《位似图形》课件.ppt
合集下载
《位似图形》PPT课件
位似图形
- .
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?
明晰新知
如果两个相似图形的每组对应点所在的直线都交于一点,那么这样的两个图形叫做位似图形, 这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比.
观察下图中的五个图,回答下列问题:
(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?
(2)在各图中,任取一对对应点,度量这两个点到位似中心的距离.它们的比与位似比有什么关系?再换一对对应点试一试.
位置不一样,位似中心就不一样.
相等.
议一议
位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比.
在下列每个图形中,位似图形的对应线段AB与A′B′是否平行?BC与B′C′,CD与C′D′,已知△ABC∽△DEF, 它们对应顶点的连线AD,BE,CF相交于点O,这两个三角形是不是位似三角形?
0
B
E
C
F
A
D
通过这节课的学习,你有哪些收获?
课堂小结
1.如果两个相似图形的每组对应点所在的直线都交于一点,那么这样的两个图形叫做位似图形, 这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比.
典例解析
如图,D,E分别AB,AC上的点.
(1)如果DE∥BC,那么∆ADE和 ∆ABC是位似图形吗?为什么?
(2)如果∆ADE和 ∆ABC是位似图形,那么DE∥BC吗?为什么?
解:(2) DE∥BC.理由是:
∆ADE和 ∆ABC是位似图形,
∆ADE∽ ∆ABC
∠ADE=∠B
《位似图形》ppt教材课件
观察与思考☞
下列图形中,每个图中的
四边形ABCD和四边形A′B′C′D′都是相似图形.分
别观察这五个图,你发现每个图中的两个四边形
各对应点的连线有什么特征?
如果两个相似图形的每组对应点所 在的直线都交于一点,那么这样的 两个图形叫做位似图形, 这个交点 叫做位似中心, 这时两个相似图形 的相似比又叫做它们的位似比.
什么位置关系? 位置不一样,位似中心就不一样.
(2)在各图中,任取一对对应点,度量这两个点到位 似中心的距离.它们的比与位似比有什么关系?再换一对 对应点试一试. 相等.
位似图形的对应点和位似中心在 同一条直线上,它们到位似中心的 距离之比等于相似比.如图,D,分别AB,AC上的点.A
(1)如果DE∥BC,那么∆ADE和 D E
在下列每个图形中,位似图形的对
应线段AB与A′B′是否平行?BC与
B′C′,CD与C′D′,AD与A′D′是否平
行?为什么?
不经过位似
中心的对应
线段平行.
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
A
如图,已知△ABC∽△DEF, 它们对应顶点的连线
AD,BE,CF相交于点O,这 D
两个三角形是不是位似三 角形?
B E
0
F
C
课堂小结
通过这节课的学习,你有哪些收获?
1.如果两个相似图形的每组对应点所在的直 线都交于一点,那么这样的两个图形叫做位似 图形, 这个交点叫做位似中心, 这时两个相 似图形的相似比又叫做它们的位似比.
2.位似图形的对应点和位似中心在同一条直线 上,它们到位似中心的距离之比等于相似比.
∆ABC是位似图形吗?为什么? B
下列图形中,每个图中的
四边形ABCD和四边形A′B′C′D′都是相似图形.分
别观察这五个图,你发现每个图中的两个四边形
各对应点的连线有什么特征?
如果两个相似图形的每组对应点所 在的直线都交于一点,那么这样的 两个图形叫做位似图形, 这个交点 叫做位似中心, 这时两个相似图形 的相似比又叫做它们的位似比.
什么位置关系? 位置不一样,位似中心就不一样.
(2)在各图中,任取一对对应点,度量这两个点到位 似中心的距离.它们的比与位似比有什么关系?再换一对 对应点试一试. 相等.
