位错及界面部分第一次习题(2)
晶体缺陷习题及答案解析
晶体缺陷习题与答案1 解释以下基本概念肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。
2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。
3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。
(1)分析该位错环各段位错的结构类型。
(2)求各段位错线所受的力的大小及方向。
(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?4 面心立方晶体中,在(111)面上的单位位错]101[2ab =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈(G 切变模量,γ层错能)。
5 已知单位位错]011[2a能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。
(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错?6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。
(1)]001[]111[]111[22a a a→+(2)]211[]112[]110[662a a a+→(3)]111[]111[]112[263a a a→+7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移到(111),(111),(111)面中的某个面上继续运动?为什么?8 根据晶粒的位向差及其结构特点,晶界有哪些类型?有何特点属性?9 直接观察铝试样,在晶粒内部位错密度为5×1013/m 2,如果亚晶间的角度为5o ,试估算界面上的位错间距(铝的晶格常数a=2.8×10-10m)。
工程材料第二版习题(1-2)章答案
塑性变形的的物理本质: 塑性变形的的物理本质: 滑移和孪生共同产生的塑性变形。 滑移和孪生共同产生的塑性变形。 P24 滑移是晶体的一部分相对另一部分做整 体刚性移动。孪生是在切应力的作用下, 体刚性移动。孪生是在切应力的作用下,晶 体的一部分相对另一部分沿着一定的晶面 孪生面) (孪生面)产生一定角度的切变
2-13、晶粒大小对金属性能有何影响?细化 13、晶粒大小对金属性能有何影响? 晶粒方法有哪些? 晶粒方法有哪些? p17 答: 在一般情况下,晶粒愈小,则金属的强度. 在一般情况下,晶粒愈小,则金属的强度.塑 性和韧性愈好. 性和韧性愈好. 细化晶粒是提高金属性能的重要途径之一, 细化晶粒是提高金属性能的重要途径之一, 晶粒愈细,强度和硬度愈高, 晶粒愈细,强度和硬度愈高,同时塑性韧性 愈好。 愈好。 细化晶粒方法有: 细化晶粒方法有: 增大过冷度; 2.变质处理 变质处理; 3.附加振 增大过冷度; 2.变质处理; 3.附加振 动或搅动等方法; 动或搅动等方法;
5、晶粒 p11 晶粒---每个小晶体具有不规则的颗粒状外形。 ---每个小晶体具有不规则的颗粒状外形 晶粒---每个小晶体具有不规则的颗粒状外形。 何谓空间点阵、晶格、晶体结构和晶胞? 2-2、何谓空间点阵、晶格、晶体结构和晶胞? 常用金属的晶体结构是什么?划出其晶胞, 常用金属的晶体结构是什么?划出其晶胞, 并分别计算起原子半径、配位数和致密度? 并分别计算起原子半径、配位数和致密度? 1、空间点阵 p9 空间点阵-----为了便于分析各种晶体中的原子 空间点阵---为了便于分析各种晶体中的原子 排列及几何形状, 排列及几何形状,通常把晶体中的原子假想为 几何结点,并用直线从其中心连接起来,使之 几何结点,并用直线从其中心连接起来, 构成一个空间格子。 构成一个空间格子。
材料微观结构第四章晶体中的位错与层错2
以a/2[-110]→a/6[-12-1]+a/6[-211]为例
(1) 几何条件 反应前:a/2[-110] 反应后:a/6[-12-1]+a/6[-211]=a/6[-330]=a/2[-110] Σb前=Σb后 (2) 能量条件 反应前: Σb2前=[a/2SQRT((-1)2+12+02)]2=a2/2 反应后: Σb2后=[a/6SQRT((-1)2+22+(-1)2)]2 + [a/6SQRT((-2)2+12+12)]2 =a2/3 Σb2前>Σb2后
该位错反应能够进行
1.FCC中的层错与扩展位错
(1)FCC层错的基本类型,如Al, Cu, Ag, Au
FCC金属密排面{111} 正常堆垛顺序是 ABCABCABC… 如果不按正常顺序出现 ABCABABC…或 ABCABACABC…,即少 了C或多了A,出现错排, 就会有层错。
1.抽出型层错(内禀型) 2.插入型层错(外禀型)
上节课内容回顾
根据原子的滑移方向和位错线取向的几何 特征不同,位错可以分为哪几种类型?都 是什么样的? 什么是柏氏矢量b?能量最稳定的b是怎样 的? 位错按照b是否为点阵周期的整数倍可以分 为哪几种位错,哪一个能量上最稳定?
