人教版高中数学必修3,简单随机抽样
人教新课标A版高一数学《必修3》2.1.1 简单随机抽样
(2)把依次逐个取出2个球看成一个完整的过
程,问每个球被抽到的概率是否相等?
简单随机抽样
一般地,设一个总体的个体数为 N,如果通过逐个不放回地
抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽 到的概率相等,就称这样的抽样为简单随机抽样. 注意以下点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取;
表抽取样本保证了被抽取个体的概率是相等的.
归纳小结
1.简单随机抽样的概念 一般地,设一个总体的个体数为 N,如果通过逐个抽 取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为简单随机抽样. 2.简单随机抽样的法: 抽签法 随机数表法
注:随机抽样并不是随意或随便抽取,因为随意或 随便抽取都会带有主观或客观的影响因素.
(3)它是一种不放回抽样; (4)它是一种等概率抽样.
简单随机抽样是在特定总体中抽取样本,总体中每一个体被抽 取的可能性是等同的,而且任何个体之间彼此被抽取的机会是 独立的.如果用从个体数为N的总体中抽取一个容量为n的样本, n 那么每个个体被抽取的概率等于N .
抽签法(抓阄法)
先将总体中的所有个体(共N个)编号(号码可以 从1到N),并把号码写在形状、大小相同的号签 上( 号签可以用小球、卡片、纸条等制作),然 后将这些号签放在同一个箱子里,进行均匀搅拌. 抽签时,每次从中抽出1 个号签,连续抽取n次, 就得到一个容量为n的样本.对个体编号时,也可以
谢谢大家!
利用已有的编号.例如学生的学号,座位号等.
抽签法(抓阄法) 抽签法的步骤: 1、把总体中的N个个体编号; 2、 把号码写在号签上,将号签放在一个容器中
搅拌均匀;
3、每次从中抽取一个号签,连续抽取n次,就得到
高中数学人教版必修3课件2-1-1简单随机抽样3
第三步,每次从中抽取一个号签,连续抽取 n 次,就得到一个容 量为 n 的样本.
问题 4 你认为抽签法有哪些优点和缺点? 答 优点:简单易行,当总体个数不多的时候搅拌均匀很容易, 个体有均等的机会被抽中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差 的可能性很大. 问题 5 阅读教材中随机数表法的内容,归纳出利用随机数 表法从含有 N 个个体的总体中抽取一个容量为 n 的样本的 步骤. 答 第一步,将总体中的所有个体编号. 第二步,在随机数表中任选一个数作为起始数. 第三步,从选定的数开始依次向右(向左、向上、向下)读,将 编号范围内的数取出,编号范围外的数去掉,直到取满 n 个号 码为止,就得到一个容量为 n 的样本.
某车间工人加工一种轴 100 件,为了了解这种轴的直径,要 从中抽取 10 件轴在同一条件下测量,如何采用简单随机抽 样的方法抽取样本?
解 方法一 (抽签法)将 100 件轴编号为 1,2,…,100,并做好 大小、形状相同的号签,分别写上这 100 个数,将这些号签放 在一起,搅拌均匀,接着连续抽取 10 个号签,然后测量这个 10 个号签对应的轴的直径. 方法二 (随机数表法)将 100 件轴编号为 00,01,…,99,在随机 数表中选定一个起始位置,如取第 10 行第 1 个数开始,选取 10 个为 48,30,63,25,60,19,09,81,38,43,这 10 件即为所要抽取 的样本.
例 2 假设我们要考察某公司生产的 500 克袋装牛奶的质量 是否达标,现从 800 袋牛奶中抽取 60 袋进行检验,利用随机 数表法抽取样本时应如何操作?
人教版数学必修三2.1.1《简单随机抽样》课件_
抽样的必要性
由于所考察的总体包含的个体数量很大, 而且许多考察带有破坏性,因此,我们 往往考察总体中的一个样本,通过样本 来了解总体的情况,即抽样调查。
9这十个数字的表格称为随机数表其中各个位置上出现的数称为随机数随机数表并不是唯一的只要符合各个位置上等可能的出现其中各个数的要求就可以构成随机数表通常根据实际需要和方便使用的原则将几个数组成一组如5个数一组
2.1.1简单随机抽样
案例:我校共有学生900人,校医务室想对
全体高中学生的身高做一次调查,为了不影响正 常教学,准备抽取50名学生做为调查对象
随机数表
在表中每个位置上等可能的出现0,1,…,9这十个数字的 表格称为随机数表,其中各个位置上出现的数称为随机数, 随机数表并不是唯一的,只要符合各个位置上等可能的出现 其中各个数的要求,就可以构成随机数表,通常根据实际需 要和方便使用的原则将几个数组成一组,如5个数一组。(见 教材87页附录)
议一议
中央电视台需要在我市调查“春节联欢晚会”的 收视率。 (1)每个看电视的人都要被问到吗? (2)对我校调查结果能否作为该节目的收视率? (3)你认为对不同社区、年龄层次、文化背景 的人所做的调查结果会一样吗?