位似图形的对应点和位似中心在 同一条直线上,它们到位似中心的 距离之比等于相似比.如图,D,分别AB,AC上的点.A
(1)如果DE∥BC,那么∆ADE和 D E
在下列每个图形中,位似图形的对
应线段AB与A′B′是否平行?BC与
B′C′,CD与C′D′,AD与A′D′是否平
行?为什么?
不经过位似
中心的对应
线段平行.
为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载。
A
如图,已知△ABC∽△DEF, 它们对应顶点的连线
AD,BE,CF相交于点O,这 D
两个三角形是不是位似三 角形?
B E
0
F
C
课堂小结
通过这节课的学习,你有哪些收获?
1.如果两个相似图形的每组对应点所在的直 线都交于一点,那么这样的两个图形叫做位似 图形, 这个交点叫做位似中心, 这时两个相 似图形的相似比又叫做它们的位似比.
2.位似图形的对应点和位似中心在同一条直线 上,它们到位似中心的距离之比等于相似比.
∆ABC是位似图形吗?为什么? B
位似图形的画法 ppt课件
1,如果两个相似图形的每组 对应点 所在的直线都,经过同 一个点那么 这样相似叫位似,这个点叫 位似中心 ,这 时的相似比又叫做 位似 比 .(位似的定义)
说明: 1.位似是一种具有特殊位置关系的相似,故位似
图形一定是相似图形, 但相似图形不一定是位似图形。
2.两个位似图形的位似中心只有一个,位似图形 的每组对应点的连线 都经过这个点。
3、两个位似图形可能位于位似中心的两侧,也 可能位于位似中心的同侧。
4、位似图形的对应边互相平行(或共线),对 应边不平行的图形不是位 似图形。
位似图形的画法
1、位似图形上的任意一对对应点到位似中心的 距离之比等于位似比。
2、位似图形对应点的连线或延长线交于一点。 3、位似图形对应线段平行(或共线)且成先看这两个图形是否相似 2、再看对应点的连线是否经过同一个点
(注:这两个条件缺一不可)
说明: 1.位似是一种具有特殊位置关系的相似,故位似
图形一定是相似图形, 但相似图形不一定是位似图形。
2.两个位似图形的位似中心只有一个,位似图形 的每组对应点的连线 都经过这个点。
3、两个位似图形可能位于位似中心的两侧,也 可能位于位似中心的同侧。
4、位似图形的对应边互相平行(或共线),对 应边不平行的图形不是位 似图形。
位似图形的画法
1、位似图形上的任意一对对应点到位似中心的 距离之比等于位似比。
2、位似图形对应点的连线或延长线交于一点。 3、位似图形对应线段平行(或共线)且成先看这两个图形是否相似 2、再看对应点的连线是否经过同一个点
(注:这两个条件缺一不可)
《图形的位似》PPT课件 (共16张PPT)
1对称图形,中心对称与中心对 称图形):对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度. 相似:相似比.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.
2位似图形PPT课件(华师大版)
O
2:1,且位于位似中心的两侧.
C’
E E’ A C
D
C’
B
D’
O
B’
C
D
A’
11
位似中心是任意取的,那么除了把位 似中心取在图形外,还可以取在那里?
例如:果将要三将角三形角A形BCA放BC大缩两小倍到本来的一半,该怎么画?画一画.
(2)图形内 A’(3)多边形边上
A’ A
. (4)多边形顶点上 A(O)
位似是类似的特殊情况:
于∴∠一O点AB,=∠像O这A’B样’, 的∠O类AE似=∠叫O做A’E’ 位∴∠似E。AB这=∠个E’A交’B点’ 叫做位似中
1.两个多边形类似; 2.对应点的连线相交于一点;
心似同∠理A,比B这:C又=时A叫’B两’做C个’,它∠类B们C似D的=图∠位形B似’C的’D比’,类.
13
例4:如果∆OAB和 ∆OCD是位似图形,那么AB∥CD吗?
为什么?
