盐城中学八年级春学期数学期末资料(内部勿外泄)

合集下载

苏科版江苏省盐城市第一学期八年级数学期末试卷(含解析)

苏科版江苏省盐城市第一学期八年级数学期末试卷(含解析)

苏科版江苏省盐城市第一学期八年级数学期末试卷(含解析) 一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .3.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM4.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-5.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长;以上真命题的个数是( )A .1B .2C .3D .4 6.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >7.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >09.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 10.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0 12.9的平方根是( )A .3B .81C .3±D .81±13.估算x =5值的大小正确的是( )A .0<x <1B .1<x <2C .2<x <3D .3<x <414.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1215.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题16.1﹣π的相反数是_____.17.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.18.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).19.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____.20.式子1x -在实数范围内有意义的条件是__________. 21.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.22.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.23.若某个正数的两个平方根分别是21a +与25a -,则a =_______.24.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.25.一次函数y =2x -4的图像与x 轴的交点坐标为_______.三、解答题26.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?27.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.28.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积.29.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.30.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.31.已知:如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 的中点.(1)求证:BED ∆是等腰三角形:(2)当BCD ∠= ° 时,BED ∆是等边三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】2211+2,∴点A 2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不合题意;D 、不是轴对称图形,不合题意;故选:B .【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,3.D解析:D【解析】【分析】由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF 是AB 的垂直平分线,所以AM =BM ,AE =BE ,EF ⊥AB ,即选项A,B,C 均正确,CM 是AB 边上的中线,AB =2CM 错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.4.C解析:C【解析】【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可.【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C.【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键. 5.D解析:D【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.6.A解析:A【解析】【分析】由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解.【详解】根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;因而当不等式kx+b-2>0时,x 的取值范围是x >0.故选:A .【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.7.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.D解析:D【解析】画函数的图象,选项A,点(1,0)代入函数,01=,错误.由图可知,B,C错误,D,正确. 选D.9.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.10.A解析:A【解析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】 解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数, ∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A .【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.11.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数. 13.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.14.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.15.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题16.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.17.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC -CD= -1,∴AE= -1,∴点E 表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E18.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.19.3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查解析:3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查了频数,正确把握频数的定义是解题关键.20.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意解析:1x>【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:1x>.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.21.200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x50=-,解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.22.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.23.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.24.8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 25.(2,0)【解析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题26.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.27.(1)详见解析;(2)185. 【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.28.(1)见解析;(2)(-3,5);(3)7.【解析】【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再顺次连接可得;(2)根据所作图形可得A 1点的坐标;(3)根据割补法求解可得△111A B C 的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)由图知A 1的坐标为(-3,5);故答案是:(-3,5);(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.29.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.30.(1)定点O 是△ABC 的外心有道理,理由见解析;(2)见解析【解析】【分析】(1)连接OA 、OB 、OC ,如图①,根据线段垂直平分线的性质得到OB OC =,OC OA =,则OA OB OC ==,从而根据三角形的外心的定义判断点O 是ABC ∆的外心;(2)连接OA 、OD 、OC 、OF ,如图②,利用等边三角形的性质得到OA OC =,2120AOC B ∠=∠=︒,再计算出30OAD OCF OAD ∠=∠=∠=︒,接着证明AOD COF ∆≅∆得到OD OC =,同理可得OD OE =,所以OD OE OF ==,然后根据三角形外心的定义得到点O 是DEF ∆的外心.【详解】(1)解:定点O 是ABC ∆的外心有道理.理由如下:连接OA 、OB 、OC ,如图①,BC ,AC 的垂直平分线得到交点O ,OB OC ∴=,OC OA =,OA OB OC ∴==,∴点O 是ABC ∆的外心;(2)证明:连接OA 、OD 、OC 、OF ,如图②,点O 为等边ABC ∆的外心,OA OC ∴=,2120AOC B ∠=∠=︒,30OAD OCF ∴∠=∠=︒,30OAD ∴∠=︒,在AOD ∆和COF ∆中OA OC OAD OCF AD CF =⎧⎪∠=∠⎨⎪=⎩,()AOD COF SAS ∴∆≅∆,OD OC ∴=,同理可得OD OE =,OD OE OF ∴==,∴点O 是DEF ∆的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.31.(1)证明见解析;(2)150.【解析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=12AC ,DE=12AC ,从而得到BE=DE .(2)利用等边对等角以及三角形外角的性质得出12∠DEB=∠DAB,即可得出∠DAB=30°,然后根据四边形内角和即可求得答案.试题解析:证明:(1)∵∠ABC=∠ADC=90°,点E 是AC 边的中点, ∴BE=12AC ,DE=12AC , ∴BE=DE , ∴△BED 是等腰三角形;(2)∵AE=ED ,∴∠DAE=∠EDA ,∵AE=BE ,∴∠EAB=∠EBA,∵∠DAE+∠EDA=∠DEC,∠EAB+∠EBA=∠BEC,∠DEB,∴∠DAB=12∵△BED是等边三角形,∴∠DEB=60°,∴∠BAD=30°,∴∠BCD=360°-90°-90°-30°=150°.。

盐中初二数学期末试卷

盐中初二数学期末试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. -5D. √-12. 已知x=3是方程2x-5=1的解,则方程2x+3=?的解是()A. 5B. 6C. 7D. 83. 若a、b是方程x^2-3x+2=0的两根,则a+b的值是()A. 2B. 3C. 4D. 54. 在直角坐标系中,点A(-1,2)关于y轴的对称点坐标是()A.(1,2)B.(-1,-2)C.(1,-2)D.(-1,2)5. 若∠ABC=90°,∠BAD=45°,则∠ABD的度数是()A. 45°B. 90°C. 135°D. 180°6. 下列图形中,具有轴对称性的是()A. 正方形B. 等腰三角形C. 矩形D. 以上都是7. 若a、b是方程x^2-5x+6=0的两根,则ab的值是()A. 5B. 6C. 7D. 88. 已知一个长方体的长、宽、高分别为3cm、2cm、1cm,则其体积是()A. 5cm³B. 6cm³C. 7cm³D. 8cm³9. 在等腰三角形ABC中,若AB=AC,则∠BAC的度数是()A. 45°B. 60°C. 90°D. 120°10. 下列函数中,是反比例函数的是()A. y=x+1B. y=2xC. y=x²D. y=1/x二、填空题(每题5分,共50分)1. 若a、b是方程x^2-4x+3=0的两根,则a+b=________,ab=________。