抽样的原则
如何抽取样本,直接关系到对总体估计的准确程度
尽量使每一个个体被抽到的机会是 均等的,抽出的样本能够很好地代表总 体,满足这样的条件的抽样是随机抽样。
抽签法
第一步:将50名学生编号01,02,…,50
第二步:将号码分别写在一张纸上,制成号签
最新人教版高中数学必修3第二章《简单随机抽样》
2.1.1 简单随机抽样1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中__________地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都____,就把这种抽样方法叫做简单随机抽样.(2)说明:我们所讨论的简单随机抽样都是______的抽样,即抽取到某个个体后,该个体不再____总体中.常用到的简单随机抽样方法有两种:______(抓阄法)和________.简单随机抽样具有下列特点:①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体中的个体数N.③简单随机抽样中的每个个体被抽到的可能性均为nN.④当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本.⑤逐个抽取即每次仅抽取一个个体.⑥简单随机抽样是不放回的抽样,即抽取的个体不再放回总体.【做一做1】在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定2.抽签法一般地,抽签法就是把总体中的N个个体____,把号码写在____上,将号签放在一个容器中,搅拌____后,每次从中抽取____号签,连续抽取n次,就得到一个容量为__的样本.抽签法抽取样本的步骤:①将总体中的个体编号为1~N.②将所有编号1~N写在形状、大小相同的号签上.③将号签放在一个不透明的容器中,搅拌均匀.④从容器中每次抽取一个号签,并记录其编号,连续抽取n次.⑤从总体中将与抽取到的签的编号相一致的个体取出.操作要点是:编号、写签、搅匀、抽取样本.【做一做2】抽签法中确保样本代表性的关键是()A.编号B.制签、搅拌均匀C.逐一抽取D.抽取不放回3.随机数法随机数法即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.用随机数表法抽取样本的步骤:①将总体中的个体____.②在随机数表中________数作为开始.③规定一个方向作为从选定的数读取数字的____.④开始读取数字,若不在编号中,则____,若在编号中则____,依次取下去,直到取满为止.(相同的号只计一次)⑤根据选定的号码抽取样本.操作要点是:编号、选起始数、读数、获取样本.虽然产生随机数的方法很多,但在高中数学中,仅学习用随机数表产生随机数来抽样,即随机数表法.【做一做3】用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是__________.(填序号)答案:1.(1)逐个不放回相等(2)不放回放回抽签法随机数法【做一做1】B在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.编号号签均匀一个n【做一做2】B3.①编号②任选一个③方向④跳过取出【做一做3】①③②1.抽样的必要性剖析:由样本估计总体是统计的基本思想,其原因是:(1)有些试验具有破坏性,只能研究其样本而不能研究总体.例如,检验一批钢筋的强度,不能把这批钢筋全部拉断.考察产品的寿命和食品的质量问题等也是这样.(2)在现实生活中,由于资金、时间有限,人力、物力不足,再加上不断变化的环境条件,做普查是不可能的,也是不必要的.如调查城市居民出行情况.(3)当总体是连续或无限时,直接研究是不可能的.例如对大气环境污染情况的分析.(4)由于受随机因素的影响,即便直接研究总体,得到的结果也是一个近似值,同研究样本得到的结果差不多.例如天气预报等.(5)某些特殊总体,要求具有相当资格的调查员才能进行,为此只能采用抽样调查,例如对某科学技术方面总体的调查.总体:统计中所考察对象的全体叫总体;个体:总体中的每一个考察对象叫个体;样本:从总体中抽取的一部分个体叫做样本;样本容量:样本的个体的数目叫做样本容量;总体容量:总体的个体的数目叫做总体容量.2.应用随机数表法抽取样本时,对总体中的个体进行编号的方法剖析:利用随机数表法抽取样本的关键是对所有个体的编号的位数要一致;若不一致,需先调整到一致再进行抽样.例如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的编号都用两位数字表示即可,即00~99号.如果选择从1开始编号,那么所有个体的号码都必须用三位数字表示,比如001~100.很明显每次读两个数字要比每次读三个数字节省时间.3.抽签法与随机数法的异同点剖析:相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体所含的个体是有限的;(2)都是从总体中逐个地、不放回地抽取.不同点:(1)抽签法比随机数法简单;(2)随机数法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数法,这样可以节约大量的人力和制作号签的成本.题型一如何选择简单随机抽样【例题1】下列问题中,最适合用简单随机抽样方法的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解他们对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量反思:如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:①总体中的个体之间无差异;②总体中的个体数不多.题型二抽签法的应用【例题2】某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组,请用抽签法确定志愿小组成员,并写出抽样步骤.分析:编号→制签→搅匀→抽签→成样反思:利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号,标号等),可不必重新编号.②号签要求大小、形状完全相同.③号签要搅拌均匀.④要逐一不放回地抽取.题型三随机数表法的应用【例题3】某车间工人加工了一批零件共40件,为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本?写出抽样步骤.反思:在随机数表法抽样的过程中要注意:①编号要求位数相同.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.题型四易错辨析【例题4】某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002,003, (100)③00,01,02,…,99.其中最恰当的序号是________.错解:因为是对100件产品编号,则编号为1,2,3,…,100,所以①最恰当.错因分析:用随机数表法抽样时,如果所编号码的位数不相同,那么无法在随机数表中读数,因此,所编号码的位数要相同.答案:【例题1】B根据简单随机抽样的特点进行判断.A项中的总体容量较大,用简单随机抽样法比较麻烦;B项中的总体容量较小,用简单随机抽样法比较方便;C项中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D项中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.