空间解析几何与向量代数复习题答案

合集下载

最新7空间解析几何与向量代数习题与答案汇总

最新7空间解析几何与向量代数习题与答案汇总

7空间解析几何与向量代数习题与答案第七章空间解析几何与向量代数A一、1、平行于向量«Skip Record If...»的单位向量为______________.2、设已知两点«Skip Record If...»,计算向量«Skip Record If...»的模,方向余弦和方向角.3、设«Skip Record If...»,求向量«Skip Record If...»在x轴上的投影,及在y轴上的分向量.二、1、设«Skip Record If...»,求(1)«Skip Record If...»(3)a、b的夹角的余弦.2、知«Skip Record If...»,求与«Skip Record If...»同时垂直的单位向量.3、设«Skip Record If...»,问«Skip Record If...»满足_________时,«Skip Record If...».三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程«Skip Record If...»表示______________曲面.3、1)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3)将xOy坐标面上的«Skip Record If...»绕x轴及y轴旋转一周,生成的曲面方程为_____________,曲面名称为_____________________.4)在平面解析几何中«Skip Record If...»表示____________图形。

[整理]7空间解析几何与向量代数习题与答案

[整理]7空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ.三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面.3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z +=(2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程.5、求直线⎩⎨⎧=--=++03z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3.7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知a 和b 为两非零向量,问t 取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量n ,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过z 轴,且与平面052=-+z y x 的夹角为3π的平面方程.6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线2l :211zy x =-=平行的平面.8、求在平面π:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为m ).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线L :121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程.4、求两直线1L :1101-=-=-z y x 与直线2L :0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、a 在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j ib a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

8第八章空间解析几何答案

8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。

4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。

(完整版)高数期末复习题第八章空间解析几何与向量代数

(完整版)高数期末复习题第八章空间解析几何与向量代数

第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。

8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。

空间解析几何与向量代数习题与答案

空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

第八章空间解析几何与向量代数(整理解答)

第八章空间解析几何与向量代数(整理解答)

第八章空间解析几何与向量代数(整理解答)第八章空间解析几何与向量代数一、空间直角坐标系,坐标面,坐标轴,投影坐标8.3 点)2,4,1(-P 在yoz 面上的投影点为( );A. )2,4,1(-QB. )2,0,1(-QC. )0,4,1(-QD. )2,4,0(Q 解:在yoz 面上,坐标x 分量必为零,所以选D.二、向量,方向角,模,向量运算,数量积,向量积8.5设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ()(A) 0 (B) 1 (C) 2 (D); 3解:由作图计算可知,222123cos cos cos 2θθθ++=,所以选C 。

8.8 向量)3,1,1(-=a ,)2,1,3(-=b ,则=?b a ( );A. 0B. 1C. 2D. )2,11,5(--- 解:311(1)232a b ?=-?+?-+?=,所以选C 。

8.12 向量}3,0,1{=a ,}2,1,1{-=b ,则=?b a ( );A. 6B. 6-C. }1,1,3{-D. }1,1,3{-- 解:1033112ij k a b i j k ?==+--,所以选C 。

8.16 a 与b 为两个向量,θ为二者的夹角,则a b ?=( ).(A) sin ab θ (B) s i n a b θ (C) cos ab θ(D) cos a b θ解:由定义,选D 。

8.21 已知1,a b ==a 与b的夹角为4π,则a b +=( ). (A)(B) 1 (C) 2 (D) 1解:222||||2||||cos 5θ+=++?=a b a b a b ,所以,+=a b A 。

8.23 设,a b 为非零向量,且⊥a b ,则必有( ).(A) +=+a b a b (B) -=-a b a b (C) +=-a b a b (D) +=-a b a b解:因为⊥a b ,所以由向量加法和减法平行四边形法则+=-a ba b ,选C 。