2. 已知点P(2,-3),则点P关于原点的对称点坐标是________。

3. 在直角坐标系中,点A(3,4)关于x轴的对称点坐标是________。

4. 下列各数中,无理数是________。

5. 在直角三角形ABC中,若∠C=90°,AB=5cm,AC=3cm,则BC=________cm。

盐城市盐都区~八年级上期末数学试卷含答案解析

盐城市盐都区~八年级上期末数学试卷含答案解析

江苏省盐城市盐都区~八年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列各选项的图形中,不是轴对称图形的是()A.B.C.D.2.在平面直角坐标系xOy中,点(1,﹣3)关于y轴对称的点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,3)D.(﹣3,1)3.如图,数轴上点P表示的数可能是()A.B.C.D.4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB= B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55.一次函数y=mx+n(m≠0)的图象如图所示,则m、n的符号是()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<06.如图,PM=PN,MQ为△PMN的角平分线.若∠MQN=72°,则∠P的度数是()A.18°B.36°C.48°D.60°7.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50﹣2x(0<x<50) B.y=50﹣2x(0<x<25)C.y=(50﹣2x)(0<x<50) D.y=(50﹣x)(0<x<25)8.如图(1),在直角梯形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则△BCD的面积是()A.3 B.4 C.5 D.6二、填空题(共10小题,每小题2分,满分20分)9.请任意写出一个你喜欢的无理数:.10.4的平方根是.11.等腰三角形的一个内角120°,则它的底角是.12.取=1.732050807…的近似值,若要求精确到0.01,则.13.现有两根铁棒,它们的长分别是3cm和5cm,如果想焊一个直角三角形的铁架,那么第三根铁棒长为cm.(铁棒长为正整数)14.如图,∠AEC=∠ACE,∠DAB=∠CAE,请补充一个条件:,使△ABC≌△ADE.15.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.16.如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,﹣1),则由函数图象得不等式kx+b≥mx+n 的解集为.17.一辆货车从甲地匀速驶往乙地用了2.7小时,到达后用了0.5小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=(小时).18.如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是.三、解答题(共9小题,满分76分)19.(1)计算:﹣+(2)(x+3)2=16.20.一次函数y=kx+4的图象经过点A(﹣3,﹣2).(1)求这个一次函数的关系式;(2)求该函数的图象与坐标轴所围成的三角形的面积.21.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.22.如图,在正方形网格中,每个小正方形的边长为1个单位长度,已知△ABC的顶点A、C的坐标分别为(﹣4,4)、(﹣1,2),点B坐标为(﹣2,1).(1)请在图中正确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ABC沿x轴正方向平移5个单位长度后,再沿x轴翻折得到△DEF,画出△DEF;(3)点P(m,n)是△ABC的边上的一点,经过(2)中的变化后得到对应点Q,直接写出点Q的坐标.23.已知等腰△APP1、△BPP2中,AP=AP1,BP=BP2,A、P、B在同一条直线上,且∠A=∠B=α.(1)如图①,当α=90°时,求∠P1PP2的度数;(2)如图②,当点P2在AP1的延长线上时,∠P2PP1的度数(用含α的代数式表示).24.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.25.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图,若PB=PC,则点P为△ABC的准外心.已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上.求PA的长.(自己画图)26.某商家购进一批时令水果,需20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制出函数图象,其中日销量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)第10天销售量是千克;销售总额为元.(2)求出y与x的函数关系式.(3)若日销售量不低于24kg的时间段为最佳销售期,则此销售过程中,最佳销售期共有多少天?此期间最高单价为多少?27.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB 的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.江苏省盐城市盐都区~八年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列各选项的图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项不合题意.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在平面直角坐标系xOy中,点(1,﹣3)关于y轴对称的点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,3)D.(﹣3,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点(1,﹣3)关于y轴对称的点的坐标为(﹣1,﹣3),故选:A.【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,数轴上点P表示的数可能是()A.B.C.D.【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:由<<3<4<,点P表示的数大于3小于4,故C符合题意.故选:C.【点评】本题考查了估算无理数的大小,利用了被开方数越大算术平方根越大,数轴上的点表示的数右边的总比左边的大.4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB= B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC 为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形,故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.5.一次函数y=mx+n(m≠0)的图象如图所示,则m、n的符号是()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】根据直线y=mx+n的图象在一、三、四象限即可得到m>0,n<0.【解答】解:∵一次函数图象在一、三象限,∴m>0,∵一次函数图象与y轴的交点在x轴下方,∴n<0.故选B.【点评】本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.6.如图,PM=PN,MQ为△PMN的角平分线.若∠MQN=72°,则∠P的度数是()A.18°B.36°C.48°D.60°【考点】等腰三角形的性质.【分析】设∠P=x°,根据等腰三角形的性质和三角形的内角和为180°,可知∠PMN=(90﹣x)°,再根据角平分线的定义可得∠PMQ=(90﹣x)°,根据三角形外角的性质可得关于x的方程,可求出解.【解答】解:设∠P=x°,则∠PMN=(180°﹣x)=(90﹣x)°,∵MQ为△PMN的角平分线,∴∠PMQ=(90﹣x)°,∴(90﹣x)+x=72,解得x=36.故选:B.【点评】本题考查三角形外角的性质,等腰三角形的性质:两个底角相等,以及三角形的内角和为180°.7.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50﹣2x(0<x<50) B.y=50﹣2x(0<x<25)C.y=(50﹣2x)(0<x<50) D.y=(50﹣x)(0<x<25)【考点】根据实际问题列一次函数关系式;等腰三角形的性质.【专题】几何图形问题.【分析】根据等腰三角形的腰长=(周长﹣底边长)×,及底边长x>0,腰长>0得到.【解答】解:依题意有y=(50﹣x).∵x>0,50﹣x>0,且x<2y,即x<2×(50﹣x),得到0<x<25.故选D【点评】本题的难点在于根据线段应大于0,得到自变量的取值范围.8.如图(1),在直角梯形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则△BCD的面积是()A.3 B.4 C.5 D.6【考点】动点问题的函数图象.【分析】根据题意,分析P的运动路线,分2个阶段分别讨论,可得BC与CD的值,进而利用三角形的面积可得答案.【解答】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是×2×3=3.故选A.【点评】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出有关的线段的长度,从而利用三角形面积公式解决问题.二、填空题(共10小题,每小题2分,满分20分)9.请任意写出一个你喜欢的无理数:.【考点】无理数.【专题】开放型.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:答案不唯一,如或等.故答案是:.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.等腰三角形的一个内角120°,则它的底角是30°.【考点】等腰三角形的性质.【分析】因为三角形的内角和为120°,所以120°只能为顶角,从而可求出底角.【解答】解:∵120°为三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为:30°.【点评】本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.12.取=1.732050807…的近似值,若要求精确到0.01,则 1.73.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:≈1.73(精确到0.01).故答案为1.73.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.现有两根铁棒,它们的长分别是3cm和5cm,如果想焊一个直角三角形的铁架,那么第三根铁棒长为4cm.(铁棒长为正整数)【考点】勾股定理的逆定理.【分析】此题要分两种情况进行计算:①当直角边长为3cm和5cm,②当5cm为斜边长,一条直角边长为13m.【解答】解:①当直角边长为3cm和5cm时,斜边长为=(cm)(不合题意舍去);②当5cm为斜边长,一条直角边长为3cm,则另一直角边长为:=4(cm).故答案为:4.【点评】此题主要考查了勾股定理的逆定理,关键是掌握要分情况进行讨论,不要漏解.14.如图,∠AEC=∠ACE,∠DAB=∠CAE,请补充一个条件:∠B=∠D,使△ABC≌△ADE.【考点】全等三角形的判定;等式的性质;等腰三角形的性质.【专题】压轴题;开放型.【分析】∠B=∠D,根据等式的性质求出∠DAE=∠BAC,根据等腰三角形的性质得出AB=AC,根据AAS即可证出△ABC≌△ADE.【解答】解:添加的条件是∠B=∠D.理由是:∵∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,∴∠DAE=∠BAC,∵∠AEC=∠ACE,∴AE=AC,∵∠B=∠D,∴△ABC≌△ADE.故答案为:∠B=∠D.【点评】本题主要考查对全等三角形的判定,等腰三角形的性质,等式的性质等知识点的理解和掌握,能正确添加条件并能证出结论是证此题的关键.15.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【考点】坐标与图形变化-旋转.【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点.16.如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,﹣1),则由函数图象得不等式kx+b≥mx+n 的解集为x≥2.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图象,写出一次函数y=kx+b的图象不在一次函数y=mx+n的图象下方的自变量的取值范围即可.【解答】解:当x≥2时,kx+b≥mx+n,所以不等式kx+b≥mx+n的解集为x≥2.故答案为x≥2.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.一辆货车从甲地匀速驶往乙地用了2.7小时,到达后用了0.5小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=5(小时).【考点】一次函数的应用.【专题】推理填空题.【分析】根据题意可得从甲地到乙地的路程速度和时间的关系,也可以得到从乙地到甲地的路程速度之间的关系,由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,可以建立从甲地到乙地和乙地到甲地之间的关系,从而可以求得从乙地到甲地的时间,从而可求得a的值.【解答】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则解得,t=1.8∴a=3.2+1.8=5.故答案为:5.【点评】本题考查一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.18.如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的是①②③.【考点】全等三角形的判定与性质.【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.【解答】解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE.故①正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE;故②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴BE2=BD2+DE2.∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2.∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2).故④错误.故答案为:①②③.【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.三、解答题(共9小题,满分76分)19.(1)计算:﹣+(2)(x+3)2=16.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)原式利用算术平方根,立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出解.【解答】解:(1)原式=5﹣3+=2;(2)方程开方得:x+3=4或x+3=﹣4,解得:x1=1,x2=﹣7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一次函数y=kx+4的图象经过点A(﹣3,﹣2).(1)求这个一次函数的关系式;(2)求该函数的图象与坐标轴所围成的三角形的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)把A点坐标代入y=kx+4可求出k的值,从而得到一次函数解析式;(2)先利用坐标轴上点的坐标特征求出一次函数与x轴和y轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把A(﹣3,﹣2)代入y=kx+4得﹣3k+4=﹣2,解得k=2,所以这个一次函数解析式为y=2x+4;(2)当y=0时,2x+4=0,解得x=﹣2,则直线y=2x+4与x轴的交点坐标为(2,0),当x=0时,y=2x+4=4,则直线y=2x+4与y轴的交点坐标为(0,4),所以该函数的图象与坐标轴所围成的三角形的面积=×2×4=4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.21.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.【考点】全等三角形的判定;三角形的角平分线、中线和高;全等三角形的性质;等腰三角形的性质.【分析】(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.【点评】本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.22.如图,在正方形网格中,每个小正方形的边长为1个单位长度,已知△ABC的顶点A、C的坐标分别为(﹣4,4)、(﹣1,2),点B坐标为(﹣2,1).(1)请在图中正确地作出平面直角坐标系,画出点B,并连接AB、BC;(2)将△ABC沿x轴正方向平移5个单位长度后,再沿x轴翻折得到△DEF,画出△DEF;(3)点P(m,n)是△ABC的边上的一点,经过(2)中的变化后得到对应点Q,直接写出点Q的坐标.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)以点B向下2个单位,向右1个单位为坐标原点建立平面直角坐标系,然后确定出点B,再连接即可;(2)根据网格结构找出点A、B、C平移、对称后的对应点D、E、F的位置,然后顺次连接即可;(3)根据向右平移横坐标加,纵坐标不变,关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:(1)如图所示;(2)△DEF如图所示;(3)点Q(﹣m﹣5,﹣n).【点评】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构以及平面直角坐标系的定义,准确找出对应点的位置是解题的关键.23.已知等腰△APP1、△BPP2中,AP=AP1,BP=BP2,A、P、B在同一条直线上,且∠A=∠B=α.(1)如图①,当α=90°时,求∠P1PP2的度数;(2)如图②,当点P2在AP1的延长线上时,∠P2PP1的度数(用含α的代数式表示).【考点】等腰直角三角形.【分析】(1)根据等腰直角三角形的性质进行计算即可;(2)根据等腰三角形的性质和三角形内角和定理进行解答即可.【解答】解:(1)∵AP=AP1,BP=BP2,α=90°,∴△APP1和△BPP2都是等腰直角三角形,∴APP1=BPP2=45°,∴∠P1PP2=90°,答:∠P1PP2的度数是90°;(2)∵AP=AP1,BP=BP2,∴APP1=BPP2=90°﹣,∴∠P1PP2=180°﹣(90°﹣)=α,答:∠P2PP1的度数为α.【点评】本题考查的是等腰直角三角形的知识,掌握等腰直角三角形两个锐角都是45°、三角形内角和等于180°是解题的关键.24.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.【考点】一次函数综合题.【分析】(1)已知P的横坐标,即可知道△OCP的边OC上的高长,利用三角形的面积公式即可求解;(2)求得△AOC的面积,即可求得A的坐标,利用待定系数法即可求得AP的解析式,把x=2代入解析式即可求得p的值;(3)根据S△AOP=S△BOP,可以得到OB=OA,则A的坐标可以求得,利用待定系数法即可求得BD 的解析式.【解答】解:(1)作PE⊥y轴于E,∵P的横坐标是2,则PE=2.∴S△COP=OC•PE=×2×2=2;(2)∴S△AOC=S△AOP﹣S△COP=6﹣2=4,∴S△AOC=OA•OC=4,即×OA×2=4,∴OA=4,∴A的坐标是(﹣4,0).设直线AP的解析式是y=kx+b,则,解得:.则直线的解析式是y=x+2.当x=2时,y=3,即p=3;(3)∵S△AOP=S△BOP,∴OB=OA=4,则B的坐标是(4,0),设直线BD的解析式是y=mx+n,则,解得.则BD的解析式是:y=﹣x+6.【点评】本题考查了三角形的面积与一次函数待定系数求函数解析式的综合应用,正确求得A的坐标是关键.25.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图,若PB=PC,则点P为△ABC的准外心.已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上.求PA的长.(自己画图)【考点】勾股定理.【专题】新定义.【分析】先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【解答】解:∵BC=5,AB=3,∴AC=,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,解得:,即PA=.②若PA=PC,则PA=2.③若PA=PB,由图知,在Rt△PAB中,不可能.综上可得:PA=2或.【点评】本题考查了勾股定理,等腰三角形的性质,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.26.某商家购进一批时令水果,需20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制出函数图象,其中日销量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)第10天销售量是20千克;销售总额为200元.(2)求出y与x的函数关系式.(3)若日销售量不低于24kg的时间段为最佳销售期,则此销售过程中,最佳销售期共有多少天?此期间最高单价为多少?【考点】一次函数的应用.【专题】销售问题.【分析】(1)由y与x的函数图象可以得到各段的函数解析式,从而可以求得第10天的销售量和销售总额;(2)由y与x的函数图象可以设出各段的函数解析式,再根据图象中的数据可以得到y与x的函数关系式;(3)由(2)中的函数解析式可以得到日销售量不低于24kg的时间段,由P与x的函数图象可以得到此期间最高单价是多少.【解答】解:(1)设0≤x≤15时,y与x之间的函数解析式为y=kx,则15k=30,得k=2,故0≤x≤15时,y与x之间的函数解析式为y=2x,当x=10时,y=2×10=20千克,此时的销售单价p=10,故此时销售总额为:20×10=200元,故答案为:20;200.(2)设0≤x≤15时,y与x之间的函数解析式为y=kx,则15k=30,得k=2,故0≤x≤15时,y与x之间的函数解析式为y=2x,设15≤x≤20时,y与x之间的函数解析式为y=mx+n,则解得m=﹣6,n=120,故15≤x≤20时,y与x之间的函数解析式为y=﹣6x+120,由上可得,y与x之间的函数解析式为:y=.(3)令2x≥24,得x≥12,则12≤x≤15,令﹣6x+120≥24,得x≤16,则15≤x≤16,∴12≤x≤16,∴16﹣12+1=5(天)由p于x的函数图象可知,当10≤x≤20时,p随x的增大而减小,∴x=12时,销售单价最高,设10≤x≤20时,p与x之间的函数解析式为:p=ax+b,则解得,a=,b=12,∴10≤x≤20时,p与x之间的函数解析式为:p=,当x=12时,p=,即最佳销售期共有5天,此期间最高销售单价为9.6元/千克.【点评】本题考查一次函数的应用,解题的关键是明确题意,列出相应的函数解析式,利用数形结合的思想解答问题.27.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB 的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.。

江苏省盐城市八年级上学期期末数学试卷 (解析版)

江苏省盐城市八年级上学期期末数学试卷 (解析版)

江苏省盐城市八年级上学期期末数学试卷 (解析版) 一、选择题 1.4的平方根是( )A .2B .2±C .2D .2±2.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .163.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的125.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限6.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等7.满足下列条件的△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5 B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c =38.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12 C .2 D .129.下列各数:4,﹣3.14,227,2π,3无理数有( )A .1个B .2个C .3个D .4个10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为()A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题 11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.点P (﹣5,12)到原点的距离是_____.13.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.14.点(−1,3)关于x 轴对称的点的坐标为____.15.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.16.如图,在ABC ∆中,AB AC =,4BC =,其面积为12,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F .若点D 为BC 边的中点,点P 为线段EF 上的一个动点,则PCD ∆周长的最小值为______.17.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .19.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.三、解答题21.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y (cm 2).已知点P 移动到点B 处,y 的值为96(即此时正方形ABCD 与PMQ ∠的内部重叠部分面积为96cm 2).(1)求点P 的速度:(2)求y 与t 的函数关系式,并直接写出的取值范围.22.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.23.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距 km ,轿车比货车晚出发 h ;(2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?24.如图,在△ABC 中,AB =AC =2,∠B =36°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =36°,DE 交线段AC 于点E .(1)当∠BDA =128°时,∠EDC = ,∠AED = ;(2)线段DC 的长度为何值时,△ABD ≌△DCE ?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.25.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入 元;(2)若“外卖小哥”每月收入为y (元),每月送单量为x 单,y 与x 之间的关系如图所示,求y 与x 之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.A解析:A【解析】【分析】平方为4,由此可得出答案.【详解】±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.3.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】 本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.4.A解析:A【解析】把分式22xy x y-中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 5.D解析:D【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A :如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误; B 、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等, ∴等腰三角形的两条中线不一定相等,此选项错误;C 、如图,△ABC 和△ABD 中,AB=AC=AD ,CD ∥AB ,DG 是△ABD 的AB 边高,CH 是是△ABC 的AB 边高,则DG=CH ,但△ABC 和△ABD 不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.7.D解析:D【解析】【分析】根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.【详解】A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+)2=22,∴△ABC是直角三角形.故选:D.【点睛】此题主要考查利用三角形内角和定理和勾股定理判定直角三角形,熟练掌握,即可解题. 8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 9.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,AD BFA B AF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=40°,∴∠P=180°-∠A-∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.14.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.15.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等. 16.8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求周长的最小值 解析:8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求PCD ∆周长的最小值【详解】解:如下图,连接AP ,AD.∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,DC=122BC =, 1141222ABC S BC AD AD ∴=⋅=⨯⨯=, 解得AD=6, ∵EF 是线段AC 的垂直平分线,∴AP=PC,∴DP+PC=DP+AP≥AD=6.∴PCD ∆周长=DP+PC+DC,当DP+PC=6时周长最短,最短为6+2=8.故答案为:8.【点睛】本题考查等腰三角形的性质,垂直平分线的性质,两点之间线段最短.能根据垂直平分线的性质和两点之间线段最短求得DP+PC的最小值是解决此题的关键.17.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.18..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21)-,.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).19.—1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=,∵A点表示-1,∴E点表示的数为:51【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴22+=215∵A点表示-1,∴E5,5【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.20.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.三、解答题21.(1)3 cm/s ;(2)()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【解析】【分析】(1)由于P 的速度比Q 的速度大,因此P 到达B 点时,Q 在DC 边上,此时重叠部分面积为正方形的面积减去△DQM 和△ABM 的面积,求解即可;(2)分三种情况讨论:当点P 在边AB 上时,当点P 在边BC 上时,当点P 在边CD 上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤, APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.22.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.23.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km,轿车比货车晚出发1.2小时;故答案为:300;1.2;(2)设线段CD所在直线的函数表达式为:y=kx+b,由题意可得:300=4.580 2.5k bk b+⎧⎨=+⎩解得:110195 kb=⎧⎨=-⎩∴线段CD所在直线的函数表达式为:y=110x﹣195;(3)设OA解析式为:y=mx,由题意可得:300=5m,∴m=60,∴OA解析式为:y=60x,∴60110195 y xy x=⎧⎨=-⎩∴3.9234 xy=⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.24.(1)16°;52°;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质,得到答案;(2)当DC=2时,利用∠DEC+∠EDC=144°,∠ADB+∠EDC=144°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】(1)∵AB=AC,∴∠C=∠B=36°.∵∠ADE=36°,∠BDA=128°.∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°.故答案为:16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由:∵AB =2,DC =2,∴AB =DC .∵∠C =36°,∴∠DEC +∠EDC =144°.∵∠ADE =36°,∴∠ADB +∠EDC =144°,∴∠ADB =∠DEC ,在△ABD 和△DCE 中,ADB DEC B CAB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE (AAS);(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形,①当DA =DE 时,∠DAE =∠DEA =72°,∴∠BDA =∠DAE +∠C =70°+40°=108°;②当AD =AE 时,∠AED =∠ADE =36°,∴∠DAE =108°,此时,点D 与点B 重合,不合题意;③当EA =ED 时,∠EAD =∠ADE =36°,∴∠BDA =∠EAD +∠C =36°+36°=72°;综上所述:当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.25.(1)2000;(2)y =5x ﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x <750时,y =4x当x ≥750时,当x =4时,y =3000设y =kx +b ,根据题意得300075055001250k b k b =+⎧⎨=+⎩, 解得5750k b =⎧⎨=-⎩, ∴y =5x ﹣750;(3)设甲送a 单,则a <600<750,则乙送(1200﹣a )单,若1200﹣a <750,则4a +4(1200﹣a )=4800≠5000,不合题意,∴1200﹣a >750,∴4a +5(1200﹣a )﹣750=5000,∴a =250,1200﹣a =950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75, ∴(6,75)是“白马有理数对”, 故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x=33a+,y=023a++,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣13;(3)设点E的坐标为(a,a+2),则点T的坐标为(33a+,23a+),当∠THD=90°时,点E与点T的横坐标相同,∴33a+=a,解得,a=32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a+=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.。