C
A
解:AB∥CD.理由是:
∆OAB和 ∆OCD是位似图形, O
BD
∆OAB∽ ∆OCD
∠OAB=∠C
AB∥CD.
14
1.由位似变换得到的图形与原图形是( B ) A,全等 B ,类似 C,不一定类似 D ,肯定不全等。
2下列运动情势中:
A
O B
.O
B C
C
B’
B
C’
C
B’
B’
位似中心不C’ 只是可以放在图形内C’部,外部,还可以放
在多边形的顶点上,任意一边上。
12
例3:将五边形ABCDE缩小为本来的 1
D
2
解:画图如下
C
D′
图形的位似课件ppt
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2、观察下列位似图形 下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似
图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连 线有什么特征?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系,画出以原点为位
显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练1:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上)
(8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
(1)从上面练习第 1(1)(4)题图中,我们可以看到,△OAB∽△O A′B′ 则OOAA′ =OBO′B =A′ABB′ .从第 2 题的图中同样可以看到AAFD =AACP =AAEB =EBPC =DFCP
《位似图形的性质》课件
真
位似图形可以 应用于服装、 家居、建筑等 领域,为设计 增添创意和个
性
位似图形可以 应用于平面设 计、插画、动 画等领域,为 作品增加趣味
性和艺术感
证明两个三角形 全等或相似
证明两个四边形 全等或相似
证明两个多边形 全等或相似
证明两个圆全等 或相似
相似图形:两个图形形状相同, 大小不同,对应边成比例
相似图形与位似 图形都是几何图 形的一种,它们 都有一定的相似
性。
相似图形是指两 个图形的形状、 大小、位置都相 同,而位似图形 是指两个图形的 形状、大小、位 置都相同,但比
例不同。
相似图形与位似 图形都可以通过 平移、旋转、缩 放等变换得到。
相似图形与位似 图形都可以用来 描述物体的形状、 大小、位置等特
,
01 单 击 添 加 目 录 项 标 题 02 位 似 图 形 的 定 义 03 位 似 图 形 的 性 质 04 位 似 图 形 的 应 用 05 位 似 图 形 与 相 似 图 形 的 区 别 与 联 系
位似图形是指两个图形在平移、旋转、缩放等变换后,能够完全重合的图 形。
位似图形的定义包括两个部分:位似中心和位似比。
位似图形的种类:根 据位似图形的性质, 可以分为全等位似图 形、相似位似图形和 位似图形
位似图形的应用:位 似图形在几何学、物 理学、工程学等领域 有着广泛的应用
相似图形:形状相同,大小不同 同位图形:形状相同,大小相同,位置不同 反位图形:形状相同,大小相同,位置相同,方向相反 旋转图形:形状相同,大小相同,位置相同,方向相同,旋转角度不同
建筑设计:利用位似图形进行 空间布局和规划
建筑风格:利用位似图形进行 建筑风格的创新和设计
位似图形可以 应用于服装、 家居、建筑等 领域,为设计 增添创意和个
性
位似图形可以 应用于平面设 计、插画、动 画等领域,为 作品增加趣味
性和艺术感
证明两个三角形 全等或相似
证明两个四边形 全等或相似
证明两个多边形 全等或相似
证明两个圆全等 或相似
相似图形:两个图形形状相同, 大小不同,对应边成比例
相似图形与位似 图形都是几何图 形的一种,它们 都有一定的相似
性。
相似图形是指两 个图形的形状、 大小、位置都相 同,而位似图形 是指两个图形的 形状、大小、位 置都相同,但比
例不同。
相似图形与位似 图形都可以通过 平移、旋转、缩 放等变换得到。
相似图形与位似 图形都可以用来 描述物体的形状、 大小、位置等特
,
01 单 击 添 加 目 录 项 标 题 02 位 似 图 形 的 定 义 03 位 似 图 形 的 性 质 04 位 似 图 形 的 应 用 05 位 似 图 形 与 相 似 图 形 的 区 别 与 联 系
位似图形是指两个图形在平移、旋转、缩放等变换后,能够完全重合的图 形。
位似图形的定义包括两个部分:位似中心和位似比。
位似图形的种类:根 据位似图形的性质, 可以分为全等位似图 形、相似位似图形和 位似图形
位似图形的应用:位 似图形在几何学、物 理学、工程学等领域 有着广泛的应用
相似图形:形状相同,大小不同 同位图形:形状相同,大小相同,位置不同 反位图形:形状相同,大小相同,位置相同,方向相反 旋转图形:形状相同,大小相同,位置相同,方向相同,旋转角度不同
建筑设计:利用位似图形进行 空间布局和规划
建筑风格:利用位似图形进行 建筑风格的创新和设计
人教版数学九年级下册《 位似图形的概念及画法》PPT课件
图,以O为位似中心,将△ABC放大为原来的两倍.