位错及界面部分习题
1、见习题集P86 题3-282、写出位错反应a[ 01-1 ]/2+a[ 2-11]/2 的反应结果,这个反应能否进行?形成的位错能不能滑动?为什么?3、某面心立方点阵晶体的(1-11)面上有一螺型单位位错,其位错线为直线,柏氏矢量为a/2[110],(1)在晶胞中标明该位错的柏氏矢量,该位错滑移产生的切变量是多少?(2)该位错能否自动分解成两根肖克莱不全位错,为什么?并在晶胞中标明两根肖克莱不全位错的柏氏矢量;(3)在(1-11)面上由上述两不全位错中间夹一层错带形成扩展位错。
若作用在该滑移面上的切应力方向为[1-1-2],该扩展位错如何运动?若切应力方向为[110],该扩展位错又如何运动?(4)该扩展位错可能交滑移到哪个晶面,并图示之,指出产生交滑移的先决条件是什么?4、已知某fcc的堆垛层错γ=0.01J/m2,G=7×1010Pa,a=0.3nm,a[11-2]/6a[2-1-1]/6两个不全位错之间的平衡距离为多少?见习题集P86 题3-29 305、设有两个α相晶粒和一个β相晶粒相交于一公共晶棱,已知β相所张的两面角为100°,界面能为γαα为0.31Jm2,试求两相之间的界面能γαβ见习题集P90 题3-426、在铝晶体中,设晶粒内全部为刃型单位位错,其密度ρ=2×1012/m2。
假设这些位错全部均匀地分布在亚晶界上,相邻亚晶粒间平均位向差为5°,每个亚晶粒形状为正六边形。
试计算每个亚晶界的边长,位错平均间距及每平方米中有多少个亚晶粒?(铝的点阵常数为0.404nm)7、若由于嵌入一个额外的(111)面,使体心立方晶体中产生一个倾斜1°的小角晶界,试求错排间的平均距离见习题集P90 题3-41。
位错及界面部分第二次习题答案
1、面心立方晶体中,把2个b都为[110]a/2且平行的同号螺位错从100nm推近到8nm作功多少?已知a=0.3nm,G=7×1010Pa。
解:两个同号螺位错(单位长度)间的作用力F 与它们之间的距离d 的关系为位错的柏氏矢量,两螺位错从100nm推近到8nm 作功为2、在同一滑移面上有2个互相平行的位错,其中一个位错的柏氏矢量和位错线方向的夹角为θ。
两位错的b大小相等,夹角为30°,这2个位错在滑移面上的相互作用力是否可能为零?已知常用金属材料的柏松比约为1/33、在3个平行的滑移面上有3根平行的刃型位错线A,B,C,其柏氏矢量大小相等,A,B被钉扎不能动,(1)若无其它外力,仅在A,B应力场作用下,位错C向哪个方向运动?(2)指出位错向上述方向运动时,最终在何处停下?答案见习题册P87:3-314、在Fe晶体中同一滑移面上,有3根同号且b相等的直刃型位错线A,B,C受到分剪应力τx的作用,塞积在一个障碍物前,试计算出该3根位错线的间距及障碍物受到的力(已知G=80GPa,τx=200MPa,b=0.248nm)答案见习题册P88:3-365、写出距位错中心为R1 范围内的位错弹性应变能。
如果弹性应变能为R1 范围的一倍,则所涉及的距位错中心距离R2 为多大?6、单晶体受拉伸形变,拉伸轴是[001],应力为σ,求对b=a[ -101]/2 及t 平行于[1-21 ]的位错滑移和攀移方向所受的力。
已知a=0.36nm。
解:单位长度位错线在滑移面上所受的力F 是外加应力场在滑移面滑移方向的分切应力τ与柏氏矢量b 的乘积:F g=τb。
在单向拉伸(应力为σ)的情况,τ= σcosλcosϕ。
因b=a[ -101]/2 及t 平行于[1-21 ],所以滑移面是(111),因此,λ是[001] −[-101] 的夹角,ϕ是[001] −[111] 的夹角。
根据第1 题的计算知。
而b 的模为,最后得式中σ的单位为Pa。
《材料科学基础》课件3.2.5 位错的生成和增殖
➢ 金属的位错密度为104~1012/cm2 ➢ 位错对性能的影响:金属的塑性变形主要由位错运动引起。
阻碍位错运动是强化 金属的主要途径。
减少或增加位错密度 都可以提高金属的强度。
B)晶体中的位错来源
晶体生长过程中产生位错。其主要来源有: ➢ 杂质原子在凝固过程中不均匀分布使晶体的先后凝固部分 成分不同,点阵常数也有差异,可能形成位错作为过渡;
的分切应力约为10-4G。这个值接近晶体的屈服应力。
双交滑移机制 双交滑移是一个比上述的弗兰克-瑞德源更有效的增殖机制。
D)位错的塞积 位错运动过程中除遇到其它位错而发生交截外,还可能遇到 晶界,孪晶界,相界等障碍物而产生“塞积”现象。
不锈钢中在晶界前的位错塞积群
1)刃位错间相互斥力
2)位错塞积群对位错源的反作用力
➢ 由于温度梯度、浓度梯度、机械振动等的影响,致使生长 着的晶体偏转或弯曲引起相邻晶块之间有位相差,它们之 间就会形成位错;
➢ 晶体生长过程中由于相邻晶粒发生碰撞或因液流冲击,以 及冷却时体积变化的热应力等原因会使晶体表面产生台阶 或受力变形而形成位错。