江苏省盐城市第一学期八年级数学期末试卷(含解析)

江苏省盐城市第一学期八年级数学期末试卷(含解析)

江苏省盐城市第一学期八年级数学期末试卷(含解析) 一、选择题 1.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对2.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .6 3.在22、0.3•、227-、38中,无理数的个数有( ) A .1个B .2个C .3个D .4个 4.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 6.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5) B .(-4,-3) C .(0,-3)D .(-2,1) 7.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-8.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠=D .ACB ACD ∠=∠ 9.9的平方根是( )A .3B .81C .3±D .81±10.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2 C .a >﹣1D .a <﹣1且a ≠﹣2 二、填空题 11.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.12.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .13.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;14.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.15.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.16.分解因式:12a 2-3b 2=____.17.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=_____.18.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .20.如图,在△ABC 中,AB =6,AC =5,BC =9,∠BAC 的角平分线AP 交BC 于点P ,则CP 的长为_____.三、解答题21.如图,△AB C 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D .(1)若△BCD 的周长为8,求BC 的长;(2)若∠A=40°,求∠DBC 的度数.22.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.23.某列车平均提速vkm/h ,用相同的时间,列车提速前行驶150km ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?(用含v 的式子表示)24.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车 乙种客车 载客量(座/辆)60 45 租金(元/辆) 550 450(1)设租用甲种客车x 辆,租车总费用为y 元.求出y (元)与x (辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.25.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≌△BEC ;(2)若AD =3,AB =9,求△ECD 的面积.四、压轴题26.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?27.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.28.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.29.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】先根据非负数的性质求出a和b的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b-+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB=,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.3.A解析:A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.4.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.【点睛】本题考查了正比例函数图象:正比例函数y=kx经过原点,当k>0,图象经过第一、三象限;当k<0,图象经过第二、四象限.也考查了一次函数的性质.5.A解析:A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.7.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.8.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL 进行分析即可.【详解】解:A 、AB=AD ,BC=DC ,再加上公共边AC=AC 可利用SSS 判定△ABC ≌△ADC ,故此选项不符合题意;B 、AB=AD ,∠BAC=∠DAC 再加上公共边AC=AC 可利用SAS 判定△ABC ≌△ADC ,故此选项不合题意;C 、AB=AD ,∠B=∠D=90°再加上公共边AC=AC 可利用HL 判定△ABC ≌△ADC ,故此选项不合题意;D 、AB=AD ,∠ACB=∠ACD 再加上公共边AC=AC 不能判定△ABC ≌△ADC ,故此选项合题意;故选:D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.10.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.二、填空题11.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键. 12.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC ,∴∠ABC=∠ACB,∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BD=BE =B解析:③【解析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.13.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 14.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.15.1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a +b)(2a -b)。

2022-2023学年江苏省盐城初级中学八年级(上)期末数学试卷+答案解析

2022-2023学年江苏省盐城初级中学八年级(上)期末数学试卷+答案解析

2022-2023学年江苏省盐城初级中学八年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.秦始皇统一六国后创制的汉字书写形式是小篆,下列四个小篆字中为轴对称图形的是()A. B. C. D.2.下列数是无理数的是()A. B. C.0 D.3.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限4.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变5.下列分式中,是最简分式的是()A. B. C. D.6.如果电影院里的5排7座用表示,那么7排8座可表示为()A. B. C. D.7.等腰中,,AD是底边BC上的高,若,则CD等于()A.6B.5C.4D.38.已知的三边a,b,c满足,那么是()A.直角三角形B.等边三角形C.等腰三角形D.不能判断二、填空题:本题共8小题,每小题2分,共16分。

9.27的立方根为______.10.若分式有意义,则x的取值范围是______.11.若正比例函数的图象经过点,则k的值为______.12.按括号内的要求,用四舍五入法求近似数:精确到______.13.如图,P是的平分线OC上一点,,,垂足分别为D,E,若,则PE的长是______.14.已知、是一次函数的图象上的两点,则______填“>”或“<”或“=”15.如图,在平面直角坐标系中,函数与的图象交于点,则方程组的解为______.16.如图,点C的坐标为,过点C作轴,轴,点A为坐标原点,点E是线段BC的中点,过点A的直线交线段DC于点F,连接EF,若AF平分,则DF的长度为______.三、解答题:本题共10小题,共68分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题6分计算:;18.本小题6分解分式方程:;19.本小题6分先化简,再求值:,其中20.本小题6分如图所示,在平面直角坐标系中,已知,,在平面直角坐标系中画出;在的条件下,把先关于y轴对称得到,再向下平移3个单位得到,写出点的坐标______,点的坐标______.21.本小题6分如图,在中,DE垂直平分BC,垂足为点E,BD平分若,求的度数.22.本小题6分一次函数的图象经过点和两点.求出该一次函数的表达式;若直线AB与x轴交于点C,求的面积.23.本小题6分如图,为测量河宽BC,某人选择从点C处横渡,由于受水流的影响,实际上岸地点A与欲到达地点B相距50米,结果发现AC比河宽BC多10米,求该河的宽度两岸可近似看作平行24.本小题8分如图中的折线ABC表示某汽车的耗油量单位:与速度单位:之间的函数关系,已知线段BC表示的函数关系中,该汽车的速度每增加,耗油量增加求AB段的函数关系式不要求写自变量取值范围;求当速度为时,该汽车的耗油量是多少?速度为多少时,该汽车耗油量最低?最低耗油量为多少?25.本小题8分阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数分式拆分成一个整数整式与一个真分数分式的和差的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效.例如,解决问题:已知,则______;对于分式,①按分离常数法可以拆分为______;②若该分式值为整数,求所有满足条件的整数x的值;利用分离常数法,请直接写出分式的取值范围______.26.本小题10分【探索发现】如图1,等腰直角三角形ABC中,,,过点A作交于点D,过点B作交于点E,易得≌,我们称这种全等模型为“K型全等”不需要证明【迁移应用】如图2,在直角坐标系中,直线:分别与y轴,x轴交于点A、B,直接写出______,______;在第二象限构造等腰直角,使得,则点E的坐标为______;如图3,将直线绕点A顺时针旋转得到,求的函数表达式;【拓展应用】如图4,直线AB:分别交x轴和y轴于A,B两点,点C在直线AB上,且点C坐标为,点E坐标为,连接CE,点P为直线AB上一点,满足,请直接写出点P 的坐标:______.答案和解析1.【答案】C【解析】解:、B、D三个选项中的字都不能沿着一条直线折叠使直线两旁的部分能完全重合,它们都不是轴对称图形,因此都不符合题意;选项中的字能够沿着一条直线折叠使直线两旁的部分能完全重合,它是轴对称图形,符合题意;故选:根据轴对称图形的定义进行判断即可.本题考查了轴对称图形的识别,解题关键是掌握轴对称图形的定义,即将一个平面图形沿着一条直线折叠能够使直线两旁的部分完全重合,那么这个图形是轴对称图形.2.【答案】B【解析】解:是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.0是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意;故选:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像…,等有这样规律的数.3.【答案】A【解析】解:点的横坐标和纵坐标均为正数,点在第一象限.故选:根据点横坐标和纵坐标的符号即可判断点A所在的象限.此题主要考查了点的坐标,熟练掌握平面直角坐标系中,点的坐标的特征是解答此题的关键.4.【答案】D【解析】解:把分式中的x和y都扩大3倍,,所以分式的值不变.故选:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变.本题考查了分式的性质,掌握分式的分子分母都乘或除以同一个不为零的整式,分式的值不变是关键.5.【答案】B【解析】解:,不是最简分式,故此选项不合题意;B.,是最简分式,故此选项符合题意;C.,不是最简分式,故此选项不符合题意;D.,不是最简分式,故此选项不合题意;故选:根据最简分式的定义逐一判断即可.此题主要考查了最简分式,正确掌握最简分式的定义是解题关键.6.【答案】B【解析】解:7排8座可表示为故选:根据题意形式,写出7排8座形式即可.本题考查了有序数对,关键是掌握每个数代表的意义.7.【答案】C【解析】解:,AD是边BC上的高,,故选:根据等腰三角形的性质“三线合一”即可求解.此题主要考查了等腰三角形的性质,掌握“三线合一”是解题的关键.8.【答案】A【解析】解:,,,,解得,,,,是直角三角形,故选:先根据偶次方的非负性、算术平方根的非负性和绝对值的非负性可得a,b,c的值,再根据勾股定理的逆定理即可得.本题考查了偶次方的非负性、算术平方根的非负性和绝对值的非负性、勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.9.【答案】3【解析】【分析】本题考查了求一个数的立方根,熟练掌握立方根定义是关键.找到立方等于27的数即可.【解答】解:因为,所以27的立方根是故答案为10.【答案】【解析】解:,,故答案为分式有意义的条件是分母不为0,据此解答.本题考查的是分式有意义的条件:当分母不为0时,分式有意义.11.【答案】【解析】解:正比例函数的图象经过点,,故答案为:由正比例函数经过点的坐标,利用一次函数图象上点的坐标特征可得出,解之即可得出k 值.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式是解题的关键.12.【答案】【解析】解:精确到故答案为:把千分位上的数字8进行四舍五入即可.本题考查了近似数:“精确到第几位”是近似数的精确度的常用的表示形式.13.【答案】2【解析】解:点P 是的平分线OC 上一点,,,,故答案为:根据角平分线的性质解答即可.本题主要考查了角平分线的性质,角平分线的性质主要有角的平分线上的点到角的两边的距离相等.14.【答案】<【解析】解:一次函数中的,随x 的增大而增大,、是一次函数的图象上的两点,且,,故答案为:根据一次函数的增减性即可得.本题考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.15.【答案】【解析】解:函数的图象与的图象交于点,方程组的解为,故答案为:利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程组:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.【答案】或4【解析】解:①如图所示,当点F不与点C重合时,过点A作交EF于点G,连接AE,点C的坐标为,轴,轴,,,平分,,,在和中,,,点E是BC边的中点,,,在中,由勾股定理得,即,解得,②当点F与点C重合时,同理可证,平分,,故答案为:或分两种情况:①当点F在DC之间时,过点A作交EF于点G,连接AE,根据角平分线的性质得到,证明得到,利用勾股定理求出,则,在中,由勾股定理得,解得;②当点F与点C重合时,同理可证,得到,由此即可得到答案.本题主要考查了全等三角形的性质与判定,坐标与图形,角平分线的定义,勾股定理的等等,利用分类讨论的思想求解是解题的关键.17.【答案】解:原式;原式【解析】先根据算术平方根的意义化简,再算减法即可;先根据算术平方根和立方根的意义化简,再算减法即可.本题考查了实数的混合运算,掌握算术平方根和立方根的意义是解答本题的关键.18.【答案】解:,方程两边同时乘以,得:,,检验:当时,,是该分式方程的解;,方程两边同时乘以,得:,,检验:当时,,不是该分式方程的解,所以该分式方程无解.【解析】利用去分母化为整式方程后,解整式方程,再代入最简公分母中检验即可.利用去分母化为整式方程后,解整式方程,再代入最简公分母中检验即可.本题考查了解分式方程,掌握解分式方程的步骤是关键.19.【答案】解:原式,当时,原式【解析】先根据分式的运算法则把所给代数式化简,再把代入计算.本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】【解析】解:如图所示,,,如图所示,则的坐标,的坐标故答案为:,先确定点的位置,再连线即可;先根据轴对称和平移的性质确定点的位置,再连线即可.本题考查了坐标与图形的性质,轴对称的性质,以及平移的性质,熟练掌握轴对称的性质和平移的性质是解答本题的关键.21.【答案】解:平分,,垂直平分BC,,,,,【解析】根据角平分线的定义可得,根据线段垂直平分线的性质得出,进而可得,然后求出,再利用三角形内角和定理求解即可.本题考查了角平分线的定义,线段垂直平分线的性质,等腰三角形的判定和性质,三角形外角的性质以及三角形内角和定理,解题关键是利用垂直平分线的性质得出等腰三角形,导出角之间的关系.22.【答案】解:设一次函数解析式为,图象经过,两点,解得:,一次函数解析式为;当时,,,,答:的面积为【解析】用待定系数法求解即可;先求出点C的坐标,再根据三角形的面积公式求解.本题考查了待定系数法求一次函数解析式,一次函数与坐标轴的交点,以及三角形的面积,熟练掌握待定系数法是解答本题的关键.23.【答案】解:根据题意可知米,米,设,由勾股定理得,即,解得答:该河的宽度BC为120米.【解析】根据题意可知为直角三角形,根据勾股定理就可求出直角边BC的距离.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24.【答案】解:设AB的解析式为:,把和代入中得:,解得段一次函数的解析式为:;线段BC表示的函数关系中,该汽车的速度每增加,耗油量增加,,速度为时,汽车的耗油量为;设BC的解析式为:,把和代入中得:,解得,段一次函数的解析式为:,根据题意得,解得,答:速度是时,该汽车的耗油量最低,最低是【解析】将和代入所设的解析式中求解即可;利用速度为的耗油量为,根据该汽车的速度每增加,耗油量增加进行计算即可;先求出BC段的函数解析式,再求出B点坐标即可本题考查了一次函数的实际应用,解题关键是读懂题意,能用待定系数法求函数的解析式,能通过联立两个解析式求交点坐标.25.【答案】【解析】解:,,,故答案为5;①,故答案为;②若值为整数,即为整数,亦即为整数,故,,可取0、1、3、4;理由:,,,;,,,即根据分离常数法即可得解;①将分离为即可得解,根据为整数,则,即可得解;把化为,根据的取值范围即可求解.本题考查了分式的加减运算,分式的基本性质,不等式,理解并能运用“分离常数法”是解题的关键.26.【答案】或【解析】解:对于,令,则;令,则;,,,;故答案为:4,2;过点C作轴交于点F,,由K型全等模型可得≌,,,则,点E的坐标为;故答案为:;过点B作交直线于点C,过点C作轴交于点D,,,由K型全等模型可得≌,与x轴的交点,,,,,设直线的解析式为,,解得,;【拓展应用】解:点P的坐标:或,①如图,当点P在射线CB上时,过点C作交直线EP于点F,,,过C作x轴垂线l,分别过F,E作,,,,,,,≌,,,即F点坐标为,设直线EF的解析式为,,,直线EF的解析式为,联立,解得,;②当点P在射线CA上时,过点C作交直线EP于点H,过点H作轴交于K,过点H作轴,过点C作交于G,,,,,,,≌,,,,,,,,设直线HE的解析式为,将点H、E坐标代入得:,解得:,,联立方程组,解得:,,综合上所述,点P坐标为或故答案为:或求得,,即可求解;过点C作轴交于点F,证明≌,据此即可求解;过点B作交直线于点C,过点C作轴交于点D,证明≌,求得,利用待定系数法即可求解;拓展应用:分当点P在射线CB上和点P在射线CA上时,两种情况讨论,利用“k型全等”和待定系数法即可求解.本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,三角形全等的判定及性质,分类讨论是解题的关键.。