(完整版)空间解析几何与向量代数习题与答案

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。

1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。

空间解析几何与向量代数复习题(答案).doc

空间解析几何与向量代数复习题(答案).doc

第八章空间解析几何与向量代数答案一、选择题1. 已知 A(1,0,2), B(1,2,1)是空间两点,向量 AB 的模是( A )A 5B 3C 6D 92. 设 a=( 1,-1,3), b=(2,-1,2),求 c=3a-2b 是( B )A (-1,1,5) .B (-1,-1,5).C (1,-1,5) .D (-1,-1,6) .3. 设 a=( 1,-1,3), b=(2, 1,-2),求用标准基 i, j, k 表示向量 c=a-b 为( A )A -i -2j+5kB -i-j+3kC -i-j+5kD -2i-j+5k4. 求两平面x2 y z3 0 和 2x y z 5的夹角是( C )A2 B4C D35. 已知空间三点 M(1,1,1)、A(2,2,1)和 B(2,1,2),求∠ AMB 是( C)A2 B4C3D x y 1 z 26. 求点 M (2, 1,10)到直线 L:3 2 1 的距离是:(A )A 138B 118C 158D 17.r r r r r r r r rD )设 a i k , b 2i 3 j k , 求 a b 是:(A -i-2j+5kB -i-j+3kC -i-j+5kD 3i-3j+3k8. 设⊿ ABC 的顶点为A(3,0,2), B(5,3,1), C (0, 1,3) ,求三角形的面积是:(A )3 6B 4 6 2D 3A2 3 C39.求平行于 z 轴,且过点M1(1,0,1)和M2(2, 1,1)的平面方程是:(D)A 2x+3y=5=0B x-y+1=0C x+y+1=0D x y 1 0 .10、若非零向量a,b满足关系式 a b a b ,则必有( C );A a b = a b ;B a b ;C a b = 0 ;D a b = 0 .11、设a, b为非零向量,且a b ,则必有( C )A a b a bB a b a bC a b a bD a b a b12、已知 a = 2, 1,2 ,b = 1, 3,2 ,则 Pr j b a = ( D );A 5 ;B 5;C 3;D5 .314、直线 x 1 y 1 z 1 与平面 2x y z4 0 的夹角为(B )1310 1A;B3 ;C4 ;D.6214、点 (1,1,1)在平面 x 2y z 10 的投影为 (A )(A ) 1 ,0,3; ( B )1,0,3; ( C ) 1, 1,0 ;(D ) 1 , 1, 1.2 222 2215、向量 a 与 b 的数量积 a b =( C ).A arj b a ;Barj a b ; C a rj a b ; Dbrj a b .16、非零向量 a, b 满足 a b 0 ,则有( C ).Aa ∥b ;Bab ( 为实数 ); Ca b ; Da b0 .17、设 a 与 b 为非零向量,则 a b0是( A ).Aa ∥b 的充要条件;B a ⊥ b 的充要条件 ;Ca b 的充要条件;D a ∥ b 的必要但不充分的条件.18、设 a 2i 3 j 4k , b 5i j k ,则向量 c2a b 在 y 轴上的分向量是( B ).A 7B 7 jC –1;D -9k19、方程组2x 2 y 2 4 z 2 9 x 1表示 (B) .A 椭球面;B x 1 平面上的椭圆;C 椭圆柱面;D 空间曲线在 x 1平面上的投影 .20、方程 x 2y 20 在空间直角坐标系下表示 ( C) .A 坐标原点 (0,0,0) ;B xoy 坐标面的原点 (0,0) ;C z 轴;D xoy 坐标面 .21、设空间直线的对称式方程为x y z则该直线必( A).1 2A 过原点且垂直于 x 轴;B 过原点且垂直于 y 轴;C 过原点且垂直于 z 轴;D 过原点且平行于 x 轴.22、设空间三直线的方程分别为: x 3 y 4 z; x 3tx 2 y z 1 0L1 L2 : y 1 3t ; L3 : ,则必有( D ) .2 53 z 2 7t 2x y z 0A L1∥L2;B L1∥L3;C L2 L3;D L1 L2.、直线x 3 y 4 z 与平面的关系为 ( A ).232 734 x 2 y 2z 3A 平行但直线不在平面上;B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知a 1, b 2 ,且 (a, b) , 则 a b = ( D ).4A 1;B 1 2 ;C 2;D 5 .25、下列等式中正确的是 ( C ).A i j k ;B i j k ;C i i j j ;D i i i i .26、曲面x2 y 2 z 在xoz 平面上的截线方程为(D).A x2 z ;B y2 z ;C x2 y2 0;D x2 z .x 0 z 0 y 0 二、计算题1.已知M12,2, 2 , M 2 1,3,0 ,求 M 1M 2 的模、方向余弦与方向角。

