2015年数学建模国赛A题
2015年数学建模国赛A题
二、 问题分析
问题一要建立直杆影子长度变化的数学模型, 首先需知道太阳影子长度计算 公式,故引入太阳高度角[1]这个概念。即若已知某时刻太阳高度角的大小和直 杆高度,根据其满足的三角函数关系便可得到此时太阳影子长度。太阳高度角与 观测地地理纬度、地方时角和太阳的赤纬[2]相关。其中太阳赤纬是太阳直射点 所在纬度,与日期有关;时角由当地经度及其所用时区时间决定,故根据影长、 太阳赤纬、时角计算公式可求得直杆影子长度变化模型,并根据模型分析影子长 度关于各参数的变化规律。将附件一中直杆的有关数据直杆影长变化模型中,可 求出该直杆的具体影长变化公式。根据所建立的模型,运用 MATLAB 软件便可得 到影子长度随时间的变化曲线。 问题二需根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学 模型确定直杆所处的地点。首先由问题一可推测影子长度与时间的关系,故可将 太阳影子长度与对应时间进行拟合,得到影长与时间关系模型。当某个时刻影长 得到极小值时,该时刻为太阳与直杆距离最近,即地方时正午 12 时,结合当地 所使用的标准时间便可得到当地经度。 最后利用太阳高度角与直杆长度以及影长 满足的三角关系式,便可得到影长关于直杆高度、直杆所在地点的纬度的函数关 系式,即得到了有关太阳影子顶点坐标与直杆地点经纬度的模型。将附件一中影 子顶点坐标数据应用于该直杆位置模型,可得到直杆所在位置。用相对误差分析 法分析误差[3](168-169 页),若所得的相对误差小于 2.5%,认为得到的模型合 理。 问题三可根据光照成影原理和太阳高度角计算公式建立影长与时间变 化模型,根据相关数据,运用 MATLAB 软件拟合可得到直杆所在位置的经纬 度。令年份均为 2015 年,根据太阳赤纬角计算公式,可求解具体的日期。 将附件 2 和附件 3 时间和对应直杆影长数据分别代入模型中,通过拟合计
太阳影子定位 2015 数学建模 国赛 A题
st
2
n
H L
一年中的日期序号,如 1 月 2 日, n 2 ;10 月 22 日, n 295 ; 固定直杆的高度; 直杆被太阳光照射后的影子在地表的长度; 程序所求影长与问题二附件数据求得影长的方差; 程序所求影长与问题二附件数据求得影长的误差精度; 北京时间; Nhomakorabea
t
四 模型的建立与求解
图 9 影长与经度关系
图 10 影长与纬度关系
(4)影子长度 L 与当前地区纬度 的变化关系
在北半球,纬度的范围在 (0, ) 。直杆高度 H 、经度 固定的情况下,求解出影子 2
长度 L 与纬度 关系如图 10 所示。随着纬度 的增加,第 n 天的影长最大值先增大,在 北纬 80.21 度时突然骤减,影子长度 L 随着纬度 的增大,反而递减。在太阳赤纬角、 时角一定时,太阳的高度随着纬度变化,纬度高,太阳高度小,纬度低,太阳高度大, 因此纬度高的地方影子长,纬度低的地方影子短。
根据以上公式从而建立出影子长度变化的模型:
(7) 其中:
且: b 2 (n 1) / 365
图 5 太阳位置移动后影长的变化图
图 6 杆高、高度角和影长的关系图
5
3.分析影子长度关于各参数的变化规律 在上一节中,我们已得出影子长度 L 变化相关的四个参数:一年中的日期序号 n 、 北京时间 t 与当前地区经度 、纬度 。为了分析影子长度 L 关于某一个参数的变化规 律,我们固定其他三个参数值。 (1) 影子长度 L 与北京时间 t 的变化关系 以北京天安门广场 9:00~15:00 之间时刻为例,用 Matlab 运行 Test_4.m 程序拟合 出影子长度与时间的关系图,如下图 7 所示。 随着时间 t 的增长,影子长度 L 逐渐减小, 在到达最低点后再增大。其中最低点为 (11.9533,3.6633) ,即当北京时间 t 为 11 点 57 分 时,影子长度 L 最短,约为 3.66m 。由此可知,时间决定太阳的位置,位置决定影子的 长短,影子长度与最低点成左右对称关系。
2015数学建模A题论文介绍
2015数学建模A题论⽂介绍A题太阳影⼦定位摘要本⽂⾸先确定了不同地点不同⽇期的直杆影长的模型,利⽤该模型解决了不同地点不同⽇期直杆影⼦变化和时间的的关系,为分析视频的拍摄地点和⽇期提供了模型上的基础。
对于问题⼀,为了确⽴直杆的影长与时间的关系,建⽴了地球坐标系和天球坐标系,引⼊太阳⾼度⾓、⾚纬、太阳时⾓、时差等参数变量。
利⽤太阳⾼度⾓和时间的关系建⽴了影长和时间的关系模型。
利⽤MATLAB软件求得影长关于时间的变化曲线,从9点到15点影⼦长度先减⼩后增⼤,在北京时间12点14分直杆影长最短,最短为3.5⽶,在北京时间9点直杆影长最长,长度为7.3⽶。