➢ 由于自高温较快凝固及冷却时晶体内存在大量过饱和空位, 空位的聚集能形成位错。
3.2.5 位错的生成和增殖 A) 位错密度
位错密度是指单位体积内位错线的总长度。
L cm2
V
式中:ρ是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
nl n
lA A
式中:n是穿过截面的位错数; A是截面面积。 位错密度的单位是cm-2。
➢ 晶体内部的某些界面(如第二相质点、孪晶、晶界等)和微 裂纹的附近,由于热应力和组织应力的作用,往往出现应力 集中现象,当此应力高至足以使该局部区域发生滑移时,就 在该区域产生位错。
晶体缺陷习题及答案解析
晶体缺陷习题与答案1 解释以下基本概念肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。
2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。
3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。
(1)分析该位错环各段位错的结构类型。
(2)求各段位错线所受的力的大小及方向。
(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?4 面心立方晶体中,在(111)面上的单位位错]101[2ab =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈(G 切变模量,γ层错能)。
5 已知单位位错]011[2a 能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。
(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错?6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。
(1)]001[]111[]111[22a a a→+ (2)]211[]112[]110[662a a a+→ (3)]111[]111[]112[263a a a→+7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移到(111),(111),(111)面中的某个面上继续运动?为什么?8 根据晶粒的位向差及其结构特点,晶界有哪些类型?有何特点属性?9 直接观察铝试样,在晶粒内部位错密度为5×1013/m 2,如果亚晶间的角度为5o ,试估算界面上的位错间距(铝的晶格常数a=2.8×10-10m)。
位错及界面部分第一次习题
1 证明位错线不能终止在晶体内部。
2 一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么?3.位错环上各部分位错性质是否相同?4.若面心立方晶体(铜)中开动的滑移系为(111)[101](a)若滑移是由刃位错运动引起的,给出位错线的方向。
(b)若滑移是由螺位错引起的,给出位错线的方向。
5.在fcc单晶体中做如下操作获得的是什么位错?柏氏矢量是什么?(1)抽出一个(111)面的一个圆片,然后圆片两侧再重新粘合。
和,切面两侧相对位移a[011]/2。
(2)沿(111)面切开一部分,割面边缘是[011][101](3)插入(110)半原子面,此面终止在(111)面上6.已知在某简单立方晶体的(100)面上有一刃型位错L,该位错的柏氏矢量与(33-1)和(-1-11)面的晶带轴平行,(1)写出该位错的柏氏矢量和位错线的方向,并图示之;(2)若该位错部分线段攀移,指出攀移的原子面及结果,并图示之;(3)若在(001)面上有一与其柏氏矢量相同的刃型位错L1,两位错交截后会发生什么变化?图示之。
对各自的运动有何影响?(4)若(001)面上有一螺型位错L,上述3种情况将如何?7.图中位错环的各边分别是什么位错?设想在晶体中怎样得到如图的位错环?8.假定在立方晶系中有一柏氏矢量在[011]晶向的刃型位错L1沿(011)晶面滑移,另有一位错L2的滑移面为(011),柏氏矢量方向和位错线方向均为[011]晶向,请指出:(1)L1位错线的方向;(2)L2位错的性质;(3)L1与L2交截后L2产生的折线是扭折还是割阶?(4)该折线的滑移面指数。
9.简单立方晶体(100)面有1 个b=[ 0-10 ]的刃位错(a)在(001)面有1个b=[010]的刃位错和它相截,相截后2 个位错产生扭折还是割阶?(b)在(001)面有1个b=[100]的螺位错和它相截,相截后2 个位错产生扭折还是割阶?10.简单立方晶体(100)面有一个b=[001]的螺位错,在(001)面有1 个b=[010]的刃位错和它相截,相截后2 个位错产生扭折还是割阶?11.AB 是B2 型有序结构(a)画出垂直于(101)并包含[ 111]方向的面的原子排列,并指出该面的堆垛顺序。