画法:①作射线OA 、OB 、 OC ;
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
OA OB OC 1 ;
B'
OA' OB ' OC ' 2
③顺次连结A' 、B' 、C' 就
B
是所要求图形.
A
C O
A' C'
链接中考
探究新知
注意
✓ 位似是一种具有位置关系的相似. ✓ 位似图形是相似图形的特殊情形. ✓ 位似图形必定是相似图形,而相似图形不 一定是位似图形. ✓ 两个位似图形的位似中心只有一个. ✓ 两个位似图形可能位于位似中心的两侧, 也可能位于位似中心的一侧.
巩固练习 画出下列图形的位似中心:
O
乙 O 甲
【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?
两个相似多边形,如果它们对应顶点的连线相交于一点, 我们就把这样的两个图形叫做位似图形,这个交点叫做位似 中心.
【方法总结】判断两个图形是不是位似图形,需要从两方面 去考察:(1)这两个图形是否相似;(2)是否有特殊的位 置关系,即每组对应顶点的连线是否都经过同一点.
C' O D' B'
A'
A
B
D
A
A'
C
D B B' O D'
C'
C
练一练 如图,已知△ABC. 根据要求作出△ABC 的位似
△A'B'C',使相似比为 1 : 5. (1) 位似中心 O 在△ABC 的一条边 AB 上;
画法:①作射线OA 、OB 、 OC ;
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
OA OB OC 1 ;
B'
OA' OB ' OC ' 2
③顺次连结A' 、B' 、C' 就
B
是所要求图形.
A
C O
A' C'
链接中考
探究新知
注意
✓ 位似是一种具有位置关系的相似. ✓ 位似图形是相似图形的特殊情形. ✓ 位似图形必定是相似图形,而相似图形不 一定是位似图形. ✓ 两个位似图形的位似中心只有一个. ✓ 两个位似图形可能位于位似中心的两侧, 也可能位于位似中心的一侧.
巩固练习 画出下列图形的位似中心:
O
乙 O 甲
【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?
两个相似多边形,如果它们对应顶点的连线相交于一点, 我们就把这样的两个图形叫做位似图形,这个交点叫做位似 中心.
【方法总结】判断两个图形是不是位似图形,需要从两方面 去考察:(1)这两个图形是否相似;(2)是否有特殊的位 置关系,即每组对应顶点的连线是否都经过同一点.
C' O D' B'
A'
A
B
D
A
A'
C
D B B' O D'
C'
C
练一练 如图,已知△ABC. 根据要求作出△ABC 的位似
△A'B'C',使相似比为 1 : 5. (1) 位似中心 O 在△ABC 的一条边 AB 上;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.位似中心的位置。根据上面的观察,发现位似中心 可以图形的内部,可以是图形上一点,还可以是图形 的任意一点。
3.位似图形的性质 (1)对应点和位似中心在同一条直线上; (2)它们到位似中心的距离之比等于相似比。
例1 如图,AB、CD相交于点E,AC∥DB.△ACE与 △BDE是位似图形吗?为什么?