对于问题⼆,结合问题⼀中各参数变量之间的关系,使⽤Bourges算法和太阳⽅位⾓与时间的关系,得到确定直杆所在地点的数学模型,将附件1所给数据带⼊模型,利⽤excel和MATLAB软件进⾏求参数和拟合函数图像,求得直杆所处的可能地点为北纬19.21,东经108.43。
该地点在海南。
或者为南纬3.9412度,东经137.3度。
该地点在为印度尼西亚纳⽐雷附近。
对于问题三,由所给影⼦顶点坐标数据计算出各时间点的太阳⽅位⾓,利⽤excel 软件拟合出太阳⽅位⾓与时间的关系,进⽽确定直杆点的经度,结合问题⼆的数学模型得到直杆地点和⽇期求法的数学模型。
再次通过MATLAB进⾏求参数和拟合函数图像,求出了附件2地点可能为北纬39.88,东经79.7925或南纬39.88,东经79.7925,可能⽇期为:5⽉25号和7⽉20号或1⽉17号和1⽉26号。
对于问题四,提取出视频所有的帧数,等差得选取其中的20张进⾏模拟,利⽤3DMAX 软件仿真出视频的场景,通过测量所建模型中影⼦长度,确定出20组影⼦顶点坐标数据,再⽤问题⼆中所⽤到的模型进⾏求解,得到经纬度为北纬15.2,东经113.9.拍摄地点在海南省的三沙市。
⽤问题三中的模型求解得到拍摄地点纬度为0,东经123.8度在印度尼西亚,⽇期为3⽉21号或10⽉23号。
2015年全国大学生数学建模竞赛A题
§ 3 模型的假设
1、所收集的数据资料都是真实可靠的;
2
2、文章所统计的出租车均正常运营; 3、出租车和乘客不会中途中断交易; 4、假设乘客使用打车软件均呼叫出租车; 5、匹配程度只与乘客对打车软件服务平台的需求量与司机对打车软件服务平台的供给 量有关。
§ 4 名词解释与符号说明
一、名词解释 出行强度:每人每天出行次数,它可以反映城市交通服务水平; 出租车使用率:在各种出行方式中,选择出租车出行所占比例; 二、符号说明 序号 符号 含义 1 2 3 4 5 6 7 8 9 10 11 12 13 qij xi λi ci tj pij bj Amn α β y1 y2 te 表示第 i 个城市第 j 个时段出租车的需求量 表示第 i 个城市的人口数 表示第 i 个城市出行强度 表示第 i 个城市出租车使用率 表示第 j 个时段出租车需求比 表示第 i 个城市第 j 时段的匹配程度 表示第 j 个城市出租车总量 表示准则层对方案层的判断矩阵 表示乘客使用打车软件打车意愿 表示司机使用打车软件接单意愿 表示打车软件公司对乘客的补贴金额 表示打车软件公司对司机的补贴金额 表示某一时段出租车需求比
§ 5 模型的建立与求解
问题一的分析与求解 1、匹配程度时间函数模型 日常生活中,当需求与供给越接近,既不会造成需求得不到满足,也不会造成资源
3
浪费,同时表示此时匹配程度较好。由此说明匹配程度由需求和供给共同决定。所以建 立出租车匹配程度时间函数,需要出租车在所有出行方式中的占用率和出租车的总量。 查阅相关文献[1-2]可得以下数据,如表格 1 所示。 表格 1 基本数据 人口数 (万人) 出行强度 (次/人.天) 出 租 车 占 用 率 出租车总量(万 (%) 辆) 北京(1) 1917 2.64 9.01 6.6646 广州(2) 625.33 1.86 6.25 2.0300 成都(3) 533.96 2.56 7.60 1.4898 济南(4) 360 1.88 15.04 0.8043 哈尔滨(5) 495 2.54 18.23 1.4300 人们每日日常生活,相对比较规律,所以在出行规律也存在一定的相似性。我们通 过查阅相关文献[3],做出每天从早上 6:30 至晚上 22:00 每隔半小时的出租车需求百分比 图,如图 1 所示。
2015年全国大学生数学建模竞赛A题
太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。
本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。
直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。
但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。
我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。
众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。
我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。