江苏省盐城市八年级上学期期末数学试卷 (解析版)

江苏省盐城市八年级上学期期末数学试卷 (解析版)

江苏省盐城市八年级上学期期末数学试卷 (解析版)一、选择题1.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c = B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c =2.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .453.若+1x 有意义,则x 的取值范围是( ). A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数4.在下列分解因式的过程中,分解因式正确的是( ) A .-xz +yz =-z(x +y) B .3a 2b -2ab 2+ab =ab(3a -2b) C .6xy 2-8y 3=2y 2(3x -4y) D .x 2+3x -4=(x +2)(x -2)+3x 5.已知a >0,b <0,那么点P(a ,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下列式子中,属于最简二次根式的是( ) A .12B .0.5C .5 D .127.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,08.下列各式成立的是( ) A 93=±B 235=C ()233-=± D .(233-=9.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b dac+值为( ) A .12 B .14C .212- D .2+1210.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( ) A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题11.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b =+⎧⎨=+⎩的解为________.12.式子1x -在实数范围内有意义的条件是__________. 13.若关于x 的方程233x mx +=-的解不小于1,则m 的取值范围是_______. 14.计算:16=_______. 15.使函数6y x =-有意义的自变量x 的取值范围是_______.16.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

江苏省盐城市大丰区2017-2018学年八年级数学下学期期末综合复习资料试题(一)

江苏省盐城市大丰区2017-2018学年八年级数学下学期期末综合复习资料试题(一)

八年级下学期期末数学综合复习资料(一)_____班 姓名__________ 学号___________ 成绩_________一、选择题(每题2分,共36分)1、如果x--21是二次根式,那么x 应满足的条件是( ) A 、x ≠2的实数 B 、x <2的实数C 、x >2的实数D 、x >0且x ≠2的实数2、一个多边形的内角和与外角和相等,则这个多边形是( )A 、三角形B 、四边形C 、五边形 D、六边形3、在12、32x 、5.0中、22y x -、x 73中,最简二次根式的个数有( )A、4 B、3 C 、2 D 、14、即是轴对称图形,又是中心对称图形的是( )A 、菱形 B、等腰梯形 C、平行四边形 D、等腰三角形5、下面结论正确的是( )A 、无限小数是无理数B 、无理数是开方开不尽的数C 、带根号的数是无理数D 、无限不循环小数是无理数6、一个多边形的内角和与外角的和为540°,则它是( )边形。

A 、5B 、4C 、3D 、不确定7、计算38-的值为( )A 、-2 B、2 C、±2 D、22-8、矩形各内角的平分线能围成一个( )A、矩形 B、菱形 C、等腰梯形 D、正方形 9、二次根式21x +中x 的取值范围是( )A、x >-1 B 、x <-1 C 、x ≠-1 D 、一切实数10、平行四边形、矩形、菱形、正方形共有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角形互相垂直平分11、计算2)3(π-的值是( )A 、π-3B 、-0.14C 、 3-πD 、 2)3(π-12、矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是( )A 、5cmB 、10cmC 、cm 52D 、2.5cm13、161的算术平方根是( ) A 、41 B 、41- C 、21 D 、±21 14、直角梯形的一个内角为120°,较长的腰为6cm ,一底为5cm ,则这个梯形的面积为( )A 、23221cmB 、23239cmC 、2325cmD 、 23221cm 或23239cm 15、将11)1(---c c 中的根号外的因式移入根号内后为( ) A 、c -1 B 、 1-c C 、 1--c D 、 c --1 16、下面四组二次根式中,同类二次根式是( )A 、181163和-B 、ac b b a 435)1(9+和 C 、)(625y x yx x y ++和 D 、175)1(1253++c c 与 17、不能判定四边形ABCD 为平行四边形的题设是( )A 、AB =CD AB ∥CD B 、∠A =∠C ∠B =∠DC 、AB =AD BC =CD D 、AB =CD AD =BC18、若12,1212+++=x x x 则等于( )A 、2B 、22+C 、2D 、12-二、填空题(每题3分,共15分)1、一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。

盐城市2020年(春秋版)八年级上学期数学期末考试试卷A卷

盐城市2020年(春秋版)八年级上学期数学期末考试试卷A卷

盐城市2020年(春秋版)八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果三角形的三个内角度数比为1∶1∶2,则这个三角形为()A . 锐角三角形B . 钝角三角形C . 等腰直角三角形D . 非等腰直角三角形2. (2分)(2017·营口模拟) 下列运算正确的是()A . x2•x3=x6B . x2+x2=2x4C . (﹣2x)2=4x2D . (﹣2x)2•(﹣3x)3=6x53. (2分) (2020八下·丰县月考) 在下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4. (2分)如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A .B .C .D .5. (2分)计算的结果是()A . a-bB . a+bC . a2-b2D . 16. (2分) (2017八下·西华期末) 如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF ,连接DE、DF、EF ,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A . 1B . 2C . 3D . 47. (2分)当x=2时,代数式(x﹣1)(x2﹣2x+1)的值是()A . -1B . 0C . 1D . 28. (2分)如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长度。

A . POB . ROC . OQD . PQ9. (2分) (2019八上·桂林期末) 某口琴社团为练习口琴,第一次用元买了若干把口琴,第二次在同一家商店用元买同一款的口琴,这次商家每把口琴优惠元,结果比第一次多买了把.求第一次每把口琴的售价为多少元?若设第一次买的口琴为每把元,列方程正确的是()A .B .C .D .10. (2分) (2019七下·恩施月考) 如图,在下列条件中:①:② ;③且;④ ,能判定的有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共10题;共10分)11. (1分)一种微粒的半径是0.000043米,这个数据用科学记数法表示为________ 米.12. (1分)分式有意义的条件为________.13. (1分) (2020八下·扶风期末) 当x=________时,分式值为0.14. (1分) (2020九下·龙岗期中) 因式分解: =________.15. (1分) (2016八下·新城竞赛) 若关于x的分式方程有整数解,m的值是________.16. (1分) (2016七下·费县期中) 按图填空,并注明理由.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴________∥________(________ )∴∠E=∠________(________ )又∵∠E=∠3 (已知)∴∠3=∠________(________ )∴AD∥BE.(________ )17. (1分)(2018·焦作模拟) 如图,在Rt△ABC中,∠A=90°, ∠B=30°,BC=+1,点E、F分别是BC、AC边上的动点,沿EF所在直线折叠∠C,使点C的对应点C′始终落在边AB上,若△BEC′是直角三角形时,则BC′的长为________.18. (1分)计算 =________,=________.19. (1分)一个等腰三角形的两边长为2和4,则此三角形的周长为________.20. (1分) (2016九上·平南期中) 半径为5的圆中有两条弦长分别为6,8的平行弦,这两条弦之间的距离是________.三、解答题 (共7题;共41分)21. (5分) (2020九上·高平期末) 先化简,后求值,x是方程x2+2x﹣3=0的解.22. (10分) (2019八上·法库期末) 如图,在△ABC中,AB、BC、AC三边的长分别是,,.(1)△ABC的面积是________;(2)请在图1中作出△ABC关于直线l对称的△A1B1C1;(3)请在图2中画出△DEF,是DE、EF、DF三边的长分别是,,,并判断△DEF的形状,说明理由.23. (10分) (2019八下·南山期中) 阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如,我们来进行以下的探索:设a+b =(m+n )2(其中a,b,m,n都是正整数),则有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn,这样就得出了把类似a+b 的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1) 4-2 =(________)2(2)当a,b,m,n都为正整数时,若a-b =(m-n )2 ,用含m,n的式子分别表示a,b,得a=________,b=________;(3) a-4 =(m-n )2且a,m,n都为正整数,求a的值.24. (2分) (2016八上·东城期末) 如图,在△ABC中,BD平分∠ABC,(1)作图:作BC边的垂直平分线分别交BC,BD于点E,F(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接CF,若∠A=60°,∠ABD=24°,求∠ACF的度数.25. (10分)为支援灾区,某校爱心活动小组准备用筹集的资金购买A,B两种型号的学习用品共1 000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28 000元,则最多购买B型学习用品多少件?26. (2分)(2020·项城模拟)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为________;②线段AD,BE之间的数量关系为________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=3,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.27. (2分) (2019九上·无锡期中) 如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现:当α=0°时,=________;β=________°.(2)拓展探究:试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共41分)21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。

苏科版盐城市八年级上学期期末数学试卷 (解析版)

苏科版盐城市八年级上学期期末数学试卷 (解析版)