【例题2】解:抽样步骤是:第一步,将18名志愿者编号,号码是01,02, (18)第二步,将号码分别写在同样的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.【例题3】解:抽样步骤是:第一步,先将40件零件编号,可以编为00,01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数5开始.为便于说明,我们将随机数表中的第6行至第10行摘录如下:16 22 77 94 3949 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 67 21 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 75 12 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 38 15 51 00 13 4299 66 02 79 5457 60 86 32 4409 47 27 96 5449 17 46 09 62 90 52 84 77 2708 02 73 43 28第三步,从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.与这10个号码对应的零件即是抽取的样本个体.【例题4】正解:只有编号时数字位数相同,才能达到随机等可能抽样.所以①不恰当.②③的编号位数相同,都可以采用随机数表法,但②中号码是三位数,读数费时,所以③最恰当.1.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从整数集中逐个抽取10个分析奇偶性D.运动员从8个跑道中随机抽取一个跑道2.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是__________位.3.从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.4.有一批机器,编号为1,2,3,…,112.请用随机数表法抽取10台入样,并写出抽样过程.5.现在有一种游戏,其用具为四副扑克,包括大小鬼(又称为王)在内共216张牌,参与人数为6人,并围成一圈.游戏开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?答案:1.D A项中是一次性抽取5个,不是逐个抽取,则A项不是简单随机抽样;B项中是有放回抽取,则B项也不是简单随机抽样;C项中整数集是无限集,总体容量不是有限的,则C项也不是简单随机抽样;很明显D项是简单随机抽样.2.四由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.3.解:抽签步骤:第一步,将60件产品编号,号码是01,02, (60)第二步,将号码分别写在同样的纸条上,揉成团,制成号签;第三步,将号签放入不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取5个号签,并记录上面的编号;第五步,与所得号码对应的产品就是要抽取的对象.4.解:各机器的编号位数不一致,用随机数表直接读数不方便,需将编号进行调整.第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”,向右读;第三步,从“3”开始向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,对应原来编号74,100,94,52,80,3,105,107,83,92的机器就是要抽取的对象.5.分析:根据简单随机抽样的特点来判断.解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.。
人教版高中数学必修三_2.1.1简单随机抽样课件
简单随机抽样
随 机 数 表
教材103页
简单随机抽样
随机数表法
一、编号:先将总体中的所有个体(共有N个)编号, 二、选数(起始数):然后在随机数表内任选一个数
作为开始,
三、选号:再从选定的ຫໍສະໝຸດ 始数,沿任意方向取数(不在 号码范围内的数、重复出现的数必须去掉)
四、抽取:最后根据所得号码抽取总体中相应的个
A.① B.② C.③ D.以上都不对
目标检测
1.对于简单随机抽样,每个个体被抽到的机会( ) A.相等 B.不相等 C.不确定 D.与抽取次数有 关
2.抽签法中确保样本代表性的关键是( ) A.制签 B.搅拌均匀 C.逐一抽取 D.抽取不放 回
3.采用简单随机抽样,从6个标有A、B、C、D、E、 F的相同的球中抽取1个球,则每个球被抽到的可 能性是________.
体,得到总体的一个样本.
问题 3.要考察某公司生产的 800袋500克袋装牛奶质量是 否达标,请问你怎么做?
简单随机抽样
第一步,先将800袋牛奶编号,可以编为000,001,…,799
第二步,在随机数表中任选一个数,例如选出第8行第7 列的数7.(为了便于说明,下面摘取了附表1的第6行至第10行)
简单随机抽样
课堂小结
1.简单随机抽样的概念
一般地, 设一个总体含有N个个体 ,从中逐个不放 回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体 内的各个个体被抽到的机会都相等,这种抽样方法叫做 简单随机抽样。
2.最常用的简单随机抽样
抽签法
随机数表法
配餐作业
创新设计 课时活页训练 双基达标
简单随机抽样
问题2:现从我们班40名同学中
选取10名参加演唱会,为保证选取的 公平性,你打算如何操作?
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测
人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
人教版高中数学必修三2.1.1《简单随机抽样》ppt课件_
练习3、下列抽取样本的方式是属于简单随机抽样的 是( C ) ①从无限多个个体中抽取100个个体作样本; ②盒子里有80个零件,从中选出5个零件进行质量检 验,在抽样操作时,从中任意拿出一个零件进行质
量检验后,再把它放回盒子里;
③从8台电脑中不放回的随机抽取2台进行质量检验
(假设8台电脑已编好号,对编号随机抽取)
(2)用随机数表进行抽样的步骤:将总体中个体 编号;选定开始的数字;获取样本号码。 (3)用随机数表抽取样本,可以任选一个数作为
开始,读数的方向可以向左,也可以向右、向上、 向下等等。因此并不是唯一的.
(4)由于随机数表是等概率的,因此利用随机数
表抽取样本保证了被抽取个体的概率是相等的。
探究:抽签法和随机数表法的异同
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本. (2)从50台冰箱中一次性抽取5台冰箱进行质量检查. (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛. (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽 出6个号签.
例3:要考察某种品牌的850颗种子的发芽率,从中抽 取50颗种子作为样本进行试验.
由于需要编号,如果总体中的个体数太多, 采用抽签法进行抽样就显得不太方便了
第一步,先将850颗种子编号,可以编为001,002,… ,850.