影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。
问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。
根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。
再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。
我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。
对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。
关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文
太阳影子定位摘要本文研究的问题是分析直杆在太阳的照射下,影子的角度和长度的变化,再结合相关地理知识和数学几何模型,推算出具体的所在地点和具体日期。
该模型可以用于太阳影子定位技术中,根据物体在阳光照射下影子的变化进行定位。
对于问题一,我们首先根据地球与太阳的位置关系列出太阳赤纬角,太阳高度角,太阳时角的计算式,其中需对较粗略的太阳赤纬角计算式进行修正,得出精准的计算式。
再建立数学几何模型,根据太阳高度角,影长与杆长形成的角边关系,列出影长的计算式。
最后建立一个太阳日照影长模型,该模型以太阳高度角计算式,太阳赤纬角计算式,太阳时角计算式为子函数,以太阳赤纬角,太阳日角,太阳时角,时间初值为中间变量,以当地经纬度,从1月1日到测量日的天数,时间,杆长,年份为自变量的复合函数数学模型。
然后采用由内到外计算法对此复合函数进行求解,计算出从九点到十五点的影长和太阳高度角的变化,得出直杆的太阳影子长度的变化曲线。
对于问题二,我们首先分析因为时间日期已给出,所以根据太阳赤纬角计算式可知太阳赤纬角为已知量,接着我们将影长的计算式进行等式移项变换,得到一个拟合杆长及经纬度的非线性最小二乘模型,该模型将问题一中太阳日照影长模型作为参数拟合对象,以杆长和影长与太阳高度角正切值之积的差值最小误差平方和为目标函数,以太阳高度角计算式,太阳时角计算式为约束条件,以测量时间,天数,影长为已知量。
将该模型在1stopt 软件中运行,采用麦夸尔特算法和通用全局最优化法对该模型进行迭代计算,对实验结果统计分析后得出该直杆相应的北纬为19.29392848度,东经为108.7225248度(海南岛的西海岸)。
对于问题三,除了需要拟合杆长和经纬度以外,还需拟合日期,同样参照影长等式移项变换公式,得到一个拟合杆长、经纬度及日期的非线性最小二乘模型。
同样采用问题二的计算方法得到多组结果,其中附件二最优解地点为新疆维吾尔自治区喀什地区巴楚县(40.0025°N,79.6587°E),附件三最优解地点为湖北省十堰市郧西县(32.9638°N,110.277°E )。
2015年全国大学生数学建模竞赛A题
太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。
在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。
首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。
第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。
得到基于模型的合理结果。
最后,将第四问的实际问题转化数学模型并求解,进而解决问题。
对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。
问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。
同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。
问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。
关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。
2015年数学建模竞赛题目
2015年数学建模竞赛题目(原创实用版)目录1.2015 年数学建模竞赛概述2.竞赛题目分类及解析3.竞赛题目解答思路及方法4.竞赛对学生的意义和影响正文【2015 年数学建模竞赛概述】2015 年数学建模竞赛,即全国大学生数学建模竞赛,是我国面向全国大学生的一项重要的学科竞赛活动。