位错理论与应用试题
位错理论与应用试题学院:材料科学与工程学院学生:老师:日期:2011年5月2日位错理论与应用试题:1、解释:层错、扩展位错、位错束集、汤姆森四面体(20分)(1)、层错是一种晶体缺陷。
如已知FCC结构的晶体,密排面{111}堆堆垛顺序为ABCABC……以“Δ”表示AB、BC、CA……次序,用“▽”表示相反次序,即BA、CB、AC……,则FCC的正常堆垛顺序为ΔΔΔ……,HCP 密排面{0001}按照…ABAB…顺序堆垛,则表示为:Δ▽Δ▽……若在FCC 中抽走一层C,则 A B C A B ↓ A B C A B C ΔΔΔΔ▽ΔΔΔΔΔ;插入一层A,则A B C A B ↓A↓C A B C ΔΔΔΔ▽▽△△△,即在“↓”处堆垛顺序发生局部错乱,出现堆垛层错,前者为抽出型层错,后者为插入型层错,可见FCC晶体中的层错可看成是嵌入了薄层密排六方结构。
(2)、一个全位错分解为两个或多个不全位错,其间以层错带相联,这个过程称为位错的扩展,形成的缺陷体系称为扩展位错。
(3)、扩展位错有时在某些地点由于某种原因会发生局部的收缩,合并为原来的非扩展状态,这种过程称为扩展位错的束集。
(4)、1953年汤普森(N. Thompson)引入参考四面体和一套标记来描述FCC 金属中位错反应,如下图。
将四面体以ΔABC为底展开,各个线段的点阵矢量,即为汤普森记号,它把FCC金属中重要滑移面、滑移方向、柏氏矢量简单而清晰地表示出来。
2、位错的起源、增值机制及位错的分类?(15分)(1)、位错的起源主要有两个:第一个是位错本来就存在于籽晶或者其它导致晶体生长的壁面中,这些位错有一部分在晶体赖以生长的表面露头,就扩展到成长着的新晶体中;另一个是新晶体成长时的偶然性所造成的位错生核,其中包括:杂质颗粒等引起的内应力所产生的不均匀生核,成长中的不同部分的表面(如枝晶表面)之间的碰撞产生新的位错,空位片崩塌所造成的位错环。
(2)、位错的增值机制是被广泛引用的弗兰克–里德(Frank-Read,简称为F-R)源机制,如下图:这种理论认为新位错的产生是原有位错增殖的结果。
1-固态相变的基本原理(研究生)
dVex IVd
∴不同时间内形核的β相在时间t的转变总体积:
Vex
t 0
dVex
40
V e x4 3Iu3 V0 tt d 3IV u3 t4
V
ex
为扩张体积,重复计算
①已转变的体积不能再成核 ②新相长大到相互接触时,不能继续长大
为 了 校 正 V e x与 V 的 偏 差
Vex V
(真正的转变体积)
要随界面移动,位错要攀移 台阶侧向移动,位错可滑移
台阶长大机制
34
35
(2)非共格界面的迁移
36
(3)协同型长大机制
无扩散型相变,原子通过切变方式协同运动,相邻 原子的相对位置不变 如马氏体相变,会发生外形变化,出现表面浮凸 新相和母相间有一定的位向关系
马氏体相变表面浮凸
37
§4 固态相变动力学
研究内容:新相形成量(体积分数)与时间、温度关系 相关因素:形核速率、长大速率、新相形状 动力学方程
(1)Johnson-Mehl方程 (2)Avrami方程
38
(1)Johnson-Mehl方程(推导自学)
当形核率和长大速度恒定时,恒温转变 动力学
f 1 exp V 3N 4
3
f 新相形成的体积分数
{110}α// {111}γ <111>α// <110>γ
7
8
4、晶体缺陷的影响
大多数固态相变的形核功较大,极易在晶体缺陷处优先不均 匀形核,提高形核率,对固态相变起明显的促进作用。
5、过渡相(亚稳相)的形成
为了减少界面能,固态相变中往往先形成具有共格相界面的 过渡相(亚稳相)。 亚稳相有向平衡相转变的倾向,但在室温下转变速度很慢。
位错期末考试 (2)
一、解释概念(3×5=15分)1.空位:晶格中某格点上的原子空缺了,则称为空位,这是晶体中最重要的点缺陷。
脱位原子有可能挤入格点的间隙位置,形成间隙原子。
2.刃型位错:有一多余半原子面,好象一把刀插入晶体中,使半原子面上下两部分晶体之间产生了原子错排,称为刃型位错。
其半原子面与滑移面的交线为刃型位错线。
3.螺型位错:晶体沿某条线发生上下两部分或左右两部分错排,在位错线附近两部分原子是按螺旋形排列的,所以把这种位错称为螺型位错。
4.攀移:刃型位错在垂直于滑移面方向的运动称作攀移。
通常把多余半原子面向上运动称为正攀移,向下运动称为负攀移。
攀移可视为半原子面的伸长或缩短,可通过物质迁移即空位或原子扩散来实现。
5.割阶:一个运动的位错线特别是在受到阻碍的情况下,有可能通过其中一部分线段首先进行滑移。
若该曲折线段垂直于位错的滑移面时,称为割阶6.层错:实际晶体结构中,密排面的正常堆垛顺序遭到破坏和错排,称为堆垛层错,简称层错。