所谓编号,实际上是编数字号码.不 要编号成:0,1,2,…,850
第二步,在随机数表中任选一个数作为开始,例如从第1行第1列的数4开始 . 为了保证所选定数字的随机性,应在面对 随机数表之前就指出开始数字的纵横位置
给出的随机数表中是5个数一组,我们使用各个5位数 组的前3位,不大于850且不与前面重复的取出,否则 第三步,获取样本号码. 就跳过不取,如此下去直到得出50个三位数
人教版高一数学必修三第二章简单随机抽样
2.1随机抽样2.1.1简单随机抽样问题导学(1)什么叫简单随机抽样?(2)最常用的简单随机抽样方法有哪两种?(3)抽签法是如何操作的?(4)随机数表法是如何操作的?1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法:抽签法和随机数法.2.抽签法与随机数法的定义(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.■名师点拨简单随机抽样的特征(1)有限性:简单随机抽样要求被抽取的样本的总体中所含个体的个数是有限的,便于通过样本对总体进行分析.(2)逐一性:简单随机抽样是从总体中逐个地进行抽取,便于实践中操作.(3)不放回性:简单随机抽样是一种不放回抽样,便于进行有关的分析和计算.(4)等可能性:简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.判断正误(对的打“√”,错的打“×”)(1)有放回地抽样也可能是简单随机抽样.()(2)在简单随机抽样中,一次可以抽取多个个体.()(3)抽签法和随机数表法都是简单随机抽样.()(4)无论是抽签法还是随机数表法,每一个个体被抽到的机会都是均等的.()(5)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.()答案:(1)×(2)×(3)√(4)√(5)√从50份高三学生期中考试试卷中随机抽出15份进行教研分析,则下列说法正确的是()A.15名学生是样本B.50名学生是总体C.样本容量是15 D.样本容量是50解析:选C.样本是抽取的15份试卷,总体容量是50,样本容量是15.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B.逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79(第8行)33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)57 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28(第10行)解析:第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95>59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.答案:16,55,19,10,50,12,58,07,44,39简单随机抽样的判断下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本;(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里;(3)从50个个体中一次性抽取5个个体作为样本;(4)一彩民选号,从装有36个大小、形状都相同的号签的箱子中无放回的抽取6个号签.【解】(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.(4)是简单随机抽样,因为总体中的个体是有限的,并且是从总体中逐个抽取、不放回的、等可能的抽样.判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.下面的抽样方法是简单随机抽样的是________.(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)从无限多个个体中抽取30个个体作样本;(3)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(4)从2 000个灯泡中逐个抽取20个进行质量检查.解析:(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为总体不是有限个;(3)不是简单随机抽样,因为它是有放回抽样;(4)满足简单随机抽样的四个特征,故是简单随机抽样.答案:(4)抽签法、随机数表法及其应用(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号________.(下面抽取了随机数表第1行至第8行)03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 9597 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 7316 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 1012 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 7655 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 3016 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79(2)某单位对口支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.【解】(1)从随机数表第3行第6列的数2开始向右读,第一个小于850的数字是227,第二个数字是665,第三个数字是650,第四个数字是267,符合题意.故填227,665,650,267.(2)方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.1.本例(1)中利用随机数表法抽取样本,若从第4行第5列开始向右读,则最先检验的4颗种子的编号为________,________,________,________.解析:从第4行第5列向右开始读依次为:668,273,105,037.答案:6682731050372.在本例(1)中,若将“850颗种子”改为“1 850颗种子”,又如何编号?解:可将1 850颗种子按0001,0002,…,1850进行编号.(1)抽签法的一般步骤(2)随机数表法抽样的步骤①编号:这里的所谓编号,实际上是新编数字号码.样本总体是几位数,就按几位数为一组编号;②确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向;③获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.某校高一年级有43名足球运动员,要从中选取5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步,编号,把43名运动员编号为1~43.第二步,制签,做好大小、形状均相同的号签,分别写上这43个数.第三步,搅拌,将这些号签放在暗箱中,进行均匀搅拌.第四步,抽签入样,每次从中抽取一个,连续抽取5次(不放回抽取),从而得到容量为5的入选样本.简单随机抽样等可能性的应用一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.【解析】因为简单随机抽样过程中每个个体被抽到的可能性均为nN,所以第一个空填310.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为1 10,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.【答案】31018简单随机抽样,每次抽取时,总体中各个个体被抽到的概率相同,在整个抽样过程中各个个体被抽到的机会也都相等.要区分抽样时每个个体被抽到的可能性与第n次抽到时每个个体的可能性.一个总体共有15个个体,用简单随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.13B.15C.110D.115解析:选A.简单随机抽样具有等可能性,每个个体被抽到的可能性是515=13.1.关于简单随机抽样的特点,以下几种说法中不正确的是 ( ) A .要求总体中的个体数有限 B .从总体中逐个抽取 C .这是一种不放回抽样D .每个个体被抽到的机会不一样,与先后顺序有关解析:选D.简单随机抽样,除具有A 、B 、C 三个特点外,还具有:是等可能抽样,每个个体被抽到的机会相等,与先后顺序无关.2.下列抽样方法是简单随机抽样的是()A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从偶数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下解析:选D.A选项错在“一次性”抽取;B选项错在“有放回”抽取;C选项错在“一次性”“总体容量无限”.