苏科版盐城市八年级上学期期末数学试卷 (解析版)一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)3.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 4.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 5.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .106.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -= 7.下列有关一次函数y =-3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为C .当时,D .函数图象经过第一、二、四象限8.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 9.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 10.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1 11.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.512.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.10的说法中,错误的是( )A .10是无理数B .3104<<C .10的平方根是10D .10是10的算术平方根 15.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题 16.写出一个比4大且比5小的无理数:__________.17.3-的绝对值是 .18.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.19.计算:32()x y -=__________.20.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.21.点A (2,-3)关于x 轴对称的点的坐标是______.22.化简:23(3)2716--+=_____.23.4的平方根是 .24.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.25.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 三、解答题26.计算:2201931125272-⎛⎫-+- ⎪⎝⎭27.求下列各式中的x :(1)()2116x -=;(2)321x +=.28.如图①,A 、B 两个圆柱形容器放置在同一水平桌面上,开始时容器A 中盛满水,容器B 中盛有高度为1 dm 的水,容器B 下方装有一只水龙头,容器A 向容器B 匀速注水.设时间为t (s),容器A 、B 中的水位高度A h (dm)、B h (dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm;(2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为4πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由;(3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高)29.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =30.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.31.如图,M、N两个村庄落在落在两条相交公路AO、BO内部,这两条公路的交点是O,现在要建立一所中学C,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.3.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;2,故错误;故选C .【考点】估算无理数的大小.5.A解析:A【解析】【分析】由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,易得△BCF 的周长等于AB+BC ,则可求得答案.【详解】解:由将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,可得BF=AF ,又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.6.B解析:B【解析】分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形;B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.7.C解析:C【解析】【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】A 、∵k=-3<0,∴当x 值增大时,y 的值随着x 增大而减小,正确;B 、函数图象与y 轴的交点坐标为(0,2),正确;C 、当x >0时,y <2,错误;D 、∵k <0,b >0,图象经过第一、二、四象限,正确;故选C .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C .【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.9.A解析:A【解析】试题解析:∵点P (3,-4)关于y 轴对称点P′,∴P′的坐标是:(-3,-4).故选A .10.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.11.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=2222GH GE HE故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.12.B解析:B【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】 解:2m是分式, 故选:B .【点睛】 此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.13.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.C解析:C【解析】试题解析:A 是无理数,说法正确;B 、3<4,说法正确;C 、10,故原题说法错误;D 是10的算术平方根,说法正确;故选C .15.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.二、填空题16.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以18.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).19.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 20.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到 解析:0【解析】【分析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴33302y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.21.(2,3)【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.22.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】=-+=3344故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.24.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,BC =AD ,∠A =∠B =∠C =∠D =90°,由折叠得:AD =AD ′,CD =CD ′,∠DAC =∠D ′AC ,∵∠DAC =∠BCA ,∴∠D ′AC =∠BCA ,∴EA =EC =5,在Rt △ABE 中,由勾股定理得,AB 4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形是解此题的关键.25.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】 ∵一次函数312y x =-+中k=32-<0, ∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为:<.【点睛】 此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.三、解答题26.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.27.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.28.(1)34π,2;(2)见详解;(3)6s. 【解析】【分析】(1)通过注水速度=注水体积÷注水时间以及圆柱体积=圆柱的底面积×圆柱的高,代入公式进行计算即可;(2)通过放水时间=放水体积÷放水速度,求出时间即可求出放水时间,然后画出图像; (3)列出容器A 和容器B 中水的高度与时间t 的关系,通过水位高度相同求解即可.【详解】解:(1)由图象可知,4秒时间A 容器内水的高度下降了1dm ,B 容器内水的高度上升了3dm ,B 容器增加的水的体积等于A 容器减少的水的体积,A 容器减少的水的体积213A V sh ππ==⨯=⎝⎭, 则注水速度为34V t π=, B 容器流入的水的体积 2332B m V sh ππ⎛⎫==⨯= ⎪⎝⎭, 解得m=2, 故答案为34π;2. (2)注满后B 容器中水的总体积为:22442ππ⎛⎫⨯= ⎪⎝⎭, ∵放水速度为4π, ∴放空所需要的时间为:4π÷4π=16 s . 如图所示,(3)4秒时A 容器体积为23262ππ⎛⨯= ⎝⎭此时B 容器体积为4π根据注水速度,A 容器内水的高度为()36414334t t πππ--=- B 容器内水的高度:()()344245494t t t ππππ+---=- 由153944t t -=- 解得t=6, ∴容器A 向容器B 全程注水时间t 为6s .【点睛】此题的关键是找到题中各个量之间的关系,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,理解题意是解题的关键.29.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中,ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.30.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.31.作图见解析.【解析】【分析】先连接MN,根据线段垂直平分线的性质作出线段MN的垂直平分线DE,再作出∠AOB的平分线OF,DE与OF相交于C点,则点C即为所求.【详解】点C为线段MN的垂直平分线与∠AOB的平分线的交点,则点C到点M、N的距离相等,到AO、BO的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.。

2023届江苏省盐城市盐城中学八年级数学第一学期期末监测试题含解析

2023届江苏省盐城市盐城中学八年级数学第一学期期末监测试题含解析

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一个缺角的三角形ABC 残片如图所示,量得∠A =60°,∠B =75°,则这个三角形残缺前的∠C 的度数为( )A .75°B .60°C .45°D .40°2.下列说法正确的个数( ) ①()3333ππ-=- ②3127-的倒数是-3 ③235+=④()24-的平方根是-4 A .0个B .1个C .2个D .3个3.如图,∠ACD=120°,∠B=20°,则∠A 的度数是( )A .120°B .90°C .100°D .30°4.下列运算中错误的是( ) A .235+=B .236⨯=C .822÷= D .2(3)3-=5.下列电子元件符号不是轴对称图形的是( ) A .B .C .D .6.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有1.11111211千克,用科学记数法表示为( ) A .2.11×11-6千克 B .1.211×11-5千克C .21.1×11-7千克D .2.11×11-7千克7.化简式子1(1)1a a---的结果为( ) A .1a -B .1a -C .1a --D .1a --8.如图,在平面直角坐标系中,直线l 1:3y x与直线l 2:y mx n =+交于点A(1-,b),则关于x 、y 的方程组3y x y mx n =+⎧⎨=+⎩的解为( )A .21x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩9.如图,△ABC 中,∠C =90°,∠BAC 的角平分线交BC 于点D ,DE ⊥AB 于点E .若CD =2,AB =7,则△ABD 的面积为( )A .3.5B .7C .14D .2810.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣11.下列计算结果正确的是( ) A .﹣2x 2y 3+x y =﹣2x 3y 4 B .3x 2y ﹣5xy 2=﹣2x 2y C .(3a ﹣2)(3a ﹣2)=9a 2﹣4D .28x 4y 2÷7x 3y =4xy12.下列因式分解结果正确的是( ) A .24(4)x x x x -+=-+ B .224(4)(4)x y x y x y -=+-C .222(1)x y xy y y x -+=-D .234(1)(4)x x x x --=-+二、填空题(每题4分,共24分)13.已知()2350a b -+-=,那么以a b 、边边长的直角三角形的面积为__________. 14.如图,边长为1的菱形ABCD 中,60DAB ∠=︒.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使60FAC ∠=︒.连结AE ,再以AE 为边作第三个菱形AEGH ,使60HAE ∠=︒,一按此规律所作的第2017个菱形的边长是__________.15.若3m n -=,5mn =,则m n +的值为__________.16.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为_______. 17.如图,在ABC ∆中,90BAC ∠=︒,2ABC C ∠=∠,BE 平分ABC ∠交AC 于E ,AD BE ⊥于D ,下列结论:①AC BE AE -=;②点E 在线段BC 的垂直平分线上;③DAE C ∠=∠;④2BD DE =;⑤4BC AD =,其中正确的有____(填结论正确的序号).18.如图,AB BC ⊥,DC BC ⊥,垂足分别为B C 、,4AB =,6BC =,2CD =,点P 为BC 边上一动点,当BP =_______时,形成的Rt ABP ∆与Rt PCD ∆全等.三、解答题(共78分)19.(8分)父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?20.(8分)(1)解方程:13x--2=33xx-;(2)设y=kx,且k≠0,若代数式(x-3y)(2x+y)+y(x+5y)化简的结果为2x2,求k的值.21.(8分)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC 边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)22.(10分)已知:y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.23.(10分)已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.24.(10分)如图,四边形ABCD的顶点坐标为A(—5,1),B(—1,1),C(—1,6),D(—5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出坐标.25.(12分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.26.如图,AC=AE,∠C=∠E,∠1=∠1.求证:△ABC≌△ADE.参考答案一、选择题(每题4分,共48分)1、C【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A = 60°,∠B = 75°,所以∠C=180°–60°–75°=45°. 【点睛】三角形内角和定理是常考的知识点. 2、B看是否等于3π-的倒数看是否等于-3;计算的平方根是否等于-1.【详解】3π≠-π ,错误;B.=13-的倒数等于-3,正确;≠,1的平方根是2± ,错误.故答案为B . 【点睛】本题考查了无理数的简单运算,掌握无理数混合运算的法则、倒数以及平方根的求解是解题的关键. 3、C【详解】∠A=∠ACD ﹣∠B =120°﹣20° =100°, 故选C . 4、A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】A. 不是同类二次根式,不能合并,故此项错误,符合要求;B. ==C.2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 5、C【解析】根据轴对称图形的概念对各个选项进行判断即可.【详解】解: C 中的图案不是轴对称图形,A 、B 、D 中的图案是轴对称图形, 故选:C . 【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线对称. 6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定. 【详解】1.11111211=62.0110-⨯ 故选A . 7、D【分析】根据二次根式有意义的条件即可求出a 的取值范围,然后根据二次根式的除法公式和分母有理化化简即可. 【详解】解:101a->- 10a ∴-<,即1a >,(1(1(1(11a a a a a ∴-=--=-=-=故选:D . 【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键. 8、C【解析】试题解析:∵直线l 1:y =x +3与直线l 2:y =mx +n 交于点A (-1,b ), ∴当x =-1时,b =-1+3=2, ∴点A 的坐标为(-1,2), ∴关于x 、y 的方程组3{y x y mx n++==的解是1{2x y -==.故选C .【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系. 9、B【分析】根据角平分线的性质得出DE =CD =2,根据三角形的面积公式求出即可. 【详解】解:∵△ABC 中,∠C =90°,∠BAC 的角平分线交BC 于点D ,DE ⊥AB 于点E ,CD =2, ∴DE =CD =2, ∵AB =7, ∴△ABD 的面积是:1AB DE 2⨯⨯=1722⨯⨯=7, 故选:B . 【点睛】本题是对角平分线性质的考查,熟练掌握角平分线的性质是解决本题的关键. 10、D【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键. 11、D【分析】﹣2x 2y 3+x y 和3x 2y ﹣5xy 2不能合并同类项;(3a ﹣2)(3a ﹣2)是完全平方公式,计算结果为9a 2+4﹣12a .【详解】解:A.﹣2x 2y 3+x y 不是同类项,不能合并,故A 错误; B.3x 2y ﹣5xy 2不是同类项,不能合并,故B 错误;C.(3a ﹣2)(3a ﹣2)=9a 2+4﹣12a ,故C 错误;D. 28x 4y 2÷7x 3y =4xy ,故D 正确. 故选:D . 【点睛】本题考查合并同类项,整式的除法,完全平方公式;熟练掌握合并同类项,整式的除法的运算法则,牢记完全平方公式是解题的关键. 12、C【分析】根据因式分解的概念,用提公因式法,公式法,十字相乘法,把整式的加减化为整式的乘法运算.【详解】A. 24(4)x x x x -+=--,故此选项错误,B. 224(2)(2)x y x y x y -=+-,故此选项错误,C. 222(1)x y xy y y x -+=-,故此选项正确,D. 234(1)(4)x x x x --=+-,故此选项错误. 故选:C . 【点睛】考查因式分解的方法,有提公因式法,公式法,十字相乘法,熟记这些方法步骤是解题的关键.二、填空题(每题4分,共24分) 13、6或152()250b -=得出a b 、的值,再分情况求出以a b 、边边长的直角三角形的面积.()250b -= ∴35a b ==, (1)a b 、均为直角边11522S ab == (2)a 为直角边,b 为斜边 根据勾股定理得另一直角边4=∴13462S=⨯⨯=故答案为:6或15 2【点睛】本题考查了三角形的面积问题,掌握勾股定理以及三角形的面积公式是解题的关键.14、1.【解析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG 的长,从而可发现规律根据规律不难求得第n个菱形的边长.【详解】连接DB交AC于M.∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=12,∴AM=32,∴3同理可得332,333,按此规律所作的第n3n-1,∴第201732016=1.故答案为:1.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.15、29【分析】根据(m +n )2=(m−n )2+4mn ,把m−n =3,mn =5,解答出即可;【详解】根据(m +n )2=(m−n )2+4mn ,把m−n =3,mn =5,得,(m +n )2=9+20=29∴m n +=故答案为【点睛】本题考查了完全平方公式,熟记完全平方公式及其变形,是正确解答的基础. 16、3【分析】首先求出第三边长的取值范围,选取整数即可.【详解】∵三角形的两边长分别为1和3,∴设第三边长为x ,则第三边长的取值范围为2<x <4,且三边长均为整肃,∴第三边长为3.【点睛】本题考查了三角形第三边的取值范围,掌握三角形三边关系是解题的关键.17、①②③⑤【分析】根据已知条件可得ABC ∆,ABE ∆,ABD ∆,ADE ∆是含30角的Rt ∆,而BCE ∆是一个等腰三角形,进而利用等腰三进行的判定、垂直平分线的判定以及含30角的直角三角形的性质可以得出AC BE AE -=、点E 在线段BC 的垂直平分线上、DAE C ∠=∠、2AE DE =、4BC AD =,即可判断.【详解】∵90BAC ∠=︒,2ABC C ∠=∠∴30C ∠=︒,60ABC ∠=︒∵BE 平分ABC ∠交AC 于E∴CBE C ∠=∠∴BE CE =∴AC CE AC BE AE -=-=,故①正确;点E 在线段BC 的垂直平分线上,故②正确;∵AD BE ⊥∴30DAE C ∠=∠=︒,故③正确;∴在Rt ADE ∆中,2AE DE =,故④错误;在Rt ABD ∆中,2AB AD =在Rt ABC ∆中,2BC AB =∴4BC AD =,故⑤正确.故答案是:①②③⑤.【点睛】本题图形较为复杂,涉及到知识点较多,主要考查了等腰三进行的判定、垂直平分线的判定以及含30角的直角三角形的性质,属中等题,解题时要保持思路清晰. 18、1【分析】当BP=1时,Rt △ABP ≌Rt △PCD ,由BC=6可得CP=4,进而可得AB=CP ,BP=CD ,再结合AB ⊥BC 、DC ⊥BC 可得∠B=∠C=90°,可利用SAS 判定△ABP ≌△PCD .【详解】解:当BP=1时,Rt △ABP ≌Rt △PCD ,∵BC=6,BP=1,∴PC=4,∴AB=CP ,∵AB ⊥BC 、DC ⊥BC ,∴∠B=∠C=90°,在△ABP 和△PCD 中90AB PC B C BP CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABP ≌△PCD (SAS ),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )是解题的关键.三、解答题(共78分)19、第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤【分析】设哥哥第一次分到粮食为x 斤,弟弟第二次分到的粮食为y 斤,根据题中给出已知条件,找到等量关系列出二元一次方程组,解方程组即可求解.【详解】设哥哥第一次分到粮食为x 斤,弟弟第二次分到的粮食为y 斤,依题意得:21003(100)x y y x =⎧⎨-=-⎩解得8040x y =⎧⎨=⎩第一次弟弟分到:1008020-=(斤)第二次哥哥分到:1004060-=(斤)∴第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤 故答案为:第一次,哥哥分到80斤,弟弟分到20斤,第二次,哥哥分到60斤,弟弟分到40斤.【点睛】本题考查了二元一次方程组的实际应用,找到题中等量关系列出方程组是解题的关键.20、 (1)原分式方程的解为x =-7;(1)k 的值为1.【解析】试题分析:(1)直接去分母,进而解分式方程得出答案;(1)首先利用多项式乘法去括号,进而合并同类项得出答案.试题解析:(1)去分母得:1-1(x-3)=-3x ,解得:x=-7,检验:当x=-7时,x-3≠0,故x=-7是原方程的解;(1)∵(x-3y )(1x+y )+y (x+5y )=1x 1-5xy-3y 1+xy+5y 1=1x 1-4xy+1y 1=1(x-y )1=1x 1,∴x-y=±x , 则x-kx=±x , 解得:k=0(不合题意舍去)或k=1.∴k 的值为1.21、(1)详见解析;(2)y=2x+2(0≤x≤16),当x=0时, y 最小=2,当x=16时,y 最大=1;(3)当x=32时, y 最小=2;当x=16时, y 最大=1.【解析】试题分析:(1)如图1,分别作出点A 1、B 1、C 1关于直线QN 的对称点A 2、B 2、C 2,在顺次连接这三点即可得到所求三角形;(2)如图2,当△ABC 以每秒1个单位长的速度向下平移x 秒时,则有:MA=x ,MB=x+4,MQ=20,由题意可得:y= S 梯形QMBC ﹣S △AMQ ﹣S △ABC ,由此就可得到y 与x 之间的函数关系式,结合x 的取值范围是016x ≤≤即可求得y 的最大值和最小值;(3)如图2,可用如下两种方法解答本问:方法一:当△ABC 继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x ﹣16)=36﹣x ,PC=PB ﹣4=32﹣x ,由y=S 梯形BAQP ﹣S △CPQ ﹣S △ABC 即可列出y 与x 之间的函数关系式,结合x 的取值范围即可求得y 的最大值和最小值;方法二:在△ABC 自左向右平移的过程中,△QAC 在每一时刻的位置都对应着(2)中△QAC 某一时刻的位置,使得这样的两个三角形关于直线QN 成轴对称.因此,根据轴对称的性质,只需考查△ABC 在自上向下平移过程中△QAC 面积的变化情况,便可以知道△ABC 在自左向右平移过程中△QAC 面积的变化情况.试题解析:(1)如图1,△A 2B 2C 2是△A 1B 1C 1关于直线QN 成轴对称的图形(2)当△ABC 以每秒1个单位长的速度向下平移x 秒时(如图2),则有:MA=x ,MB=x+4,MQ=20,y=S 梯形QMBC ﹣S △AMQ ﹣S △ABC =12(4+20)(x+4)﹣12×20x ﹣12×4×4 =2x+2(0≤x≤16).由一次函数的性质可知:当x=0时,y 取得最小值,且y 最小=2,当x=16时,y 取得最大值,且y 最大=2×16+2=1; (3)解法一:当△ABC 继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x﹣16)=36﹣x,PC=PB﹣4=32﹣x,∴y=S梯形BAQP﹣S△CPQ﹣S△ABC=12(4+20)(36﹣x)﹣12×20×(32﹣x)﹣12×4×4=﹣2x+104(16≤x≤32).由一次函数的性质可知:当x=32时,y取得最小值,且y最小=﹣2×32+104=2;当x=16时,y取得最大值,且y最大=﹣2×16+104=1.解法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ABC在自上至下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.当x=16时,y取得最大值,且y最大=1,当x=32时,y取得最小值,且y最小=2.22、(1)y=x+2;(2)M(1,3).【分析】(1)根据正比例函数的定义设y-2=kx(k≠0),然后把x、y的值代入求出k 的值,再整理即可得解;(2)将点M(m,3)的坐标代入函数解析式得到关于m的方程即可求解.【详解】解:(1)设y-2=kx(k≠0),把x=2,y=4代入求得k=1,∴函数解析式是y=x+2;(2)∵点M(m,3)在这个函数图象上,∴m+2=3,解得:m=1,∴点M的坐标为(1,3).【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.23、见解析【分析】证出∠BAN=∠CAM,由AB=AC,AM=AN证明△ACM≌△ABN,得出对应角相等即可.【详解】∵∠1=∠2,∴∠BAN=∠CAM ,AB=AC,AM=AN,∴△ABN≌△ACM,∴∠M=∠N.【点睛】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.24、详见解析【解析】根据平面直角坐标系,分别找出点A、B、C、D关于x轴的对称点A′、B′、C′、D′的位置,然后顺次连接即可,根据关于x轴对称的点的横坐标相同,纵坐标互为相反数写出各点的坐标即可,根据平面直角坐标系,分别找出点A、B、C、D关于y 轴的对称点A″、B″、C″、D″的位置,然后顺次连接即可,根据关于y轴对称的点的横坐标互为相反数,纵坐标相同写出各点的坐标即可.【详解】解:如图所示,四边形A′B′C′D′即为所求作的关于x轴的对称图形,A′(-5,-1),B′(-1,-1),C′(-1,-6),D′(-5,-4),四边形A″B″C″D″即为所求作的关于y轴的对称图形,A″(5,1),B″(1,1),C″(1,6),D″(5,4).【点睛】本题主要考查了利用轴对称变换作图和关于x轴对称的点的横坐标相同,纵坐标互为相反数,关于y轴对称的点的横坐标互为相反数,纵坐标相同,解决本题的关键是准确找出各对称点的位置.25、(1)BF=AC,理由见解析;(2)NE=12AC,理由见解析.【分析】(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=12 AC.【详解】(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵DAC DBFADC BDF AD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=12AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=12 AC.26、证明见解析【解析】试题分析:由题目已知条件可得∠EAC+∠1=∠DAE、∠1+∠EAC=∠BAC、∠1=∠1,利用角的加减关系可得∠BAC=∠DAE;结合AC=AE、∠C=∠E,利用两角及其夹边对应相等的两个三角形全等即可解答本题.试题解析:∵∠1+∠EAC=∠BAC,∠EAC+∠1=∠DAE,∠1=∠1,∴∠BAC=∠DAE.∵∠BAC=∠DAE,AC=AE,∠C=∠E,∴△ABC≌△ADE.。