7.晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。
8.扭折:一个运动的位错线特别是在受到阻碍的情况下,有可能通过其中一部分线段首先进行滑移。
若由此形成的曲折在位错的滑移面上时,称为扭折。
9.柏氏矢量:用来表征位错特征,揭示位错本质的物理量。
其大小表示位错的强度,方向及与位错线的关系表示位错的正负及类型。
10.扩展位错:通常把一个全位错分解成两个不全位错,中间夹着一个堆垛层错的位错组态称为扩展位错。
11.科垂尔气团:围绕刃型位错形成的溶质原子聚集物,通常阻碍位错运动,产生固溶强化效果。
12.面角位错:在FCC晶体中形成于两个{111}面的夹角上,由三个不全位错和两个层错构成的不能运动的位错组态。
二、填空(1×15=15分)1.螺位错的滑移矢量与位错线________,凡是包含位错线的平面都可以作为它的滑移面。
但实际上,滑移通常是在那些原子________面上进行。
材料科学基础I__7-2___线缺陷——位错的基本概念
b)中:AB、CD段与柏氏矢量b垂直,所以是单纯的刃型位错, AC、BD段与柏氏矢量b平行,所以是单纯的螺型位错。
即,晶体滑移方向与位错运动方向垂直。
2、螺型位错的结构
如右图所示,上半部分晶体的右 边相对于它下面的晶体移动了一个 原子间距。在晶体已滑移和未滑移 之间存在一个过渡区,在这个过渡 区内的上下二层的原子相互移动的 距离小于一个原子间距,因此它们 都处于非平衡位置。这个过渡区就 是螺型位错,也是晶体已滑移区和 未滑移区的分界线。之所以称其为 螺型位错,是因为如果把过渡区的 原子依次连接起来可以形成“螺旋 线”。螺位错用环形箭头或用s表 示。
的柏氏矢量也是由这二个柏氏
矢量合成的。或者说,混合型 位错的柏氏矢量可以分解成二
个矢量:一个和位错线垂直,
是刃型位错的柏氏矢量;一个 和位错线平行,是螺型位错的
柏氏矢量。
五、位错密度
晶体中位错的量(多少)通常用位错密度来表示:
S V
V——晶体的体积,cm3
(cm / cm 3 )
S——该晶体中位错线的总长度,cm 为了简便,把位错线当成直线,而且是平行地从晶体的一面 到另一面,这样上式可变为:
分界面, l×v所指向的那部分晶体必沿着b方向运动。
这个规则对刃型位错、螺形位错、混合型位错的任何运动 (滑移、攀移)都适用。 l
v
二、螺型位错的运动
螺型位错只能滑移,不能攀移。 动画
螺型位错的运动方向v与位错线l、柏氏矢量b垂直: v⊥ l // b
三、混合位错的运动
混合位错只有一个柏氏矢量,
§7-2 线缺陷——位错的基本概念
线缺陷(linear defects)又称为位错(dislocation)。也就是说,
材料科学基础-张代东-习题问题详解(2)
材料科学基础-张代东-习题问题详解(2)第1章习题解答1-1 解释下列基本概念⾦属键,离⼦键,共价键,德华⼒,氢键,晶体,⾮晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14种布拉菲点阵,晶向指数,晶⾯指数,晶向族,晶⾯族,晶带,晶带轴,晶带定理,晶⾯间距,⾯⼼⽴⽅,体⼼⽴⽅,密排⽴⽅,多晶型性,同素异构体,点阵常数,晶胞原⼦数,配位数,致密度,四⾯体间隙,⼋⾯体间隙,点缺陷,线缺陷,⾯缺陷,空位,间隙原⼦,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏⽒回路,柏⽒⽮量,位错的应⼒场,位错的应变能,位错密度,晶界,亚晶界,⼩⾓度晶界,⼤⾓度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,⾮共格相界(略)1-2 原⼦间的结合键共有⼏种?各⾃特点如何?答:原⼦间的键合⽅式及其特点见下表。
类型特点离⼦键以离⼦为结合单位,⽆⽅向性和饱和性共价键共⽤电⼦对,有⽅向性键和饱和性⾦属键电⼦的共有化,⽆⽅向性键和饱和性分⼦键借助瞬时电偶极矩的感应作⽤,⽆⽅向性和饱和性氢键依靠氢桥有⽅向性和饱和性1-3 问什么四⽅晶系中只有简单四⽅和体⼼四⽅两种点阵类型?答:如下图所⽰,底⼼四⽅点阵可取成更简单的简单四⽅点阵,⾯⼼四⽅点阵可取成更简单的体⼼四⽅点阵,故四⽅晶系中只有简单四⽅和体⼼四⽅两种点阵类型。
1-4 试证明在⽴⽅晶系中,具有相同指数的晶向和晶⾯必定相互垂直。
证明:根据晶⾯指数的确定规则并参照下图,(hkl )晶⾯ABC 在a 、b 、c 坐标轴上的截距分别为h a 、k b 、l c ,k h b a AB +-=,l h c a AC +-=,lk ca BC +-=;根据晶向指数的确定规则,[hkl ]晶向cb a L l k h ++=。