巩固练习
1.下面每组图形中都有两个图形 (1)哪一组中的两个图形是位似图形? (2)作出位似图形的位似中心。
2 .
3 .
归纳小结
方法归纳: 画位似图形的方法和画平移、旋转、轴对称一样, 关键是找出图形上的几个关键点,作出这些点的 对应点,然后顺次连结即可。作对应点时要满足 对应顶点连线都经过O点,到O点的距离之比都 等于位似比。
第23章 图形的相似
23.5. 位似图形
驶向胜CD和四边形A’B’C’D’都是相似图形。分 别观察这五个图形,你发现每个图形中的两个四边形各对应点的连 线有什么特征。
特征: (1)两个图形相似。 (2)每组对应点所在的直线交于一点。
探索新知
1.如果两个相似图形的对应顶点的连线相交于一点, 那么这样的相似叫做位似,这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比。
只要一门科学分支能提出大量的 问题,它就充满着生命力,而问 题缺乏则预示着独立发展的终止 或衰亡。
——希尔伯特
解:△ACE和△BDE是位似图形。 ∵AC∥DB,∴△ACE∽△BDE。 又∵对应点A和B、C和D的连线相 交于一点E。 ∴△ACE与△BDE是位似图形。
掌握新知
例2 如图,把一个五边形ABCDE放大到原来 的3倍?
画法:
(1)在平面内任取一点O. (2)以O为端点作射线O∶A、OB、OC、OD、OE. (3)在射线OA、OB、OC、OD、OE上分别取点A1 、B1、C1、D1、E1。使得OA1∶OA、OB1∶OB、 OC1∶OC、OD1∶OD、OE1∶OE=3. (4)连结A1B1、B1C1、C1D1、D1E1、E1A1。五边 形A1B1C1D1E1即为所求。
3.位似图形的性质 (1)对应点和位似中心在同一条直线上; (2)它们到位似中心的距离之比等于相似比。
例1 如图,AB、CD相交于点E,AC∥DB.△ACE与 △BDE是位似图形吗?为什么?
巩固练习
1.下面每组图形中都有两个图形 (1)哪一组中的两个图形是位似图形? (2)作出位似图形的位似中心。
2 .
3 .
归纳小结
方法归纳: 画位似图形的方法和画平移、旋转、轴对称一样, 关键是找出图形上的几个关键点,作出这些点的 对应点,然后顺次连结即可。作对应点时要满足 对应顶点连线都经过O点,到O点的距离之比都 等于位似比。
第23章 图形的相似
23.5. 位似图形
驶向胜CD和四边形A’B’C’D’都是相似图形。分 别观察这五个图形,你发现每个图形中的两个四边形各对应点的连 线有什么特征。
特征: (1)两个图形相似。 (2)每组对应点所在的直线交于一点。
探索新知
1.如果两个相似图形的对应顶点的连线相交于一点, 那么这样的相似叫做位似,这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比。
只要一门科学分支能提出大量的 问题,它就充满着生命力,而问 题缺乏则预示着独立发展的终止 或衰亡。
——希尔伯特
解:△ACE和△BDE是位似图形。 ∵AC∥DB,∴△ACE∽△BDE。 又∵对应点A和B、C和D的连线相 交于一点E。 ∴△ACE与△BDE是位似图形。
掌握新知
例2 如图,把一个五边形ABCDE放大到原来 的3倍?
画法:
(1)在平面内任取一点O. (2)以O为端点作射线O∶A、OB、OC、OD、OE. (3)在射线OA、OB、OC、OD、OE上分别取点A1 、B1、C1、D1、E1。使得OA1∶OA、OB1∶OB、 OC1∶OC、OD1∶OD、OE1∶OE=3. (4)连结A1B1、B1C1、C1D1、D1E1、E1A1。五边 形A1B1C1D1E1即为所求。