江苏省盐城初级中学第一学期八年级期末考试(数学)

江苏省盐城初级中学第一学期八年级期末考试(数学)

江苏省盐城初级中学第一学期八年级期末考试数学试卷一、精心选一选(本大题共有8 小题,每题 3 分,共 24 分 . 注意每题所给出的四个选项中,只有一项为哪一项正确的. 请把正确选项前的字母代号填在题后的括号内. 相信你必定会选对!)1、以下 4 个图案中,既是轴对称图形又是中心对称图形的有()A.1 个B.2 个C.3 个D.4 个2、给出以下长度的四组线段:①1, 2, 2;② 5, 13, 12;③ 6, 7,8;④ 3,4, 5.此中能构成直角三角形的有()A .①②B .②③C.②④D.③④3、八年级(1)班的10 名同学的期末体育测试成绩以下:80, 86, 86, 86, 86, 87,88, 89, 89, 95,这些成绩的众数是()A.85 B. 86 C. 86.5 D. 904、若点 P 对于 x 轴的对称点的坐标是( 2,3),则点 P 对于原点的对称点的坐标是()A .(- 3,- 2)B.( 2,- 3)C.(- 2,- 3) D .(- 2, 3)5、已知等腰三角形的两边长分别为2cm 和 4cm,则它的周长为()A . 6cm B. 8cm C. 10cm D.8cm 或 10cm6、以下判断错误的是()..A.对角线相互垂直的平行四边形是正方形B.四个角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.一组对边平行且一组对角相等的四边形是平行四边形7、直线 l 1:y= k1x+ b 与直线 l 2:y=k2 x 在同一平面直角坐标系中的图象以下图,则对于x 的不等式k1x+ b> k2x 的解为()A . x>- 1B. x<- 1C. x<- 2D.没法确立8、如图,直线l 是一条河,P、 Q 两地相距8 千米, P、Q 两地到l 的距离分别为2千米、5 千米,欲在l 上的某点M 处修筑一个水泵站,向P、 Q 两地供水,现有以下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()二、仔细填一填(本大题共有10 小题,每题 3 分,共 30 分.相信你必定会填对的!)9、25 的平方根为;9的算术平方根是;的立方根为-2.10、 2010 年“元旦”时期无锡市旅行人数达136 000 人次,数据“136 000”用科学记数法表示人.11、已知点P1(a,3)与P2(- 2, b)对于y 轴对称,则ab 的值为.12、如图,在△ABC 中,∠ C= 90°, DE 是AB 的垂直均分线,∠ A = 30°,则∠CBD =°.13、在某校艺术节舞蹈竞赛中,六名评委对八(1)班舞蹈队打分以下:7.5 分, 8.3 分, 7.7 分, 9.2 分, 8.1 分,7.9 分,去掉一个最高分和一个最低分后的均匀分是___________分14、一次函数y= - 2x+6 与 x 轴的交点坐标是________,与 y 轴的交点坐标是________,与坐标轴围成的三角形的面积为.15、直角三角形三边长分别为3, 4, m,则m= .16、如图,矩形ABCD 的对角线AC 和BD 订交于点O,过点O 的直线分别交AD 和BC 于点E、 F, AB=2 ,BC=3 ,则图中暗影部分的面积为.17、在△ ABC 中,∠ A=50 °,当∠ B 的度数 =时,△ ABC是等腰三角形.18、如图,在梯形 ABCD 中, AD ∥BC ,∠ B= 90°, AB = 4cm, AD =18cm, BC= 21cm,点 P 从点 A 出发,沿边 AD 向点 D 以 2cm/s 的速度挪动,点 Q 从点 C 出发沿边 CB 向点 B 以 6cm/s 的速度挪动, P、 Q 同时出发,如有一点运动到端点时,另一点也随之停止.则①CD=_____cm ;②经过 ______秒后, PQ=CD .三、认真答一答(本大题共 6 小题,共 54 分 . 只需你踊跃思虑, 认真运算 , 必定会解答正确的! )19、(本小题满分8 分)如图,正方形网格中的每个小正方形边长都是 1.(利用网格线进行绘图)⑴在图 1 中画出以格点为极点、面积为 5 的正方形;⑵在图 2 中已知线段AB 、 CD,画线段EF,使它与AB 、 CD 构成轴对称图形;⑶在图 3 中①画出一个以格点为端点直角边长为2、 3 的直角△ ABC (∠ C=90°);②在 AB 上找一点D,使得 D 到 CB、 CA 的距离相等;③在射线 CD 上找一点 E 到三角形某两点的距离相等.图一图 3(友谊提示:别忘了标上字母噢!)20、(本小题满分 8 分)一家企业对 A 、 B、 C 三名应聘者进行了创新、综合知识和语言三项素质测试,他们的成绩以下表所示:测试成绩测试项目A B C创新72 85 67综合知识50 74 70语言88 45 67(1)假如依据三项测试的均匀成绩确立录取人选,你选谁?请说明原因;(2)依据实质需要,广告企业给出了选人标准:将创新、综合知识和语言三项测试得分按4: 3: 1 的比率确立各人的测试成绩.你选谁?请说明原因.21、(本小题满分8 分)已知,如图,四边形ABCD 中∠ B=90 °, AB=9 , BC=12 ,AD=8 ,CD=17 。