故正确选项为D.3.当N=100时,分别用0,1为起点对总体中的每个个体编号,再利用随机数表法抽取一个样本容量为10的样本,写出用0为起点编号与用1为起点编号的区别.解:从0开始编号,那么100个个体的编号都可以用两位数表示,即00,01, (99)这样用随机数表法抽样时,每次读两个数字即可,若用1为起点对100个个体进行编号,必须用3位数表示,即001,002,…,100,抽样时就较麻烦,也易出错.[A基础达标] 1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.(2019·黑龙江省哈尔滨市第三中学期末考试)总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01解析:选B.从随机数表第1行的第3列开始由左到右依次选取两个数字中小于20的编号,依次为16,08,02,14,07,则第5个个体的编号为07.故选B.3.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:选D.A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中挑选50名最优秀的战士,不符合简单随机抽样的等可能性,故错误.4.已知总体的个数为111,若用随机数表法抽取一个容量为12的样本,则下列对总体的编号正确的是()A.1,2,…,111B.0,1,…,111C.000,001,…,111D.001,002,…,111解析:选D.在使用随机数表法抽取样本时,必须保证编号的位数一致,同时要规范编号,不能多也不能少,结合所给选项,选D.5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的为()①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤每个运动员被抽到的机会相等. A .①⑤ B .④⑤ C .③④⑤D .①②③解析:选B.①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查. 解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的机率是________.解析:简单随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.答案:158.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.解析:三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法. 答案:抽签法9.某校2018级高一年级有50位任课教师,为了调查老师的业余兴趣情况打算抽取一个容量为5的样本,问此样本若采用抽签法将如何获得?解:首先,把50位任课教师编上号码:1,2,3,…,50.制作50个形状、大小均相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一个不透明的箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,不放回,连续抽取5次,就得到一个容量为5的样本.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始数字,任选一方向作为读数方向.比如,选第6行第7列的数“9”,向右读(见课本随机数表).(3)每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.(4)以上号码对应的6个元件就是要抽取的样本.[B 能力提升]11.从一群玩游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn m B .k +m -n C.km nD .不能估计解析:选C.设参加游戏的小孩有x 人,则k x =n m ,x =kmn.12.从个体数为N 的总体中抽出一个样本容量是20的样本,每个个体被抽到的可能性是15,则N 的值是________. 解析:从个体数为N 的总体中抽出一个样本容量是20的样本,所以每个个体被抽取的可能性是20N .因为每个个体被抽取的可能性是15,所以20N =15,所以N =100.答案:10013.某班共有60名学生,现领到10张听取学术报告的入场券,用抽签法和随机数表法把10张入场券分发下去,试写出过程.解:(1)抽签法:①先将60名学生编号为1,2,…,60; ②把号码写在形状、大小均相同的号签上;③将这些号签放在同一个箱子里进行均匀搅拌,抽签时每次从中抽出一个号签,连续抽取10次,根据抽到的10个号码对应10名同学,10张入场券就分发给了10名同学.(2)随机数表法:①先将60名学生编号,如编号为01,02, (60)②在随机数表中任选一个数作为开始,从选定的数可向任意方向读,如果读到的数小于或等于60,将它取出,如果读到的数大于60,则舍去,前面已读过的也舍去,直到已取满10个小于或等于60的数为止,说明10个样本号码已取满.③根据号码对应的编号,再对应抽出10名同学,10张入场券就分发给了10名被抽到的同学.14.(选做题)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从1到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明的箱子中摇匀,从中抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点
第三章 简单随机抽样第一节 简单随机抽样概述一、简单随机抽样的概念简单随机抽样也叫作纯随机抽样。
其概念可有两种等价的定义方法:定义之一:简单随机抽样就是从总体N 个抽样单元中,一次抽取n 个单元时,使全部可能的)(Nn A 种不同的样本被抽到的概率均相等,即都等于1/A 。
按简单随机抽样,抽到的样本称为简单随机样本。
按上述定义,在抽取简单随机样本之前,应将所有可能的互不相同的样本一一列举出来。
但当N 与n 都比较大时,要列出全部可能的样本是不现实的。
因此,按上述定义进行抽样是不太方便的。
定义之二:简单随机抽样是从总体的N 个抽样单元中,每次抽取一个单元时,使每一个单元都有相等的概率被抽中,连续抽n 次,以抽中的n 个单元组成简单随机样本。
由于定义二无需列举全部可能的样本,故比较便于组织实施。
但按这个定义进行抽样时,仍然需要掌握一个可以赖以实施抽样的抽样框。
二、简单随机抽样的具体实施方法常用的有抽签法和随机数法两种。
(一)抽签法抽签法是先对总体N 个抽样单元分别编上1到N 的号码,再制作与之相对应的N 个号签并充分摇匀后,从中随机地抽取n 个号签(可以是一次抽取n 个号签,也可以一次抽一个号签,连续抽n 次),与抽中号签号码相同的n 个单元即为抽中的单元,由其组成简单随机样本。
抽签法在技术上十分简单,但在实际应用中,对总体各单元编号并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时,抽签法并不是很方便,而且也往往难以保证做到等概率。
因此,实际工作中常常使用随机数法。
(二)随机数法随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
由于计算机产生的随机数实际上是伪随机数,不是真正的随机数,特别是直接采用一般现成程序时,产生的随机数往往不能保证其随机性。
因此,一般使用随机数表,或用随机数骰子产生的随机数,特别在n 比较大时。
1、随机数表及其使用方法随机数表是由0到9的10个阿拉伯数字进行随机排列组成的表。
人教版数学必修三2.1.1《简单随机抽样》ppt课件
98 65 36 98 96 64 25 21 45 78 56 50 26 71 07 96 96 68 27 31 90 60 24 52 52 57 48 56 35 87 75 60 36 95 05
33 35 36 98 93 56 98 75 45 56 32 90 79 78 53 05 03 72 93 15 57 56 68 42 66 45 32 56 82 54 36 87 95 02 42
33 35 36 98 93 56 98 75 45 56 32 90 79 78 53 05 03 72 93 15 57 56 68 42 66 45 32 56 82 54 36 87 95 02 42
64 25 21 45 78 06 55 48 78 36 13 55 38 58 59 57 12 10 14 21 85 87 47 70 01 56 68 97 80 12 63 68 79 25 42
① 先将850颗种子编号为001,…,850; ② 在随机数表中任选一个数; ③ 从选定的数开始向右(读数的方向可以是向 左,向上,向下等),得到满足的数将它取出, 继续向右读,直到样本的50个号码全部取出。
为什么编号要从001开始取?
练习:从全班同学构成的总体中,用随机
数表法抽取6人分取6块糖,如何抽取?