1_第五章_空间解析几何与向量代数习题与答案

1_第五章_空间解析几何与向量代数习题与答案

解法 2.
在平面上任取一点 M (x, y, z) ,则 MM1
M1M
2

n1

{6,2,3} 共面,由三
x 4 y 1 z 2 向量共面的充要条件得 6 2 3 0 ,整理得所求平面方程
7 4 3
5、思路:用平面束。设过直线 l1 的平面束方程为 x 2y z 1 (2x y z 2) 0
二、1、1) a b 31 (1) 2 (2) (1) 3
2
ij k a b 3 1 2 5i j 7k
1 2 1
(2) (2a) 3b 6(a b) 18 , a 2b 2(a b) 10i 2 j 14k
即为所求单位向量。 3、 2
三、1、 (x 1)2 (y 3)2 (z 2)2 14
2、以(1,-2,-1)为球心,半径为 6 的球面
四、1、 3x 7 y 5z 4 0
2、1 (x 1) 1 ( y 1) 3(z 1) 0
3、 y 5 0
5
21
5、求直线
x x

y y

3z 0 z0
与平面
x

y

z

1

0
的夹角.
6、求下列直线与直线、直线与平面的位置关系
1)直线
x
2y 2x
y
z
z
7
7
与直线
x 1 2

y3 1

z; 1
2)直线 x 2 y 2 z 3 和平面 x+y+z=3.

空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案

间解析几何与 向量代数1. 2. 3. 4. 5. 、选择题 已知 A(1,0,2), 设 a = (1,-1,3 (-1,1,5 ). 设 a = (1,-1,3 -i -2 j +5k B B(1,2,1)求两平面x 2y已知空间三点 是空间两点,向量AB 的模是 (A ),b= (2,-1,2 ),求 c=3a-2b 是(B )(-1,-1,5 ) . C (1,-1,5 ).D (-1,-1,6 ),b= (2, 1,-2 -i -j +3k C z 3 0和2x),求用标准基i , j , k 表示向量c=a-b 为(A-i -j +5k D -2i - j +5ky z 5 0的夹角是(C )M(1,1,1) 、A(2,2,1) 和 B (2, 1, 2),求/ AMB 1( C )6.求点M (2, 1,10)到直线L :1 z 21的距离是:(A )A 138B ,118 158 Dr r r r r2i 3j k,求 a b 是:(D )A -i -2j +5kB - i -j +3kC - i -j +5kC x+y+1=011、设a,b 为非零向量,a b ,则必有(C )A a b | |a | |baba8.设/ ABC 的顶点为 A(3,0,2), B(5,3,1), C(0, 1,3), 求三角形的面积是:(A ) 9.求平行于z 轴, 且过点 M 1(1,0,1)和 M 2(2, 1,1)的平面方程是:(D ) A 2x+3y=5=0x-y+1=010、若非零向量a,b 满足关系式,则必有 (C );12、已知 a= 2, 1,2 ,b = 1, 3,2,则 Prj b a =);A5;5■■ 14 •7.设 a i k,D 3i -3j+3ka b| |a | |b13、直线y 1 Z 1与平面2x y z 4 0的夹角为(B )1 0 1A-;B7C D634214点(1,1,1)在平面x 2y z 10的投影为(A )、(A) 丄,0,3;(B) 丄,0,3;(C) 1, 1,0 ; (D) 1 1 12 222 2 215向量a与b的数量积a b= ( C).、A a rj b a ;B a rj a b ;C a rj a b;D b rj a b .16、非零向量a,b满足a b0,则有(C ).A a // b;B a b (为实数);C a b;D a b 0.17、设a与b为非零向量,则a b 0是(A ).A a // b的充要条件;B a丄b的充要条件;C a b的充要条件;D a // b的必要但不充分的条件.18、设a 2i 3j 4k,b 5i j k,则向量c 2a b在y轴上的分向量是(B).A 7B 7 jC - 1;D -9 k2 2 .219、方程组2x y 4z 9表示(B ).x 1A 椭球面;B x 1平面上的椭圆;C 椭圆柱面;D 空间曲线在x 1平面上的投影.20、方程x 2 y 2 0在空间直角坐标系下表示 (C )A 坐标原点(0,0,0) ;B xoy 坐标面的原点(0,0) ;C z 轴;D xoy 坐标面.22、设空间三直线的方程分别为A L 1 // L 2 ;B L 1 // L 3 ;C L 2 L 3 ;D L 1 L 2 .23、 直线 J $ 4 Z 与平面4x 2y 2z 3的关系为(A ).273A 平行但直线不在平面上;B 直线在平面上;C 垂直相交;D 相交但不垂直.24、 已知 a 1,b.2,且(a,b )-,贝 U a b = ( D ).4A 1 ;B 1 2 ;C 2 ;D 5 .25、下列等式中正确的是(C )21、设空间直线的对称式方程为0 I 2则该直线必A 过原点且垂直于x 轴;B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.3tL i;x 2y z 100,则必有(Dy2 7t、计算题解:由题设知的投影及在y 轴上的分向量。