该竞赛旨在激发大学生学习数学的积极性,提高他们的创新意识和运用数学知识解决实际问题的综合能力,推动大学数学教学体系、教学内容和方法的改革。
【竞赛题目分类及解析】2015 年数学建模竞赛共有 A、B、C 三个题目,分别涉及不同的领域。
A 题:飞行器设计优化题目要求:根据给定的飞行器参数,建立数学模型,并求解最优设计方案。
解析:此题属于优化问题,需要运用线性规划、非线性规划等相关知识。
B 题:水质监测与评价题目要求:分析给定的水质监测数据,建立评价模型,对水质进行评价。
解析:此题涉及数据处理、统计分析、模糊评价等知识。
C 题:智能家居系统题目要求:设计一个智能家居系统,满足给定的功能需求。
解析:此题需要了解图论、动态规划等知识,以解决网络拓扑结构、任务调度等问题。
【竞赛题目解答思路及方法】1.对题目进行仔细阅读,理解题意,明确题目要求。
2.分析题目涉及的领域和知识点,确定解题思路。
3.利用相关数学方法和工具,建立数学模型。
4.求解模型,得到结果。
5.对结果进行分析和检验,撰写论文。
【竞赛对学生的意义和影响】参加数学建模竞赛,对学生具有重要的意义和影响。
首先,它可以激发学生学习数学的兴趣,提高他们的数学素养。
其次,通过解决实际问题,学生可以锻炼自己的创新能力和团队协作能力。
最后,竞赛成绩优秀的学生,还有机会获得奖学金、保研等优惠政策。
总之,2015 年数学建模竞赛题目涉及多个领域,对参赛学生的知识储备和解题能力提出了较高的要求。
2015年全国研究生数学建模竞赛A题
2015年全国研究生数学建模竞赛A题水面舰艇编队防空和信息化战争评估模型我海军由1艘导弹驱逐舰和4艘导弹护卫舰组成水面舰艇编队在我南海某开阔海域巡逻,其中导弹驱逐舰为指挥舰,重要性最大。
某一时刻t我指挥舰位置位于北纬15度41分7秒,东经112度42分10秒,编队航向200度(以正北为0度,顺时针方向),航速16节(即每小时16海里)。
编队各舰上防空导弹型号相同,数量充足,水平最小射程为10千米,最大射程为80千米,高度影响不必考虑(因敌方导弹超低空来袭),平均速度2.4马赫(即音速340米/秒的2.4倍)。
编队仅依靠自身雷达对空中目标进行探测,但有数据链,所以编队中任意一艘舰发现目标,其余舰都可以共享信息,并由指挥舰统一指挥各舰进行防御。
以我指挥舰为原点的20度至220度扇面内,等可能的有导弹来袭。
来袭导弹的飞行速度0.9马赫,射程230千米,航程近似为直线,一般在离目标30千米时来袭导弹启动末制导雷达,其探测距离为30千米,搜索扇面为30度(即来袭导弹飞行方向向左和向右各15度的扇面内,若指挥舰在扇形内,则认为来袭导弹自动捕捉的目标就是指挥舰),且具有“二次捕捉”能力(即第一个目标丢失后可继续向前飞行,假设来袭导弹接近舰艇时受到电子干扰丢失目标的概率为85%,并搜索和攻击下一个目标,“二次捕捉”的范围是从第一个目标估计位置算起,向前飞行10千米,若仍然没有找到目标,则自动坠海)。
每批来袭导弹的数量小于等于4枚(即由同一架或在一起的一批飞机几乎同时发射,攻击目标和导弹航向都相同的导弹称为一批)。
由于来袭导弹一般采用超低空飞行和地球曲率的原因,各舰发现来袭导弹的随机变量都服从均匀分布,均匀分布的范围是导弹与该舰之间距离在20-30千米。
可以根据发现来袭导弹时的航向航速推算其不同时刻的位置,故不考虑雷达发现目标后可能的目标“丢失”。
编队发现来袭导弹时由指挥舰统一指挥编队内任一舰发射防空导弹进行拦截,进行拦截的准备时间(含发射)均为7秒,拦截的路径为最快相遇。
2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程
我们依据太阳位置算法[2]( SPA)得到太阳位置的几何模型图如图 1 所示:
图 1 太阳位置的几何模型
图中 为高度角, 为方位角, 为纬度角, 为赤纬角, 为太阳时角, 和 能由下列式子计算得到(公式来源:/1GU1iS):
(1.2)
其中 为一个参数,能通过如下公式得到
2 (d 1) 365
(1.3)
式中, h 为北京时间, 为当地经度, d 为日期,即 1 月 1 日就用 d 1来表
示,假设一年为 365 天,则 d 365表示 12 月 31 日。由式(1.1)可知,相邻两天的赤
纬角 差值几乎为 0,因此当闰年时,我们设定 2 月 28 日的 d 59 ,29 日时 d 59 ,
g( ) (0.006918 - 0.399912 cos( ) 0.070257 sin( ) - 0.006758 cos(2 ) 0.000907 sin(2 ) - 0.002697 cos(3 ) 0.00148 sin(3 ))
(1.1 )
h15 300
关键词:太阳位置算法 最小二乘法 遗传算法 太阳影子定位模型
一. 问题重述