简单随机抽样
(1)被抽取样本的总体的个体数有限;
(2)从总体中逐个进行抽取; (3)一种不放回抽样; ( 4 )每个个体能被选入样本的可能性是相 同的。
简单随机抽样
一般地,从元素个数为 N 的总体中不放 回地抽取容量为 n样本,如果每一次抽取时 总体中的各个个体有相同的可能性被抽,这 种抽样方法叫做简单随机抽样。这样抽取的 样本,叫做简单随机样本。
人教版高中数学必修三简单随机抽样
2.1 随机抽样2.1.1 简单随机抽样[读教材·填要点]1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧抽签法,随机数法. 3.随机数法的类型随机数法⎩⎪⎨⎪⎧ 随机数表法,随机数骰子法,计算机产生的随机数法.[小问题·大思维]1.在统计中总体、个体、样本、样本容量是如何定义的?提示:总体:统计中所考察对象的全体叫总体;个体:总体中的每一个考察对象叫个体;样本:从总体中抽取的一部分个体叫做样本;样本容量:样本的个体的数目叫做样本容量.2.有同学说:“随机数表只有一张,并且读数时只能按照从左向右的顺序读取,否则产生的随机样本就不同了,对总体的估计就不准确了”,你认为这种说法正确吗?提示:不正确.随机数表的产生是随机的,读数的顺序也是随机的,不同的样本对总体的估计相差并不大.简单随机抽样的概念[例1]下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取20个个体作为样本.(2)从50台冰箱中一次性抽取5台冰箱进行质量检查.(3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛.(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[自主解答](1)不是简单随机抽样.因为总体的个数是无限的,而不是有限的.(2)不是简单随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简单随机抽样的定义要求的是“逐个抽取”.(3)不是简单随机抽样.因为是指定5名同学参加比赛,每个个体被抽到的可能性是不同的,不是等可能抽样.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.能否把本题中不是简单随机抽样的改为简单随机抽样?解:在(1)中把“无数个”改为“300”等大于20具体数字;(2)把“一次性抽取”改为“逐个抽取”;(3)把“指定5名个子最高的”改为“随机指定5名同学”——————————————————判断一个抽样是否为简单随机抽样的依据是其四个特征:———————————————————————————1.下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其质量是否合格.(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.解:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.抽签法的应用[例2]6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.[自主解答]抽样步骤是:第一步,将18名志愿者编号,号码是01,02, (18)第二步,将号码分别写在同样的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.——————————————————1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.2.应用抽签法时应注意以下几点:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)要逐一不放回的抽取.——————————————————————————————————————2.从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.解:抽签法步骤:第一步,将60件产品编号,号码是01,02, (60)第二步,将号码分别写在同样的纸条上,揉成团,制成号签.第三步,将号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取5个号签,并记录上面的编号.第五步,与所得号码对应的产品就是要抽取的对象.随机数表法的应用[例3]台入样,写出抽样过程.[自主解答]第一步,将原来的编号调整为001,002, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开始向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.——————————————————在利用随机数表法抽样的过程中注意:(1)编号要求数位相同;(2)第一个数字的抽取是随机的;(3)读数的方向是任意的且为事先定好的.——————————————————————————————————————3.现有一批编号为10,11,…,99,100,…,600的元件,从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数的方向,如选第7行第2个数开始向右读.第三步,以“4”开始向右读,每次取3位,凡不在010~600中的数跳过去不读,得号码175,331,572,455,068,047.第四步,以上号码对应的6个元件是所要抽取的样本.要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.[解]法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.1.从某年级500名学生中抽取60名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.500名学生是总体B.每个被抽取的学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量答案:C2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,每一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定解析:在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.答案:B3.为了解某地区高三学生升学考试数学成绩的情况,从中抽取50本密封试卷,每本30份试卷,这个问题中的样本容量是()A .30B .50C .1 500D .150解析:样本容量为50×30=1 500份.答案:C 4.一个总体共有30个个体,用简单随机抽样的方法从中抽取一个容量为7的样本,则某个定是个体入样的可能性是________.解析:简单随机抽样中每个个体入样的可能性均为n N ,故该个体入样的可能性为730. 答案:7305.抽签法中确保样本具有代表性的关键是________.答案:搅拌均匀6.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.解:其方法和步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签.(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀.(4)从袋子中依次抽取3个号签,并记录上面的编号.(5)所得号码对应的3辆汽车就是要抽取的对象.一、选择题1.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )A .总体是240B .个体是每一名学生C .样本是40名学生D .样本容量是40解析:本题中的研究对象是学生的身高,而不是学生自身.总体是240名学生的身高,个体是每一名学生的身高,样本是抽取的40名学生的身高,总体容量是240,样本容量是40.答案:D2.用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②答案:B3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A .①②B .①③C .②③D .③ 解析:根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样. 答案:C4.对于简单随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④解析:这四点全是简单抽样的四个特点.答案:D二、填空题5.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.解析:30N=25%,∴N =120. 答案:1206.下列调查的样本不合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.解析:①中样本不具有有效性,在班级前画“√”与了解最受欢迎的老师没有关系.③中样本缺乏代表性.而②④是合理的样本.答案:②④7.为了了解某次数学竞赛中1 000名学生的成绩,从中抽取一个容量为100的样本,则每个学生成绩入样的机会是________.解析:1001000=110=10%. 答案:10%8.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的可能性均为0.2,向该中学抽取一个容量为n 的样本,则n =________.解析:∵n 400+320+280=0.2,∴n =200. 答案:200三、解答题9.我们要考察某公司生产的500 g 盒装水果罐头的质量是否达标,现从800盒水果罐头中抽取60盒进行检验,请用适当的方法选取样本.解:用随机数法:第一步,先将800盒水果罐头编号,可以编为000,001,002,…,799; 第二步,在随机数表中任选一个数,例如从课本附录的随机数表中选择第5行第10列4;第三步,从选定的数4开始向右读,得到一个三位数438,由于438<799,说明号码438在总体中,将它取出;继续向右读,得到548,246,223,162,430,990,由于990>799,将它去掉,按照这种方法继续向右读,又取出061,325,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.10.现在有一种够级游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.。
人教版高中数学必修三简单随机抽样课件
(2)在标准大气压下,温度达到
60C
时,水沸腾;
不可能事件
(3)直线 y 2x ,过定点(0,1);必然事件
(4)某一天内电话收到的呼叫次数为0; 随机事件
(5)没有空气,动物也能生存下去; 不可能事件
(6)一个袋内装有性状大小相同的一个白球和一个 黑 球,从中任意摸出1个球则为白球.随机事件
环节三:试验
3.1随机事件的概率
3.1.1 随机事件的概率
学习目标
1、了解事件的分类 2、了解随机事件发生的不确定性和其概
率的稳定性 3、理解频率与概率的区别与联系
环节一:阅读课本108页回答下列问题
1,从发生与否的角度分析下列事件各有什么特点?