第八章空间解析几何与向量代数知识点,题库与答案

第八章空间解析几何与向量代数知识点,题库与答案

第⼋章空间解析⼏何与向量代数知识点,题库与答案第⼋章:空间解析⼏何与向量代数⼀、重点与难点1、重点①向量的基本概念、向量的线性运算、向量的模、⽅向⾓;②数量积(是个数)、向量积(是个向量);③⼏种常见的旋转曲⾯、柱⾯、⼆次曲⾯;④平⾯的⼏种⽅程的表⽰⽅法(点法式、⼀般式⽅程、三点式⽅程、截距式⽅程),两平⾯的夹⾓;⑤空间直线的⼏种表⽰⽅法(参数⽅程、对称式⽅程、⼀般⽅程、两点式⽅程),两直线的夹⾓、直线与平⾯的夹⾓;2、难点①向量积(⽅向)、混合积(计算);②掌握⼏种常见的旋转曲⾯、柱⾯的⽅程及⼆次曲⾯所对应的图形;③空间曲线在坐标⾯上的投影;④特殊位置的平⾯⽅程(过原点、平⾏于坐标轴、垂直于坐标轴等;)⑤平⾯⽅程的⼏种表⽰⽅式之间的转化;⑥直线⽅程的⼏种表⽰⽅式之间的转化;⼆、基本知识1、向量及其线性运算①向量的基本概念:向量:既有⼤⼩⼜有⽅向的量;向量表⽰⽅法:⽤⼀条有⽅向的线段(称为有向线段)来表⽰向量有向线段的长度表⽰向量的⼤⼩有向线段的⽅向表⽰向量的⽅向.;向量的符号:以A为起点、B为终点的有向线段所表⽰的向量记作向量可⽤粗体字母表⽰也可⽤上加箭头书写体字母表⽰例如a、r、v、F或、、、;向量的模:向量的⼤⼩叫做向量的模向量a、、的模分别记为|a|、、单位向量: 模等于1的向量叫做单位向量;向量的平⾏: 两个⾮零向量如果它们的⽅向相同或相反就称这两个向量平⾏向量a与b平⾏记作a // b零向量认为是与任何向量都平⾏;两向量平⾏⼜称两向量共线零向量:模等于0的向量叫做零向量记作0或零向量的起点与终点重合它的⽅向可以看作是任意的共⾯向量:设有k(k3)个向量当把它们的起点放在同⼀点时如果k个终点和公共起点在⼀个平⾯上就称这k个向量共⾯;两向量夹⾓:当把两个⾮零向量a与b的起点放到同⼀点时两个向量之间的不超过的夹⾓称为向量a与b的夹⾓记作或如果向量a与b中有⼀个是零向量规定它们的夹⾓可以在0与之间任意取值;②向量的线性运算向量的加法(三⾓形法则):设有两个向量a与b平移向量使b的起点与a的终点重合此时从a的起点到b的终点的向量c称为向量a与b的和记作a+b即ca+b .:平⾏四边形法则:向量a与b不平⾏时平移向量使a与b的起点重合以a、b为邻边作⼀平⾏四边形从公共起点到对⾓的向量等于向量a 与b的和ab向量的加法的运算规律: (1)交换律abba (2)结合律(ab)ca(bc)负向量: 设a为⼀向量与a的模相同⽽⽅向相反的向量叫做a的负向量记为a向量的减法:把向量a与b移到同⼀起点O则从a的终点A向b的终点B所引向量便是向量b与a的差ba向量与数的乘法:向量a与实数的乘积记作规定a是⼀个向量它的模|a||||a| 它的⽅向当>0时与a相同当<0时与a相反当0时 |a|0 即a为零向量这时它的⽅向可以是任意的运算规律: (1)结合律 (a)(a)()a; (2)分配律 ()aaa;(ab)ab向量的单位化: 设a0则向量是与a同⽅向的单位向量记为e a,于是a|a|e a 定理1 设向量a0那么向量b平⾏于a的充分必要条件是: 存在唯⼀的实数使b a③空间直⾓坐标系在空间中任意取定⼀点O和三个两两垂直的单位向量i、j、k就确定了三条都以O为原点的两两垂直的数轴依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴) 统称为坐标轴它们构成⼀个空间直⾓坐标系称为Oxyz坐标系注: (1)通常三个数轴应具有相同的长度单位;(2)通常把x轴和y轴配置在⽔平⾯上⽽z轴则是铅垂线;(3)数轴的的正向通常符合右⼿规则坐标⾯: 在空间直⾓坐标系中任意两个坐标轴可以确定⼀个平⾯这种平⾯称为坐标⾯x轴及y轴所确定的坐标⾯叫做xOy⾯另两个坐标⾯是yOz⾯和zOx⾯卦限:三个坐标⾯把空间分成⼋个部分每⼀部分叫做卦限含有三个正半轴的卦限叫做第⼀卦限它位于xOy⾯的上⽅在xOy⾯的上⽅按逆时针⽅向排列着第⼆卦限、第三卦限和第四卦限在xOy⾯的下⽅与第⼀卦限对应的是第五卦限按逆时针⽅向还排列着第六卦限、第七卦限和第⼋卦限⼋个卦限分别⽤字母I、II、III、IV、V、VI、VII、VIII表⽰向量的坐标分解式任给向量r对应有点M使以OM为对⾓线、三条坐标轴为棱作长⽅体有设则上式称为向量r的坐标分解式x