利⽤⽴⽅晶系中a=b=c ,ο90=γ=β=α的特点,有0))((=+-++=?kh l k h ba cb a AB L 0))((=+-++=?lh l k h ca cb a AC L 由于L 与ABC ⾯上相交的两条直线垂直,所以L 垂直于ABC ⾯,从⽽在⽴⽅晶系具有相同指数的晶向和晶⾯相互垂直。
晶体缺陷习题与答案
晶体缺陷习题与答案1 解释以下基本概念肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。
2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。
3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。
(1)分析该位错环各段位错的结构类型。
(2)求各段位错线所受的力的大小及方向。
(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大?4 面心立方晶体中,在(111)面上的单位位错]101[2ab =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈(G 切变模量,γ层错能)。
5 已知单位位错]011[2a 能与肖克莱不全位错]112[6a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。
(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错?6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。
(1)]001[]111[]111[22a a a→+ (2)]211[]112[]110[662a a a+→ (3)]111[]111[]112[263a a a→+7 试分析在(111)面上运动的柏氏矢量为]101[2ab =的螺位错受阻时,能否通过交滑移转移到(111),(111),(111)面中的某个面上继续运动?为什么?8 根据晶粒的位向差及其结构特点,晶界有哪些类型?有何特点属性?9 直接观察铝试样,在晶粒内部位错密度为5×1013/m 2,如果亚晶间的角度为5o ,试估算界面上的位错间距(铝的晶格常数a=2.8×10-10m)。
相变原理(复习题)
相变原理复习习题第一章固态相变概论相变:指在外界条件(如温度、压力等)发生变化时,体系发生的从一相到另一相的变化过程。
固态相变:金属或陶瓷等固态材料在温度和/或压力改变时,其内部组织或结构会发生变化,即发生从一种相状态到另一种相状态的改变。
共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。
此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。
当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。
半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。
在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。
非共格界面:当两相界面处的原子排列差异很大,即错配度δ很大时,两相原子之间的匹配关系便不在维持,这种界面称为非共格界面;一般认为,错配度小于0.05时两相可以构成完全的共格界面;错配度大于0.25时易形成非共格界面;错配度介于0.05~0.25之间,则易形成半共格界面。
一级相变:相变前后若两相的自由能相等,但自由能的一级偏微商(一阶导数)不等的相变。
特征:相变时:体积V,熵S,热焓H发生突变,即为不连续变化。
晶体的熔化、升华,液体的凝固、气化,气体的凝聚,晶体中大多数晶型转变等。
二级相变:相变时两相的自由能及一级偏微商相等,二级偏微商不等。
特征:在临界点处,这时两相的化学位、熵S和体积V相同;但等压热容量Cp、等温压缩系数β、等压热膨胀系数α突变。
例如:合金的有序-无序转变、铁磁性-顺磁性转变、超导态转变等。
均匀相变:没有明显的相界面,相变是在整体中均匀进行的,相变过程中的涨落程度很小而空间范围很大。
特点:A: 无需形核;B: 无明确相界面;非均匀相变:是通过新相的成核生长来实现的,相变过程中母相与新相共存,涨落的程度很大而空间范围很小。
工程材料习题集参考答案(第二章)汇编
习题集部分参考答案2金属的晶体结构思考题1.晶体和非晶体的主要区别是什么?答:晶体和非晶体的区别在于内部原子的排列方式。
晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。
因为排列方式的不同,性能上也有所差异。
晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。