2,下列事件分别称为什么事件?
3,怎样定义必然事件、不可能事件、随机事件?
人 教 版 高 中 数学必 修三第 二章第 1节 2 . 1.1简单 随机抽 样 课 件 ( 共 16张PP T)
例如,历史上曾有人做过抛掷硬币的量重复 试验,结果如下表 :
抛掷次数(m ) 正面向上次数
(频数n )
2048 4040 12000 24000 30000 72088
1061 2048 6019 12012 14984 36124
不可能事件:在条件S下,一定不会发生 的事件,叫做不可能事件.
随机事件:在条件S下,可能发生也可 能不发生的事件,叫做随机事件.
必然事件与不可能事件统称为确定事件
环节二:练习
指出下列事件中,哪些是不可能事件?哪
些是必然事件?哪些是随机事件?
(1)若a, b, c 都是实数,则(a b) c = a ( b c ); 必然事件
频数,频率的定义:
人教版高中数学必修三第二章统计简单的随机抽样(3)
人教版高中数学必修三第二章统计简单的随机抽样(3)简单的随机抽样教学目标:1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学过程【问题提出】1. 我们生活在一个数字化时代,时刻都在和数据打交道,例如,产品的合格率,农作物的产量,商品的销售量,电视台的收视率等.这些数据常常是通过抽样调查而获得的,如何从总体中抽取具有代表性的样本,是我们需要研究的课题.2. 要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?3. 将锅里的汤“搅拌均匀”,品尝一小勺就知道汤的味道,这是一个简单随机抽样问题,对这种抽样方法,我们从理论上作些分析知识探究(一):简单随机抽样的基本思想思考1. 从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?2. 从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?3. 一般地,从N个个体中随机抽取n个个体作为样本,则每一个个体被抽到的概率是多少?4. 食品卫生工作人员,要对校园食品店的一批小包装饼干进行卫生达标检验,打算从中抽取一定数量的饼干作为检验的样本.其抽样方法是,将这批小包装饼干放在一个麻袋中搅拌均匀,然后逐个不放回抽取若干包,这种抽样方法就是简单随机抽样.那么简单随机抽样的含义如何?简单随即抽样的含义一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.思考5. 根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.6. 在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?知识探究(二):简单随机抽样的方法思考:1. 假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?2. 用抽签法(抓阄法)确定人选,具体如何操作?用小纸条把每个同学的学号写下来放在盒子里,并搅拌均匀,然后随机从中逐个抽出5个学号,被抽到学号的同学即为参加活动的人选.3. 一般地,抽签法的操作步骤如何?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.4. 你认为抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.5. 假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作?第一步,将800袋牛奶编号为000,001,…第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7为起始数). 第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.6. 如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?7. 一般地,利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.【课堂练习】P57面1、2、3、4【课堂小结】1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.。
高中数学人教A版必修3课件211简单随机抽样
【方法技巧】简单随机抽样的判断方法 判断所给抽样是不是简单随机抽样,关键是看它们是否 符合简单随机抽样的四个特点,即总体的个数有限;逐 个抽取;不放回抽取;等机会抽样.
【变式训练】 下面的抽样是简单随机抽样吗?为什么? (1)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩 后放回,再拿出一件,连续拿出四件. (2)某学校从300名学生中一次性抽取20名学生调查睡 眠情况.
【解析】将个体依次随机编号为001,002,…,200,获取 的前3个样本的编号是072,068,047,025.
【方法技巧】随机数表法抽样的步骤 (1)编号:这里的所谓编号,实际上是新编数字号码. (2)确定读数方向:为了保证选取数字的随机性,应在面 对随机数表之前就指出开始数字的纵横位置,然后确定 读数方向.
类型一 简单随机抽样的概念理解 【典例】1.在“世界读书日”前夕,为了了解某地5000 名居民某天的阅读时间,从中抽取了200名居民的阅读 时间进行统计分析.在这个问题中,5000名居民的阅读 时间的全体是 ( )
A.总体 B.个体 C.样本的容量 D.从总体中抽取的一个样本
2.下面的抽样方法是简单随机抽样吗?为什么?
其中35前面已经出现,应舍掉, 故第四个数是06.