i、y j、z k称为向量r沿三个坐标轴⽅向的分向量点M、向量r与三个有序x、y、z之间有⼀⼀对应的关系有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标记作r(x y z)向量称为点M关于原点O的向径④利⽤坐标作向量的线性运算设a(ax ay az) b(bx by bz)ab(axbx ayby azbz)ab(axbx ayby azbz)a(ax ay az)利⽤向量的坐标判断两个向量的平⾏:设a(ax ay az)0 b(bx by bz) 向量b//aba即b//a(bx by bz)(ax ay az) 于是⑤向量的模、⽅向⾓、投影设向量r(x y z) 作则向量的模长公式设有点A (x1 y1 z1)、B(x2 y2 z2)(x2 y2 z2)(x1 y1 z1)(x2x1 y2y1 z2z1)A、 B两点间的距离公式为:⽅向⾓:⾮零向量r与三条坐标轴的夹⾓、、称为向量r的⽅向⾓设r(x y z) 则x|r|cos y|r|cos z|r|coscos、cos、cos 称为向量r的⽅向余弦从⽽ cos2cos2cos21投影的性质性质1 (a)u|a|cos (即Prj u a|a|cos ) 其中为向量与u轴的夹⾓性质2 (ab)u(a)u(b)u (即Prj u(ab) Prj u a Prj u b)性质3 (a)u(a)u (即Prj u(a)Prj u a)2、数量积、向量积、混合积①两向量的数量积数量积对于两个向量a和b它们的模|a|、|b|及它们的夹⾓的余弦的乘积称为向量a和b的数量积记作ab即a·b|a| |b| cos数量积的性质(1)a·a|a| 2(2) 对于两个⾮零向量a、b如果a·b0则ab;反之如果ab则a·b0如果认为零向量与任何向量都垂直则ab a·b0两向量夹⾓的余弦的坐标表⽰设(a ^ b) 则当a0、b0时有数量积的坐标表⽰设a(ax ay az )b(bx by bz ) 则a·b axbxaybyazbz数量积的运算律(1)交换律a·b b·a;(2)分配律(ab)cacbc(3)(a)·b a·(b) (a·b)(a)·(b) (a·b)、为数②两向量的向量积向量积设向量c是由两个向量a与b按下列⽅式定出c的模|c||a||b|sin 其中为a与b间的夹⾓;c的⽅向垂直于a与b所决定的平⾯c的指向按右⼿规则从a转向b 来确定那么向量c叫做向量a与b的向量积记作ab即c ab向量积的性质(1) aa0 ;(2) 对于两个⾮零向量a、b如果ab0则a//b;反之如果a//b则ab0如果认为零向量与任何向量都平⾏则a//b ab0数量积的运算律(1) 交换律ab ba;(2) 分配律(ab)c ac bc(3) (a)b a(b)(ab) (为数)数量积的坐标表⽰设a(ax ay az) b(bx by bz)ab( ay bz az by) i ( az bx ax bz) j ( ax by ay bx) k为了邦助记忆利⽤三阶⾏列式符号上式可写成aybz i+azbx j+axby k aybx k axbz j azby i( ay bz az by) i ( az bx ax bz) j ( ax by ay bx) k③三向量的混合积混合积:先作两向量a和b的向量积,把所得到的向量与第三个向量c再作数量积,这样得到的数量叫做三个向量a、b、c的混合积,记作[abc][abc]= =混合积的⼏何意义:混合积[abc]是这样⼀个数,它的绝对值表⽰以向量a、b、c 为棱的平⾏六⾯体的体积,如果向量a、b、c组成右⼿系,那么混合积的符号是正的,如果a、b、c组成左⼿系,那么混合积的符号是负的。