1.1. 问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位
技术就是通过分析视频中物体的太阳影子变化来确定视频拍摄的地点和日期的一种方 法。 1.2. 问题提出 1. 建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建
5.1.2. 模型求解
首先根据问题分析和模型,我们将观测日期代入得到赤纬角 21.8985 ,负号表
示太阳直射点在南半球,然后代入求出太阳时角 和高度角 在不同时刻的值,得到表
2015年数模A题
2.2问题二的分析
第二个问题根据对竞赛评委有不同的基本素质要求,给出合理的度量评委基本素质的指标体系。我们根据题目附件给出的数据,去发掘测评评委基本素质要求的一些指标体系。测评基本素质指标体系主要三个方面构成:指标一是评委打分的准确度,指标二是评委打分的稳定度,指标三是评委打分的偏差度。为了使指标准确可靠,需要把不同的论文的结果分为两大类,一个是得奖论文,另一个是未得奖论文。为简化问题的复杂度,我们从得奖论文入手,分别找到这三个指标的评价标准:
序号
阅卷号
评委
打分
标准分
1
A1
评委A04
35
46.25937
2
A2
评委A11
53
55.66406
3
A3
评委A06
46
60.54732
……
……
……
……
……
353
A9020
评委A03
62
61.27679
354
A9021
评委A12
28
46.8965
355
A9022
评委A11
30
36.32556
【数学建模国赛获奖】2015年全国数学建模竞赛A题全国一等奖论文17
2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立影子坐标关 于经纬度的数学模型,确定直杆所处的地点。将模型应用于附件 1 的影子顶点坐 标数据,通过求解模型确定若干个可能的地点。
3.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立影子坐标关 于经纬度以及日期序数的数学模型,确定直杆所处的地点和日期。将模型分别应 用于附件 2 和附件 3 的影子顶点坐标数据,通过求解模型确定若干个可能的地点 与日期。
2
符号 i ai t t0 ni i i Hi hi Li fi Ci i i ti
二. 符号说明
定义 纬度 经度 北京时间(东八区标准时间,东经 120 度) 北京当地时间(东经 116 度 23 分 29 秒) 日期序数 杆的高度 太阳高度角 杆在不同时刻的影子长度 太阳方位角 投影与 x 轴所夹角和太阳方位角之差 N 组杆长的算数平均数 N 组杆长的标准差 附件 1 影子长度的测量地点当地时间与北京时间的时差
1.2. 题中涉及知识点的说明
1.赤纬角是指地球赤道平面与太阳和地球中心的连线之间的夹角。 2.太阳时角是指观测点天球子午圈沿天赤道量至太阳所在时圈的角距离[4] 。 3.太阳方位角指太阳光线在地平面上的投影与当地经线的夹角。 4.太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线的夹角。
1.3. 所要解决问题的说明
针对问题 4:首先,运用 MATLAB 将视频转化为图片,通过分析图片建立合 理的空间直角坐标系,从图片中获取时间对应于影长的 y 值;其次,建立 x 关于 y 以及太阳高度角和影长之间函数关系,将 x 用表示;然后,将问题 2 中得到的 y 关于 x 与经纬度的函数方程化简为 y 关于经纬度的函数方程并用 MATLAB 拟 合定位;最后,根据拟合参数结合视频中获取的数据选择最优解。
2015数学建模竞赛A题:太阳影子定位技术研究
针对问题二,首先,我们通过影子的顶点坐标得到各个时刻的影子长度。之 后进行数据标准化,消除直杆长度对影子长度的影响。任意选取某一经纬度为假 设采样点,将经度、纬度作为变量,使用问题一中的模型求出该假设采样点的影 子长度。最后使用最小二乘法将这些假设采样点数据与原始影子长度数据进行拟 合,在 MATLAB 中编程计算,得到的最小目标函数值������ = 1.2981 × 10−7 ,该假设 采样点为东经 109°,北纬 17°(见正文图 11),其周边海南三亚市、越南沿海地 区都可以认为是采样点的可能位置。
太阳影子定位技术的研究
摘要
本文针对太阳影子定位问题,通过运用天球模型和最小二乘法,研究了直杆 太阳影子长度与直杆长度、太阳高度角、采样点经纬度、采样日期和采样时间等 参数的关系,实现了利用物体的太阳影子变化来确定视频拍摄地点和日期。