2.①将原来的编号调整为001,002,003,…,112; ②在随机数表中任选一数作为开始,任选一方向作为读 数方向,比如:选第9行第7个数“3”,向右读;
③从“3”开始,向右读,每次读取三位,凡不在001~ 112中的数跳过去不读,前面已经读过的也跳过去不 读,依次可得到074,100,094,052,080,003,105,107, 083,092; ④对应原来编号74,100,94,52,80,3,105,107,83,92 的机器便是要抽取的对象.
人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共21张PPT)
1000 20
(2) 利用抽样 46 20
, 80. 1 20
4
分层抽样适用情况: 总体由差异明显的几部分组成
分层抽样的抽取步骤:
(1)确定抽取的比例:
样本容量 总体
(2)确定各层抽取的样本数:
思考:抽签法是否简单易行?
随机数表法
解决问题
第一步,先将800件产品编号(001,002…….800) 第二步,在随机数表(P103)中任选一个数作为 开始.
第三步,从选定的数开始向右读下去,得到一个三位 数字。(满足要求,则读取;不符合要求,则舍去)
总结:简单随机抽样:抽签法,随机数表法
1、简单随机抽样概念: 一般地,设一个总体的个体数为N, 如果通过逐个抽取的方法, 不放回地抽取一个样本(n≤N), 且每次抽取时各个个体被抽到的概率相等, 就称这样的抽样为简单随机抽样。
三种抽样方法的比较
类别 共同点
各自特点
相互联系 适应范围
简单随 机抽样
整个抽样
从总体中逐 个地抽取
过程中每
总体中 的个体 数较少
系统抽 样
个个体被 将总体均分成几 抽取的概 部分,按照预先 率相等 定出的规则在各
部分抽取
在起始部分 总体中 抽样时采用 的个体 简单随机抽 数较多 样
分层抽 样
将总体分成 几层,分层 进行抽取
2、简单随机抽样适用于:样本容量不多。
下面的抽样方法是否是简单随机抽样? (1)某班 45 名同学,指定个子最高的 5 名同学参加学校组织的某项活动; (2)从 20 个零件中一次性抽出 3 个进行质 量检验; (3)一儿童从玩具箱的 20 件玩具中随意 拿出一件来玩,玩后放回,再拿一件,连续 拿了 5 件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学同步练习
第二章 统 计
2.1.1 简单随机抽样 课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.
1.简单随机抽样的定义
设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.简单随机抽样的分类
简单随机抽样⎩⎪⎨⎪⎧
抽签法随机数法 3.简单随机抽样的优点及适用类型
简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.
一、选择题
1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )
A .200个表示发芽天数的数值
B .200个球根
C .无数个球根发芽天数的数值集合
D .无法确定
答案 A
2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )
A .40
B .50
C .120
D .150
答案 C
解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120.
3.抽签法中确保样本代表性的关键是( )
A .制签
B .搅拌均匀
C .逐一抽取
D .抽取不放回
答案 B
解析 由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B .
4.下列抽样实验中,用抽签法方便的有( )
A .从某厂生产的3 000件产品中抽取600件进行质量检验
B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D .从某厂生产的3 000件产品中抽取10件进行质量检验
答案 B
解析 A 总体容量较大,样本容量也较大不适宜用抽签法;B 总体容量较小,样本容量也较小可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.
5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )
A .1 000名运动员是总体
B .每个运动员是个体
C .抽取的100名运动员是样本
D .样本容量是100
答案 D
解析 此问题研究的是运动员的年龄情况,不是运动员,故A 、B 、C 错,故选D .
6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ) A .110,110 B .310,15
C .15,310
D .310,310
答案 A
二、填空题
7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.
答案 简单随机抽样
解析 由简单随机抽样的特点可知,该抽样方法是简单随机抽样.
8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.
答案 抽签法
9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号) 答案 ①③②
三、解答题
10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.
解 利用抽签法,步骤如下:
(1)将30辆汽车编号,号码是01,02, (30)
(2)将号码分别写在一张纸条上,揉成团,制成号签;
(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;
(4)从袋子中依次抽取3个号签,并记录上面的编号;
(5)所得号码对应的3辆汽车就是要抽取的对象.
11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?
解 (1)将元件的编号调整为010,011,012,…,099,100,…600;
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;
(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;
(4)以上号码对应的6个元件就是要抽取的样本.
能力提升
12.在简单随机抽样中,某一个个体被抽到的可能性( )
A .与第几次抽样有关,第一次抽到的可能性大一些
B .与第几次抽样无关,每次抽到的可能性相等
C .与第几次抽样有关,最后一次抽到的可能性大些
D .与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同
答案 B
解析 由简单随机抽样的特点知与第n 次抽样无关,每次抽到的可能性相等.
13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.
解 方法一 抽签法.
(1)将50个轴进行编号01,02, (50)
(2)把编号写在大小、形状相同的纸片上作为号签;
(3)把纸片揉成团,放在箱子里,并搅拌均匀;
(4)依次不放回抽取5个号签,并记下编号;
(5)把号签对应的轴组成样本.
方法二 随机数法
(1)将50个轴进行编号为00,01, (49)
(2)在随机数表中任意选定一个数并按向右方向读取;
(3)每次读两位,并记下在00~49之间的5个数,不能重复;
(4)把与读数相对应的编号相同的5个轴取出组成样本
1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:
简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性
如果四个特征有一个不满足就不是简单随机抽样.
2.利用抽签法抽取样本时应注意以下问题:
(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.
(2)号签要求大小、形状完全相同.
(3)号签要搅拌均匀.
(4)要逐一不放回抽取.
3.在利用随机数表法抽样的过程中注意:
(1)编号要求数位相同.
(2)第一个数字的抽取是随机的.
(3)读数的方向是任意的,且事先定好的.
精心整理资料,感谢使用!。