2019-2020盐城市大丰区期末考试八年级数学答案

2019-2020盐城市大丰区期末考试八年级数学答案

2019-2020学年度第一学期期末学情调研八年级数学答案一、选择题(本大题共有8小题,每小题3分,共24分)1.B 2.D 3.A 4.C5.C6.B 7.D 8.A二、填空题(本大题共8小题,每小题3分,共24分)9. 2 10.(0,3)11.10 12.(-1,-3)13. 4 14. 5 15. 1.516.3或4三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)解:6 -3 2 ―――各2分18.(6分)解:(1)∵CD⊥AB,∴∠ADC=∠CDB=90∘,在Rt△BCD中,BC=15,BD=9,∴CD2=BC2−BD2=144,∴CD=12.―――3分(2)在Rt△ACD中,AC=20,CD=12,∴AD2=AC2−CD2=256.∴AD=16,∴AB=AD+BD=25.―――3分19.(8分)解:DE=AC且DE⊥A C.理由:⊥AB⊥BC,DC⊥BC,⊥⊥DCE=⊥CBA=90°在∆DCE和∆CBA中,DC=CB,⊥DCE=⊥CBA,AB=EC⊥∆DCE⊥∆CBA(SAS)⊥DE=AC,⊥CDE=⊥BCA―――5分⊥⊥DCE=90°,⊥⊥CDE+⊥DEC=90°八年级数学答案第1页(共2页)⊥⊥BCA+⊥DEC=90°⊥⊥CME=90°⊥DE⊥A C.―――3分20.(8分)解:(1)图略―――4分(2)(-3,-3)―――4分21.(8分)解:(1)⊥AC的垂直平分线交AB于点E,D为垂足⊥EA=EC⊥⊥ECD=⊥A=36° ―――4分(2)⊥⊥A=36°,AB=AC⊥⊥B=⊥BCA=72°⊥⊥BEC=⊥A+⊥A CE=36°+36°=72°,⊥⊥B=⊥BEC⊥BC=EC=5.―――4分22.(10分)解:(1)由题意可得,B点坐标为(0,)⊥⊥OAB的面积为,⊥12×OA×32=34,⊥OA=1,⊥A点坐标为(-1,0)―――2分⊥一次函数y=(m+1)x+的图象过点A(-1,0)⊥0=-(m+1)+,m=12.―――3分(2)⊥OP=3OA,OA=1,⊥OP=3,⊥点P的坐标为(3,0)设直线BP的解析式为y=kx+b八年级数学答案第2页(共2页)⊥直线BP过点B(0,),点P(3,0)⊥直线BP的解析式为y=−12x+32.―――5分23.(10分)解:连接C A.在∆ACD中,⊥ADC=90°,AD=4m,CD=3m,⊥AC=5 ―――3分在∆ACB中,AB=13m,BC=12m,AC=5⊥AC2+BC2=AB2⊥⊥ACB=90° ―――4分⊥这块地的面积S=S⊥ACB-S⊥ACD=12×5×12−12×3×4=24 ―――3分24.(10分)解:⊥A点和E点关于BD对称,⊥⊥ABD=⊥EBD,即⊥ABC=2⊥ABD=2⊥EB D.―――2分又B点、C点关于DE对称,⊥⊥DBE=⊥C,⊥ABC=2⊥C.―――3分⊥⊥A=90°,⊥⊥ABC+⊥C=2⊥C+⊥C=3⊥C=90°.⊥⊥C=30° ―――3分⊥⊥ABC=2⊥C=60°.―――2分25.(10分)解:(1)x>2 ―――2分(2)x<4 ―――2分八年级数学答案第3页(共2页)八年级数学答案 第4页(共2页) (3)2<x <4 ―――3分(4)12×2×2=2(平方单位)―――3分 26.(12分)解:(1) 40 天.―――4分(2)(0.5−0.25)÷6−140=160, 60 天.―――4分 .(3) 0.5÷(140+160)=12.40−10−6−12=12.答:实际完成的时间比甲独做所需的时间提前 12 天.―――4分27.(14分)解:(1)⊥⊥ACB =90°,⊥⊥ACD +⊥BCE =90°⊥AD ⊥l ,BE ⊥l ,⊥⊥ADC =⊥CEB =90°,⊥⊥ACD +⊥DAC =90° , ⊥⊥DAC =⊥ECB⊥在⊥DAC 和⊥ECB 中,⊥ADC =⊥CEB ,⊥DAC =⊥ECB ,AC =CB ⊥⊥DAC ⊥⊥ECB (AAS ) ―――4分(2)过点B 作BC ⊥BA ,交直线l 2于点C ,过点C 作CD ⊥x 轴于点D .由直线l :33+=x y 与y 轴交于点A ,与x 轴交于点B ,可求点A 坐标为(0,3),点B 坐标为(-1,0),⊥AO =3,OB =1. 由⊥DCB ⊥⊥OBA 可得,DC =OB =1,DB =OA =3,⊥点C 的坐标为(-4,1)设直线m 的解析式为:y =kx +b ,把(0,3),(-4,1)代入,x+3.―――4分求得y=12(3)如图3,由⊥AEQ⊥⊥QFP可得AE=QF,3-(5a-2)=4-a,.―――3分求得a=14如备用图,由⊥AEQ⊥⊥QFP可得AE=QF,(5a-2)-3=4-a,.―――3分求得a=32八年级数学答案第5页(共2页)。

盐城中学八年级数学周末作业(一)

盐城中学八年级数学周末作业(一)

1初二数学周末作业(一)(2012.2.11)班级 学号 姓名一、选择题:1、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元,在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( )A.至多6人B.至少6人C.至多5人D.至少5人2、某校要买一些日记本和活页簿作为三好学生的奖品,日记本每本8角2分,活页簿每本6角8分,共买90本,要想花钱在70元以下最多能买日记本( ) A.61 B.62 C.63 D.643、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.王灿有几种方案安排甲、乙两种货车可一次性地运到销售地( )A .1种 B.2种 C.3种 D.4种 4、已知直线33x 3y +-=上的点(x ,y )在x 轴上方,则( ) A .x >0 B.x <0 C. x >3 D. x <3 5、观察下列图像,可以得出不等式组⎩⎨⎧>+->+01x 5.001x 3的解集是( )A.31x < B.0x 31<<- C.0<x <2 D.2x 31<<-二、填空题:1、小明期中考试成绩为语文85分,英语96分,要使语文、数学、英语三门课的平均成绩不低于90分,数学成绩至少应得 分.2、一个长方形的长是x 厘米,宽比长小4厘米,若长方形的周长大于32厘米,则x 的取值范围是 .3、小丽在暑假中到图书馆借了一本书,共342页,原定7天看完,前2天共看书90页,这时小丽打算提前1天看完,那么她在以后的几天中平均每天至少要看书 页.4、一个两位数,十位上的数字是x ,个位数的数字比十位上的数字小3,且这个两位数小于52,则这个两位数为 .5、某开发商花了1300万元购买了一块地用于建造居民住宅楼,已知住宅楼每平方米造价2700元,那么建楼面积必须超过 平方米才能使建楼成本控制在每平方米4000元以下.6、把一堆苹果分给几个小孩,如果每人分3个,那么多8个,如果前面每人分5个,那么最后一人得到的苹果不足3个,则有 个小孩,有 个苹果.7、已知一次函数y =-3x +2,若-1<y <1,则x 的取值范围为 .8、已知函数y =-3(x -1)+6,当x 时,函数的值是3,当x 时,函数值为正数. 9、已知y 1=5+x ,y 2=-2x +2,当x 时,y 1≥y 2.10、如图,一次函数y =kx +b (k <0)的图象经过点A ,当y <x 的取值范围是 .11、如图,直线y =kx +b 经过点A (-1,-2)和点B (-2,直线y =2x 过点A ,则当x 满足条件 时2x <kx +b. 三、解答题:1、某电影院在暑假期间向学生出售优惠票,每张2元,按平时售票情况估计,每场次可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?2、容器里盛有水,先用去4升,又用去余下的21,最后剩下的水不少于5升,问:最初容器内所盛的水至少为多少?3、一批物资需要在1小时内从甲地送到100千米远的乙地,某人驾驶汽车,前半小时走了40千米,后半小时速度是多少才能保证物资及时送到?4、芳芳水果店进了这种“盐渎牌”苹果1吨,进价是7元/千克,售价定为10元/千克,销售一半以后,为了尽快售完,准备打折出售,如果要使总利润不低于2000元,那么余下的苹果可以按原定价的几折出售?5、某生产小组展开劳动竞赛后,每人一天多做10个零件,这样8个人一天做的零件超过了200只,后来改进技术,每人一天又多做27个零件,这样他们4个人一天所做的零件就超过劳动竞赛后、改进技术前8个人一天所做的零件数,问开展劳动竞赛前1个人一天所做的零件数是多少?6、某公园门票的价格是每位20元,20人以上(含20人)的团体票8折优惠,现有18位游客要进该公园,如果他们买20人的团体票,那么比买普通票要便宜多少钱?至少要有多少人去该公园,买团体票比买普通票合算?x7、某企业想租一辆车,现有甲、乙两家出租汽车公司,甲公司的出租条件是:每千米车费1.10元;乙公司的出租条件是:每月付800元租车费,另外每千米付0.10元的油费,该企业租哪家公司的车合算?8、小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?9、甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠?10、某校八年级组织部分学生租乘一艘轮船对当地的一条河流的A港至B港河段的环保情况进行考察,A、B两港相距60km,轮船以10km/h的速度从A港驶往B港,3h后,学校又租乘一艘快艇以30km/h的速度从A港驶往B港,给考察的学生运送急需物资和先期到达B港做好接待工作,(1)何时轮船行驶在快艇的面?何时快艇赶上轮船?何时快艇行驶在轮船的前面?(2)轮船与快艇哪一艘先驶过40km?11、某饮料厂为了开发新产品,分别用A、B两种果汁原料19千克、17.2千克,试制甲、乙(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的总成本为y 元,请写出y关于x的函数关系式,并根据(1)的结果,确定当甲种饮料生产多少千克时,甲、乙两种饮料的总成本最小?12、2010年广州亚运会的比赛门票接受了公众预订,下表为广州亚运会官方票务网站公布的几种球类比赛的门票价格,当初某球迷准备用8000元预订10张下表中比赛项目的门票,(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?13、在社会主义新农村建设中,李叔叔承包了家乡的50亩荒山,经过市场调查,预测水果上市后A种水果每年每亩可获利0.3万元,B种水果每年每亩可获利0.2万元,李叔叔决定在承包的山上种植A、B两种水果.他了解到需要一次性投入的成本为:A种水果每亩1万元,B种水果每亩0.9万元,设种植A种水果x亩,投入成本总共y万元,(1)求y与x之间的函数关系式;(2)若李叔叔在开发时投入的资金不超过47万元,为使总利润每年不少于11.8万元,应如何安排种植面积(亩数x取整数)?请写出获利最大的种植方案.14、某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车x辆,租车总费用为y元.(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?完成时间:家长签字:2。

江苏省盐城市盐都区2023-2024学年八年级上学期期末数学试题

江苏省盐城市盐都区2023-2024学年八年级上学期期末数学试题

江苏省盐城市盐都区2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.第19届亚运会于2023年9月23日至10月8日在杭州举行,在以下给出的运动图片中,属于轴对称图形的是( )A .B .C .D . 2.在下列条件中,不能作为判断ABC DEF ≌△△的条件是( )A .,,AB DE BC EF C F ==∠=∠B .,,AB DE AC DF AD ==∠=∠ C .,,AB DE AC DF BC EF === D .,,A D B E AC DF ∠=∠∠=∠= 3.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学家.圆周率π 3.1415926≈,按照四舍五入法对π精确到千分位是( ) A .3.1 B .3.14 C .3.142 D .3.1416 4.若点(),5P m 与点()3,Q n 关于原点成中心对称,则m n +的值是( ) A .2- B .2 C .8- D .85.如图,90AOB ∠︒=,以点O 为圆心,适当长为半径画弧交AOB ∠两边于点A 、B ,再以点A 为圆心,OA 长为半径画弧,交弧AB 于点C ,作射线OC ,则BOC ∠的度数为( )A .20︒B .30︒C .36︒D .40︒ 6.如图所示,有一块直角三角形纸片,90,4,3ACB AC BC ∠=︒==,将斜边AB 翻折,使点B 落在直角边AC 延长线上的点E 处,折痕为AD ,则CE 的长为( )45二、填空题9.5的平方根是.10.如图,直线y mx =与y kx b =+相交于点()12P ,,则关于x 的方程kx b mx +=的解是.11.等腰三角形的两边长分别是3和6,则它的周长为.12.直角三角形两直角边长分别是6cm 和8cm ,则斜边上的中线长等于.13.如图,ACD V 是等边三角形,若108AB DE BC EA B ==∠=︒,,,则BAE ∠=︒.14.2023年4月16日,盐城马拉松在盐南体育中心开跑,葛老师和包老师参加了其中的迷你健身跑项目,图中AB 、OC 分别表示葛老师和包老师前往终点所跑的路程()km S 随时间()min t 变化的函数图像,以下说法:①这是全长为5km 的比赛;②葛老师比包老师迟10分钟到达终点;③葛老师出发5分钟时遇到包老师;④葛老师的平均速度为200米/分钟.其中正确的有.(填序号)15.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25.请你写出有以上规律的第④组勾股数:.16.如图,在一次函数39y x =+的图像上存在点P ,使得点P 关于直线x t =的对称点P '在ABC V 的边上,其中(1,0)A ,(8,0)B ,(8,4)C ,则t 的取值范围是.(注:直线x t =是指过(,0)t 且垂直于x 轴的直线)三、解答题(1)在BC 上找一点P ,使点P 到AB 和AC 的距离相等;(2)在射线AP 上找一点Q ,使QB QC =.20.已知4y +与2x +成正比例,且2x =时,8y =.(1)求y 与x 的函数关系式;(2)将所得函数图像向上平移4个单位,求平移后直线与坐标轴围成的三角形的面积. 21.如图,在ABC V 中,AB AC =,点D 为BC 的中点,直线MN 垂直平分AB ,点E 为线段MN 上一动点,若6BC =,等腰ABC V 面积为21,求BDE △周长的最小值.22.《九章算术》是我国古代数学名著.书中卷九“勾股”中记载:“今有垣高一丈,倚木于垣,上于垣齐.引木却行一尺,其木至地,问木长几何?“其意思是:如图,墙AB 高1丈(1丈=10尺),一根木棒AC 靠于墙上,木棒上端与墙头齐平.当木棒下端沿地面从C 处向右滑1尺到D 处时,木棒上端恰好沿墙壁从A 处下滑到墙脚B 处(90ABC B C D ∠︒=,、、在同一水平线上),求木棒的长为多少尺.23.在平面直角坐标系中,对于点P 、Q 两点给出如下定义:若点P 到x ,y 轴的距离的较大值等于点Q 到x ,y 轴的距离的较大值,则称P 、Q 两点为“等距点”.如点()2,5P -和点()5,1Q --就是等距点.(1)下列各点中,是()8,6-的等距点的有_____;(填序号)① ()8,7--; ② ()2,8--; ③ ()7,1。