针对问题一,在已知直杆长度的情况下,太阳影子长度和太阳高度角满足一 个确定的函数关系。因此,我们可以将研究对象从太阳影子长度转换为太阳高度 角。引入天球模型后,使用天球坐标系统中的赤道坐标系和地平坐标系来描述太 阳的运动和位置,得到了太阳高度角与采样地点经度、纬度、日期和当天具体时 间的函数关系,进而得到了影子长度与各参数的关系。之后,使用控制变量法分 别得到了影子长度关于直杆长度、经度、纬度、日期和时间这 5 个参数的变化规 律(见正文图 5、6、7、8、9)。最后,运用该模型画出了天安门广场上 3 米高的 直杆的太阳影子长度的变化曲线(见正文图 10)。
2015数学建模A题
嫦娥三号软着陆轨道设计与控制策略摘要在整个“嫦娥三号”软着陆过程中发动机的燃耗问题是整个着陆过程的关键问题之一,其利用率直接影响到整个着陆过程的成果与否,本文主要利用数学建模的方法对整个软着陆过程进行分析,使得整个软着陆过程发动机能耗最优。
针对问题一,首先需建立一个三维立体坐标系,根据牛顿第二定律,结合科氏定律整理得到嫦娥三号在月固定坐标系中的运动方程,再以卫星运行轨道切面为基面建立二维平面坐标系,将嫦娥三号软着陆问题简化为平面几何问题,求解出主减速阶段嫦娥三号水平位移的距离。
通过坐标变换求得位置。
最后根据天体运动规律得到近日点与远日点速度分别为s6226.1。
km.1、skm7006针对问题二,通过寻找一个制导律u,来调整推力的大小和方向,使嫦娥三号在月面实现燃耗最优着陆轨道,应用极大值原理设计这个最优制导律。
在障碍规避过程中,将动力学模型进行进一步简化,忽略了月球的自转角速度等相关因素。
再利用双线性插值的方法求取规则的采样点处的高程值,这样有利于方便的建立障碍检测算法并对着陆区表面的障碍进行提取,最后利用基于平面拟合的障碍检测算法取得着陆区域内某局部区域内的地形平面,我们将利用这个地表平面来对障碍物进行识别,达到安全着陆的目的。
针对问题三,影响制导精度的误差源主要有偏离标准飞行轨迹的初始条件误差和导航与控制传感器误差。
初始条件误差由主制动段以前的任务决定,传感器误差则由导航系统和传感器本身决定,通过建立误差模型,可以很好地对初始状态偏差、传感器测量偏差等不同因素造成的误差进行分析。
关键词:月球着陆轨道能耗最优打靶法最优制导律控制策略一问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2015年全国大学生数学建模竞赛A题秀论文介绍
7
7
6
6
太 阳 影 子 的 长 度 (m)
太 阳 影 子 的 长 度 (m)
5
5
4
4
3
3
2
2
1 -60
-40
-20 0 20 观测点的纬度(角度)
40
60
1 -25
-20
-15
-10 -5 0 5 10 太阳直射点的纬度(角度)
15
20
25
图 4 直杆影长与观测点纬度关系图
图 5 直杆影长与太阳直射点纬度的关系图
5
观测点与太阳直射点的经度差 进行灵敏度分析,分别分析改变此变量对直杆影 子长度的影响。 直杆影长与观测点纬度关系图如图 4 所示(图 4 为 11:00 时的关系图像) 。当 观测点纬度从南往当前的太阳高度角所在纬度靠近时,影长缩短,当观测点纬度 与太阳高度角处于同一纬度时,影长达到最小,随后观测点再往北移动,影长又 呈增大趋势,且增大速率明显加快。由图,在其他影响因素的取值都不变的前提 下,观测点纬度与太阳高度角处于同一纬度时,影长为 1m 左右,据推测, 12:00 时的图像,最小值应为 0m ,为太阳直射的情况。 直杆影长与太阳直射点纬度的关系图如图 5 所示。首先,太阳直射点的纬度 范围在南北回归线之间,而题设天安门所处的纬度在北回归线以北,故太阳直射 点纬度在由南到北的过程中,影长一直是减小的,且减小速率逐渐趋缓。
图 2 地球上过 A , B 的大圆
考虑到太阳与地球之间相距较远,我们认为同一时刻照射到地球表面的太阳 光线是平行的,即 HF / / BO ,从而 AOB AHF 。
A 地 t 时刻的太阳高度角记为 angel 90 。
设图 1 中向量 AK 是与 A 点处经线相切且方向向北的单位向量,向量 AE 是与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地时角关于经度的关系式为
w t+( - 0 ) 4-12
4
12
(4)
由三角函数变换可知 tan 为
sin sin ,则直杆的影子长度可表示 cos 1 sin 2
直杆影子变化规律和影长定位的研究