2.何为各向异性?答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。
3.为什么单晶体呈各向异性,而多晶体通常呈各向同性?答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。
对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。
4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义?答:晶体缺陷是指金属晶体中原子排列的不完整性。
常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。
点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。
过饱和的点缺陷还可以提高材料的强度。
线缺陷是各种类型的位错。
对材料的变形、扩散以及相变起着非常大的作用。
特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。
当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。
金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。
比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。
材料物理(第二章1)
(二)弗兰克不全位错及其形成方式
(三)不全位错的基本特征 1、不全位错与层错密不可分 、 2、两类不全位错的特征 、 3、两种不全位错的形状和性质 、 (四)不全位错柏氏矢量的确定 1、 1、采用柏氏回路的方法
2、晶胞“分析”法 晶胞“分析”
四、汤普森四面体和汤普森记号
五、位错反应条件和扩展位错 (一)位错反应 (二)位错反应的条件和判据 1、柏氏矢量守恒律 、 2、组态能量降低规律 、
2)柏氏矢量与位错线平行时是螺型位错; 柏氏矢量与位错线平行时是螺型位错; 3)柏氏矢量既不平行,又不垂直于位错线时为混 柏氏矢量既不平行, 合型位错。 合型位错。 柏氏矢量表示了位错线周围总的结构畸变的大小。 3、柏氏矢量表示了位错线周围总的结构畸变的大小。 柏氏矢量与位错的组态和弹性性质直接相关。 4、柏氏矢量与位错的组态和弹性性质直接相关。 柏氏矢量的大小及其表示法。 四、柏氏矢量的大小及其表示法。 五、混合型位错
(二)力的一般表达式
(三)位错运动方向、晶体滑移方向和外加应力的 位错运动方向、 关系
§2-5位错之间的交互作用
一、平行位错间的相互作用力
二、几种特殊情况 为两个平行的正刃型位错( (一)A、B为两个平行的正刃型位错(同号即可) 、 为两个平行的正刃型位错 同号即可)
(二) A、B为两个右螺型位错(同号即可) A、 为两个右螺型位错(同号即可) 一为刃型、 (三) A、B一为刃型、一为螺型位错
(二)柏氏矢量相互平行的两刃型位错的交割
(三)刃型位错与螺型位错的交割
(四)两螺型位错的交割
三、带割阶的位错的运动 (一)带小割阶的螺型位错的运动
(二)带有长割阶的螺型位错的运动
(三)带大割阶的位错的运动
§2-10 位错的形成与增殖
第二章晶体结构缺陷(四)
沿着孪晶界面,孪晶的两
部分完全密合,最近邻关
系不发生任何改变,只有 次近邻关系才有变化,引 入的原子错排很小,称共 格孪晶界面。孪晶界面的
能量约为层错能之半。
图2-21 面心立方晶体中{111}面
反映孪晶的〈110〉投影图
铜合金中的孪晶
界面能:晶界面上的原子相对正常晶体内部的原子而 言,均处于较高的能量状态,因此,晶界也存在界面 能。
晶粒的位向的影响作用
分批滑移:多晶体材料在外力作用下,当首批处于软 位向的晶粒发生滑移时,由于晶界的影响及其周围处 于硬位向的晶粒尚不能发生滑移而只能以弹性变形相 适应,便会在首批晶粒的晶界附近造成位错堆积,随 着外力增大至应力集中达到一定程度,形变才会越过 晶界,传递到另一批晶粒中。 晶粒的转动:随着滑移的发生,伴随晶粒的转动会使 其位向同时也在变化,有的位向在硬化,有的位向在 软化,软位向的晶粒开始滑移变形。所以,多晶体的 塑性变形是一批批晶粒逐步地发生,从少量晶粒开始 逐步扩大到大量的晶粒,从不均匀变形逐步发展到比 较均匀的变形,变形过程要比单晶体中复杂得多。
2、 表面
(1)表面吸附:外来原子或气体分子在表面上富集的现象。
(2)分类 物理吸附:由分子键力引起,无选择性,吸附热小,结合力小。
化学吸附:由化学键力引起,有选择性,吸附热大,结合力大。
(3)表面能与晶体形状:在晶体形成的过程中,一方面尽量让σ 最小的晶 面为表面,当然也可能是表面能略高但能明显减小表面积的晶面为表面。 例如fcc结构的晶体自由生长就为14面体。