盐城市苏科版八年级上册数学期末复习试卷

盐城市苏科版八年级上册数学期末复习试卷

盐城市苏科版八年级上册数学期末复习试卷 一、选择题 1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)3.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、4.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-5.下到图形中,不是轴对称图形的是( )A .B .C .D .6.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .27.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 8.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 9.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A .BC 2+AC 2=AB 2B .2BC =ABC .若△DEF 的边长分别为1,2,3,则△DEF 和△ABC 全等D .若AB 中点为M ,连接CM ,则△BCM 为等边三角形10.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题11.已知22139273m ⨯⨯=,求m =__________.12.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 13.若3a 的整数部分为2,则满足条件的奇数a 有_______个.14.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.15.在2,227,254-,3.14,这些数中,无理数有__________个. 16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.18.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.19.3的平方根是_________.20.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是_____.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?23.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?24.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.25.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.四、压轴题26.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.27.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).29.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C. 【点睛】此题主要考察直角坐标系的各象限坐标特点. 3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4.A解析:A【解析】【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=,∴13AP AB ==PC=,∴2∵点P在点C的左边,点C表示的数为0,-=;∴点P表示的数为:2)2故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.5.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.6.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.7.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.8.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.9.C解析:C【解析】【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【详解】A、由勾股定理可知BC2+AC2=AB2,故A正确;B、∵∠C=90︒,∠B=60︒,∴∠A=30︒,∴AB=2BC,故B正确;C、若△DEF的边长分别为1,2DEF和△ABC不一定全等,故C错误;D、∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.10.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x 轴距离为3,到y 轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.二、填空题11.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.12.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2,22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.13.9【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.14.150【解析】【分析】连接OP,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案. 【详解】解:如图,连接OP,E,F分别为点P关于OA,OB的对称点故答案为:1解析:150【解析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.15.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义. 16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.22【解析】【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.解析:22【解析】【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 18.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =, 当02x =时,32m =,32m =,m的取值范围为:1≤m≤3 2故答案为:1≤m≤3 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x轴的交点横坐标的范围求得m的取值范围是解题的关键.19.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为20.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x米,由题意得:x2+52=(25−x)2,解得x=12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.23.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.24.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论.【详解】(1)把3x =-代入243y x =-,得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点,∴设点P 坐标为4(,)3a a -.//PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--.∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭,477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴==77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.25.见解析【解析】【分析】由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.【详解】∵CE DE =,∴ECD EDC ∠=∠,∵//AB CD ,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.四、压轴题26.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.27.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD 和BE 始终相等,理由如下:如图1,AB=BC=CA ,两只蜗牛速度相同,且同时出发,∴CE=AD ,∠A=∠BCE=60°在△ACD 与△CBE 中,AC=CB ,∠A=∠BCE ,AD=CE∴△ACD ≌△CBE (SAS ),∴CD=BE ,即CD 和BE 始终相等;(2)证明:根据题意得:CE=AD ,∵AB=AC ,∴AE=BD ,∴△ABC 是等边三角形,∴AB=BC ,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC ,在△BCD 和△ABE 中,BC=AB ,∠DBC=∠EAB ,BD=AE∴△BCD ≌△ABE (SAS ),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:如图,过点D 作DG ∥BC 交AC 于点G ,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,∴△ADG 为等边三角形,∴AD=DG=CE ,在△DGF 和△ECF 中,∠GFD=∠CFE ,∠GDF=∠E ,DG=EC∴△DGF ≌△EDF (AAS ),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC∠∠=,∠BDF=∠BCA∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵ABC∆是等边三角形,点D是BC的中点∴AD⊥BC∴90ADC∠︒=∵60BDF ADE∠∠︒==∴30ADF EDC∠∠︒==在ADF∆与EDC∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC BDF BCA ∠∠∠∠=,=∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴BF =BD∴AF =DC∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵∠ADC 是ABD ∆的外角∴60ADC B FAD FAD ∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD =∠CDE在AFD ∆与DCE ∆中AFD DCE AF CDFAD EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()AFD DCE ASA ∆∆≌∴AD =DE ;(3)如下图,ADE ∆是等边三角形.证明:∵BC CD =∴AC CD =∵CE 平分ACD ∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.29.(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK 为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.30.(1522213221【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,===AMB CNA ABM NAC AB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b , ∴2221=4a a +,2222=4b b +,解得:3=a ,23=b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,。

江苏省盐城市大丰区八年级数学下学期期末综合复习资料试题(三)

江苏省盐城市大丰区八年级数学下学期期末综合复习资料试题(三)

八年级下学期期末数学综合复习资料(三)一、填空题: 1、计算)3225)(65(-+= ;=⋅182 ;=+31648 。

2、23-的倒数是 。

3、当x 时,二次根式2-x 有意义。

4、当x <0时,2x = 。

5、在△ABC 中,D 、E 分别是AB 、AC 的中点,若BC =8cm ,则DE = 。

6、菱形的一个内角是60°,边长为5cm ,则这个菱形较短的对角线长是 。

7、如果梯形的两底之比为2∶5,中位线长14cm ,那么较大的底长为 。

8、已知线段a =4cm ,b =9cm ,线段c 是a 、b 的比例中项,则c = 。

9、已知线段a =2cm ,b =3cm ,c =6cm ,d 是a 、b 、c 的第四比例项,那么d = 。

10、梯形的中位线长为6cm ,上底长为4cm ,那么这个梯形的下底长为 。

11、矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB =60°,AB =3.6,那么AC 的长为 。

12、如图,DE ∥BC 且DB =AE ,若AB =5,AC =10,则AE 的长为 ;若BC =10,则DE 的长为 。

EDCB AFE DCBA13、如图,直角梯形ABCD 的一条对角线AC 将梯形分成两个三角形,△ABC 是边长为10的等边三角形,则梯形ABCD 的中位线EF = 。

14、矩形ABCD 中,CE ⊥BD ,E 为垂足,∠DCE ∶∠ECB =3∶1,那么∠ACE = 度。

二、选择题:1、下列图形中,不是中心对称图形的是( )A 、菱形B 、平行四边形C 、正方形D 、等腰梯形 2、如果一个多边形的内角和等于720°,那么这个多边形是( )A 、正方形B 、三角形C 、五边形D 、六边形3、顺次连结任意四边形各边中点所得的四边形是( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、化简aa 3-的结果为( )A 、a -B 、a -C 、a --D 、a5、当1<x <2时,化简|3|)1(2-+-x x 的结果是( )A 、2B 、—2C 、—4D 、2x -4 6、下列两个三角形一定相似的是( )A 、两个直角三角形B 、两个锐角三角形C 、两个等腰三角形D 、两个等边三角形 7、下列性质中,平行四边形不一定具备的是( )A 、邻角互补B 、对角互补C 、对边相等D 、对角线互相平分 8、下列命题正确的是( )A 、两条对角线相等的四边形是矩形B 、两条对角线互相垂直的四边形是菱形C 、两条对角线互相垂直平分的四边形是正方形D 、两条对角线相等的梯形是等腰梯形9、下列二次根式中与3是同类二次根式的是( )A 、18B 、3.0C 、30D 、300 10、下列命题中真命题是( )A 、两个直角三角形是相似三角形B 、两个等边三角形是相似三角形C 、两个等腰三角形是相似三角形D 、等边三角形是中心对称图形 11、矩形具有而菱形不一定具有的性质是( )A 、对角线互相平分B 、对角线互相垂直C 、对角线相等D 、对边相等 三、解答题:1、已知:223-=x ,223+=y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级春学期期末资料(内部资料勿外泄)
1、下列各式:,
的个数是 A.4个 B.3个 C.2个 D.1个().
2
、在函数
y
=
x的取值范围是
()
A.2
x-
≥且0
x≠
B.2
x≤且0
x≠C.0
x≠ D.2
x-

3).
A.6到7之间B.7到8之间C.8到9之间D.9到10之间
4、下列说法:①对角线互相平分且相等的四边形是菱形;
②计算2-的结果为
1;
③正六边形的中心角为60︒;④函数y的自变量x的取值范围是x≥3.
其中正确的个数有【】
A.1个B.2个C.3个D.4个
5
6
72,则a的取值范围是().
A.3
a≥ B.1
a≤ C.1
3
a
≤≤ D.1
a=或3
a=
8、下列计算正确的是
()
A==4
=3
=-
9、如果1
1
2
2=
+
-
+a
a
a,那么a的取值范围是()
A.0
=
a B.1
=
a C.1

a D.1
0=
=a
a或
10、下列说法中正确的是()
A B.函数x的取值范围是x>1
C.8的立方根是±2 D.若点P(2,a)和点Q(b,-3)关于x轴对称,则a+b的值为5
11、如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)
DE=1,(2)△ABC中,AB边上的高为3,(3)△CDE∽△CAB,(4)△CDE的面积
与四边形DABE面积之比为
1:4.其中正确的有

)A.1
个B.2个
C.3个D.4个
12、如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线
交y轴负半轴于E,双曲线()0>
=x
x
k
y的图象经过点A,若S△BEC=8,则k等于
()A.8 B.16 C.24 D.28
12、,已知,则(xy-64)2的算术平方根= .
13、若23
x
=-,则x的取值范围是_____________.
14、在实数范围内分解因式:47
2
x-=________,81的平方根是。

15、计算=
+-2
0)
2
1
(
)
3
1
(,化简12
2
1
54+
⨯的结果是。

16、已知b
a ,化简二次根式b
a3
-的结果是。

17、在“a2□4a□4”的□中,任意填上“+”或“—”,在所得到的代数式中,可以构成完全平
方式的概率是.
18、如图是某地行政区域图,图中A地用坐标表示为(1,0),B地用坐标表示为(-3,-
1),那么C地用坐标表示为.
19、观察下列各式:
请你将发现的规律用含自然数n(n≥1)的等式表示出来.
20、若0
)1
(
32=
+
+
-n
m,则n
m+的值为。

21、如图,数轴上A B
,两点表示的数分别为1B关于点A的对称点为点C,
则点C所表示的数是.
B
第1页,共2页
第2页,共2页
C
F
22、在函数x
k y 22
--=(k 为常数)的图象上有三个点(-2,1y ),(-1,2y ),(2
1,3y ),
函数值1y ,2y ,3y 的大小为 ;
24、如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,P 是AB 边上的 一个动点,作PE ⊥AC 于E ,PF ⊥BC 于F , M 是线段EF 的中点, 连接CM ,那么CM 最小是 . 三、解答题:
1、计算:
. (

1
01(1)52-⎛⎫
π-+-+ ⎪⎝⎭
2、已知x 、y 为实数,
5x+6y 的值.
3、当1时,求代数式x 2
+2x +2的值.
4、如图已知反比例函数1(0)m
y m x
=
≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,
与点A ,且与反比例函数的图象相交于另一点B 。

(1)分别求出反比例函数与一次函数的解析式;(2 .
5、如图,在直角坐标系xOy 中,直线1
22y x =
+与x 轴,y 以AB
为边在第二象限内作矩形ABCD ,使AD = (1)求点A ,点B 的坐标,并求边AB 的长;
(2)过点D 作DH x ⊥轴,垂足为H ,求证:ADH BAO △∽△; (3)求点D 的坐标.
6、.四边形OABC 是等腰梯形,OA ‖BC.在建立如图所示的平面直角坐标系中,A (4,0),B (3,2),点M 从O 点出发沿折线段OA-AB 以每秒2个单位长的速度向终点B 运动;同时,点N 从B 点出发沿折线段BC-CO 以每秒1个单位长的速度向终点O 运动.设运动时间为t 秒。

(1) 当点M 运动到A 点时,N 点距原点O 的距离是多少?
当点M 运动到AB 上(不含A 点)时,连结MN ,t 为何值时能使四边形BCNM 为梯形?
(2) 0≤t <2时,过点N 作NP ⊥x 轴于P 点,连结AC 交NP 于Q ,连结MQ .
求△AMQ 的面积S与时间t 的函数关系式(不必写出t 的取值范围)
x。

相关文档
最新文档