摘 要 本文主要讨论了直杆影子变化规律和利用影长变化确定直杆具体位置和 测量时间的问题。 针对问题一,根据观测地位置、观测时间和太阳赤纬得到太阳高度角公式。 由物体受太阳光照成影原理和三角函数关系,建立了影子长度变化模型,并分析 了影子长度关于物体高度、赤纬的变化规律。将所建立的影长变化模型应用到已 知各数据的直杆,运用 MATLAB 软件作出影长随时间变化图像,由图像可知影子 长度随时间先减短,在 12 点到 13 点达到最小值后随时间增加而增长。 针对问题二,由问题一知影长关于时间成二次变化曲线,影长最短时刻为当 地中午 12 点, 根据时间差得到直杆所在地经度。 根据直杆影长数据, 运用 MATLAB 软件进行曲线拟合,可得到直杆位置。将附件 1 中直杆相关数据代入模型,得到 o o 了直杆的两个可能位置为东经 111 ,北纬 17o 41' 55" 和东经 111 1' 9 " 1' 9 ",南纬 o 。对所得结果进行误差分析,相对误差均小于 1%。 3 32 ' 27 " 针对问题三,根据影子长度与太阳高度角关系建立了影长与时间变化模 型,运用 MATLAB 软件拟合得到附件 2 中直杆所在位置为东经 79 2'4'' ,北纬 4014'52'' 或东经 79 2'4'' ,南纬 1 4'4'' ,测量日期为 2015 年 7 月 29 日;附件 3 中直杆测量位置为东经 110o14'38" ,北纬为 32o56'1" 或东经 110o 14 ' 38" ,南纬 64 35'11" ,测量日期为 2015 年 11 月 4 日。对所得结果分别进行相对误差分析, 误差均小于 0.1%。 针对问题四,首先对视频进行处理并读取视频中的影长,筛选并保留了 38 组数据进行分析。 通过 MATLAB 软件进行多项式拟合得到了时间与影长的关系式, 计算得直杆位于东经 118 ,代入第一组数据解出直杆测量位置的纬度初值为 0 , 57 , 57 。将经度和纬度作为参量,运用 MATLAB 软件的 nlinfit 函数对前 30 组数据进行拟合,得到两个地点为东经 111 和东经 34 '17 ,北纬 '' 39 22 ' 4 '' 124 54 ' 47 ,南纬 '' 7 37 '55'' 。对所得结果做误差分析,两组结果的相对误差均小 于 2.5%。当拍摄日期未知,年份确定时,则可确定拍摄地点与拍摄日期。 最后对本文模型进行推广,将影长定位模型应用到户外定位。 关键词 太阳高度角 ;曲线拟合;误差分析;视频处理
置确定时,乙地方时 t 为自变量,其他参数均可求出。 由公式(5)可知,当其他变量不变时,物体影子长度 l 与物体长度 L 成正比; 由公式(1)、(2)分析可知,当其他变量不变时,观测地的地理纬度 越高,影长 越短;由公式(1)、(2)、(5)可知若直杆所在时区确定,其他变量保持不变,则 直杆所在经度 越高,影子长度越长;由公式(2)、(3)、(4)可得,影长与年份 和积日关系不明显。 5.1.2 对各参数的分析 由 5.1.1 得到的模型(5),当地方时确定时,经度也随之确定。故取太阳达 到正午高度,即取地方时时角为 0 时的情形进行研究。时角为 0 时, cos w 1 , 此时 sin =sin sin +cos cos cos( ) ,影长为
表示含义 直杆影子长度 太阳高度角 观测地地理纬度 观测地地理经度 太阳赤纬 积日 地区时角 日角 直杆高度 时间 年份 比例尺
五、 模型建立与求解
在地球上不同地区和不同时间,太阳下物体的影子长度各不相同。根据太阳 影子变化情况,判断物体具体位置和时间在实际生活中有重要意义。通过研究物 体在水平地面上太阳影子随时间变化规律,太阳影子长度与位置、时间的关系, 可根据太阳影子方向及其变化规律了解物体所在的大致位置和时间。 5.1 影子长度变化模型 在不同日期、不同时间,太阳光线照射物体的角度不相同,引起物体影子的 长度和方向随着太阳高度和角度的变化而变化, 因此同一物体在不同时间的太阳 影子长度和方向各不相同。为了建立影子长度变化的模型,根据相关公式,研究 影子长度变化规律。 5.1.1 影长变化模型 物体影子在不同时间的长度和方向均不相同。故假设某物体垂直于水平地 面,高度为 L ,其影子长度为 l 。首先引入太阳高度角,即太阳光的入射方向和 地平面之间的夹角。 太阳半径为 696300 千米, 远大于地球的半径 6371.393 千米,
1
一、 问题重述
