
多媒体光学主页网址
§9.1 光的吸收
一、吸收的规律
光强不是很大时,被吸 收的能量、即光强,与 吸收体的厚度成正比。
dI dx
I
I I0ex
吸收系数
I 0 dI I I0 dI dx
dIIdx
Bougure定律(1729)或 Lambert定律(1760)
vp
k
非单色波,合成形成波包。
波包表现了非单色波的群体特征。群速度
而非单色波,由于色散,不同波长成分具 有不同的相速度。
Ψ 2 A 0co m t sk m (z)co t s k z)(
tkz 波包的位相
波包的速度,即群速度
k
如果波长范围在k0-Δk~ k0-Δk,合成的波
U ~(k,z)A(k0)s
dn
色散率
d
色散规律
牛顿正交棱镜实验
n
牛顿正交棱镜实验
柯希公式
正常色散的科希公式(经验公式)
BC nA
2 4
A,B,C是与材料有关的常数
通常可以取前两项
B
n A 2
反常色散
n
吸收带 在吸收带中,光不能通过,无法测折射率 光的色散在这一区域的表现被称为反常色散
§9.3 光的散射
光在不均匀媒质中产生散射。 介质中的带电粒子都对入射的光波进行散射 如果粒子均匀分布,则所有散射波叠加的结
蓝宝石
Al2O3 :Cr3
红宝石
Al2O3:Fe3,Ni3 黄色
XYZ色度图
三基色
相加混合 红+青=白 红+绿=黄 蓝+黄=白 绿+蓝=青 绿+品红=白 红+蓝=品红 红+绿+蓝=白
彩色显示器显示单元
§9.2 光的色散
光在媒质中的传播速度或折射率随波长改变, 称为色散。不是由于衍射而引起。
v v() nn()
光强 I
U% 2
A02e
4
n
x
4 n x
I0e
I0e x
4 n
复折射率的虚部反映了由于介质对波的吸收 而引起的衰减
三、吸收系数与波长的关系
普遍吸收:吸收系数与波长无关,吸收后所有成分 的光强改变。
选择吸收:吸收系数与波长有关,只强烈地吸某些 波长的光。
吸收光谱:白光(连续波长)入射后,被吸收的光 显示为光谱中的暗线,与发射谱中的亮线对应,可 作成分分析。
对于溶液 AC C 浓度
Beer定律(1852年)
二、关于复折射率
介质中,电磁波的表达式可以写作
U ~A0ei(k xt)
2
A0eiteinx
如果将折射率写为复数形 n ~n(1i)
U ~A0eitei2n(1i)x A0eitei2nex2nx
A0e2nxei(t2n)x
虚数指数表示平面波 实数指数表示波的振幅随距离的衰减
a 0.3 2
米氏区
10 100
ka
2 aka0.3 Rayleigh Scatter
ka0.3
Mie-Debye Scatter
x
Байду номын сангаас
E
y ks在E上的投影 co ssin co s()
ks
k0
z
相速度与群速度
对于单色波,其速度指振动即位相传播的速 度,称为相速度。
(t,z)k zt0
果,只剩下沿入射方向的光波。 所以,对于均匀分布的介质,不必计入散射。
散射的分类
悬浮质点的散射 分子散射
散射定律 瑞利散射:当散射体的尺寸小于波长时,散
射光强∝(1/λ)^4 米—德拜散射:散射体颗粒度远大于波长时,
散射光强对波长的依赖性不强。
散 射 几 率
k4
瑞利区
0.01 0.1 1
相关文档
最新文档