图2-18 倾斜晶界与扭转晶界示意图
图2-19是简单立方结构晶体中 界面为(100)面的倾斜晶界在 (001)面上的投影,其两侧晶 体的位向差为θ,相当于相邻晶 粒绕[001]轴反向各自旋转θ/2而 成。几何特征是相邻两晶粒相 对于晶界作旋转,转轴在晶界 内并与位错线平行。为了填补 相邻两个晶粒取向之间的偏差, 使原子的排列尽可能接近原来 的完整晶格,每隔几行就插入 一片原子。 图2-19 简单立方晶体中的
《材料科学基础》课后答案(1-7章)
第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0。
93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9。
8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22。
6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19。
44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小.稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101)。
(011)和(112)晶面上的[111]晶向.解:1、2.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
材料科学基础第四章3-2位错的运动
dt
17
设第 i 条位错滑移的距离为xi,那么它引起的晶体位移为:
lxi ld
b
b d
xi
N条位错线引起的晶体总位移是:
D
b d
xi
b d
(xi )
晶体的宏观变形 为:
位错的平均 滑移距离
D b
h hd
(xi )
Nb hd
(xi N
)
b xi
位错的平均 滑移速率
c
接近完美 的晶体
冷加工 状态
退火后
的o
19
§4-8 小结--位错的基本几何性质
1、线缺陷
2、局部滑移或局部位移的边界线
3、柏氏矢量
b
b l 刃型位错 b // l 螺型位错
b l 混合型位错
20
§4-8 小结--位错的基本几何性质
4、
b和l 正向的确定
5、柏氏矢量的守恒性
6、连续性:位错起止于表面或界面、或位错环、或 与其它位错相连
• 面:l b 0
•
方向:v
l
说明滑移面不定,从几何学上讲,包含位错线的任 何面都可以称为滑移面,但从晶体学上讲,滑移面 还要受晶体学条件的限制。
•
运动量:
A dis Aslip
b
9
三、混合型位错的运动
分解为刃、螺位错,然后考察它们的运动
b
l1
l2
l
10
四、(
)
V
v之间的关系
-外加应力
S.P.相交于ABCDA
然后让该四棱柱上半部分相对于下半部分滑移b ,而棱柱外不
滑移。
12
解③答在: 的作用下,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 证明位错线不能终止在晶体内部。
2 一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么?
3.位错环上各部分位错性质是否相同?
4.若面心立方晶体(铜)中开动的滑移系为(111)
(a)若滑移是由刃位错运动引起的,给出位错线的方向。
(b)若滑移是由螺位错引起的,给出位错线的方向。
5.在fcc单晶体中做如下操作获得的是什么位错?柏氏矢量是什么?
(1)抽出一个(111)面的一个圆片,然后圆片两侧再重新粘合。
(2)沿(111)面切开一部分,割面边缘是和,切面两侧相对位移a[0/2。
(3)插入半原子面,此面终止在(111)面上
6.已知在某简单立方晶体的(100)面上有一刃型位错L,该位错的柏氏矢量与(33-1)和(-1-11)面的晶带轴平行,
(1)写出该位错的柏氏矢量和位错线的方向,并图示之;
(2)若该位错部分线段攀移,指出攀移的原子面及结果,并图示之;
(3)若在(001)面上有一与其柏氏矢量相同的刃型位错L1,两位错交截后会发生什么变化?图示之。
对各自的运动有何影响?
(4)若(001)面上有一螺型位错L,上述3种情况将如何?
7.图中位错环的各边分别是什么位错?设想在晶体中怎样得到如图的位错环
?
8.假定在立方晶系中有一柏氏矢量在[011]晶向的刃型位错L1沿晶面滑移,另有一位错L2的滑移面为(011),柏氏矢量方向和位错线方向均为[0晶向,请指出:
(1)L1位错线的方向;
(2)L2位错的性质;
(3)L1与L2交截后L2产生的折线是扭折还是割阶?
(4)该折线的滑移面指数。
9.简单立方晶体(100)面有1 个b=[ 0-10 ]的刃位错
(a)在(001)面有1个b=[010]的刃位错和它相截,相截后2 个位错产生扭折还是割阶?。