近年来随着互联网技术的凸起,视频应用越来越广泛,如何确定视频的具体 拍摄地点和拍摄日期是视频数据分析中的重要方面。 太阳影子定位技术就是通过 分析视频中影子变化情况来确定视频拍摄的地点和日期。 问题一、建立影子长度变化的数学模型,分析影子长度关于各个参数的变化 规律, 并根据所建模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门 广场(北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子 长度变化曲线。 问题二、以某垂直地面的固定直杆底端为原点,水平地面为 xy 平面,根据 该直杆在水平地面上太阳影子的顶点坐标数据, 建立关于直杆所处位置的数学模 型,将所建立模型应用于附件 1 的影子顶点坐标数据,给出直杆所处的若干可能 地点。 问题三、以垂直地面的某固定直杆底端为原点,水平地面为 xy 平面,根据 直杆在水平地面上的太阳影子顶点坐标数据, 建立数学模型求出直杆所处的位置 和日期。将所建模型分别应用于附件 2 和附件 3 的影子顶点坐标数据,给出直杆 所在的若干个可能地点与日期。 问题四、附件 4 为太阳下直杆影子变化的视频,已知视频中直杆高度约为 2 米。建立确定视频拍摄地点的数学模型,并根据模型求出若干个可能的视频拍摄 地点。若视频拍摄日期未知,分析能否根据视频确定拍摄地点与日期。
2பைடு நூலகம்
算即可得到两个直杆测量位置和日期。对附件 2 和附件 3 得到的结果分别 进行相对误差分析,相对误差只要在误差允许范围内,便可证明结论是合 理的。 问题四根据拍摄视频估计拍摄地点,需对视频进行处理,得到有代表性的一 组数据,从数据中提取杆影长度。根据问题二中的影子长度与时间关系模型,运 用 MATLAB 软件进行拟合可得到拍摄地点与日期。
N0 79.6764 0.2422 (T -1985) INT (T -1985)/4
式中 INT 表示取整数部分,例如 INT(3.25)=3 。 对于时角的计算,假设被观测物体所在位置为甲地,其所在标准区时的位置 为乙地,用 t1 、 t 分别表示甲地和乙地的地方时, w 表示甲地时角,则甲地时角 为
二、 问题分析
问题一要建立直杆影子长度变化的数学模型, 首先需知道太阳影子长度计算 公式,故引入太阳高度角[1]这个概念。即若已知某时刻太阳高度角的大小和直 杆高度,根据其满足的三角函数关系便可得到此时太阳影子长度。太阳高度角与 观测地地理纬度、地方时角和太阳的赤纬[2]相关。其中太阳赤纬是太阳直射点 所在纬度,与日期有关;时角由当地经度及其所用时区时间决定,故根据影长、 太阳赤纬、时角计算公式可求得直杆影子长度变化模型,并根据模型分析影子长 度关于各参数的变化规律。将附件一中直杆的有关数据直杆影长变化模型中,可 求出该直杆的具体影长变化公式。根据所建立的模型,运用 MATLAB 软件便可得 到影子长度随时间的变化曲线。 问题二需根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学 模型确定直杆所处的地点。首先由问题一可推测影子长度与时间的关系,故可将 太阳影子长度与对应时间进行拟合,得到影长与时间关系模型。当某个时刻影长 得到极小值时,该时刻为太阳与直杆距离最近,即地方时正午 12 时,结合当地 所使用的标准时间便可得到当地经度。 最后利用太阳高度角与直杆长度以及影长 满足的三角关系式,便可得到影长关于直杆高度、直杆所在地点的纬度的函数关 系式,即得到了有关太阳影子顶点坐标与直杆地点经纬度的模型。将附件一中影 子顶点坐标数据应用于该直杆位置模型,可得到直杆所在位置。用相对误差分析 法分析误差[3](168-169 页),若所得的相对误差小于 2.5%,认为得到的模型合 理。 问题三可根据光照成影原理和太阳高度角计算公式建立影长与时间变 化模型,根据相关数据,运用 MATLAB 软件拟合可得到直杆所在位置的经纬 度。令年份均为 2015 年,根据太阳赤纬角计算公式,可求解具体的日期。 将附件 2 和附件 3 时间和对应直杆影长数据分别代入模型中,通过拟合计
三、 条件假设 1. 假设题中所给数据准确性高,测量误差忽略不计; 2. 假设地球是一个规则均匀的球体,即球心到球面距离相等的球体; 3. 将太阳光看作是无数条平行光; 4. 假设附件 2 和附件 3 中直杆影子的测量年份均为 2015 年。 四、 符号表示
符号 l
N w
L t T r
1 (5) 1 sin 2 故联立(1)(2)(3)(4)(5)式,得到被观测物体的太阳影子变化模型为 1 1 l L 2 sin sin sin sin cos cos cos w 0.3723 23.2567 sin 0.1149sin 2 0.1712sin 3 (6) 0.758cos 0.3656 cos 2 0.0201cos 3 2 ( N N 0 ) 365.2422 N 79.6764 0.2422 (T -1985) INT (T -1985) / 4 0 w t 4( - 0 ) -12 12 在该模型中,太阳影子长度变化情况与物体高度 L 、积日 N 、年份 T 、甲地 经度 和纬度 ,乙地经度 0 、乙地方时 t 这些参数有关。其中当被观测物体位 l L