试题集:向量代数与空间解析几何

试题集:向量代数与空间解析几何

1.在三维空间中,向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的点积是多少?o A. 32o B. 24o C. 35o D. 30参考答案: A解析: 向量a⃗与向量b⃗⃗的点积计算为1∗4+2∗5+3∗6=32。

2.向量v⃗=(3,4)的模长是多少?o A. 5o B. 7o C. 12o D. 25参考答案: A解析: 向量v⃗的模长计算为√32+42=5。

3.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的叉积结果是什么?o A. (3,−6,3)o B. (−3,6,−3)o C. (3,−6,−3)o D. (−3,6,3)参考答案: B解析: 向量a⃗与向量b⃗⃗的叉积计算为(2∗6−3∗5,3∗4−1∗6,1∗5−2∗4)=(−3,6,−3)。

4.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积的模长是多少?o A. 7o B. 14o C. 21o D. 42参考答案: A解析: 向量a⃗与向量b⃗⃗的叉积模长计算为√(−3)2+62+(−3)2=7。

5.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的夹角余弦值是多少?o A. 0.9746o B. 0.9971o C. 0.9899o D. 0.9659参考答案: A解析: 向量a⃗与向量b⃗⃗的夹角余弦值计算为a⃗⃗⋅b⃗⃗|a⃗⃗||b⃗⃗|=√14√77≈0.9746。

6.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否共线?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的分量不成比例,因此它们不共线。

7.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)是否正交?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: B解析: 向量a⃗与向量b⃗⃗的点积不为0,因此它们不正交。

8.向量a⃗=(1,2,3)与向量b⃗⃗=(4,5,6)的向量积是否垂直于这两个向量?o A. 是o B. 不是o C. 无法确定o D. 以上都不对参考答案: A解析: 向量积的结果向量总是垂直于构成叉积的两个向量。

(完整版)空间解析几何与向量代数习题与答案.doc

(完整版)空间解析几何与向量代数习题与答案.doc

第七章空间解析几何与向量代数A一、1、平行于向量 a (6,7, 6) 的单位向量为______________.2、设已知两点M 1 (4, 2 ,1)和M 2(3,0,2) ,计算向量M1M2 的模,方向余弦和方向角.3、设m 3i 5j 8k ,n 2i 4j 7k , p 5i j 4k ,求向量 a 4m 3n p 在x 轴上的投影,及在y 轴上的分向量.二、1、设a3i j 2k ,b i 2j k ,求(1) a b及 a b;(2)( 2a) 3b及 a 2b (3) a、b的.夹角的余弦(3,1,3) ,求与 M1M 2,M 2 M 3 同时垂直的单位向量.2、知M 1(1, 1,2), M 2 (3,3,1), M3.3、设a (3,5, 2), b ( 2,1,4) ,问与满足 _________时, a b z轴三、1、以点(1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.2、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.3、1) 将xOy 坐标面上的y2 2x 绕x 轴旋转一周,生成的曲面方程为_______________ ,曲面名称为___________________.2) 将xOy 坐标面上的x2 y 2 2x 绕x 轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3) 将xOy 坐标面上的4x2 9 y 2 36 绕x 轴及y 轴旋转一周,生成的曲面方程为 _____________,曲面名称为_____________________.4)在平面解析几何中y x2 表示 ____________ 图形。

在空间解析几何中y x 2表示______________图形.5)画出下列方程所表示的曲面(1) z2 4( x2 y 2 )(2) z 4( x2 y 2 )四、x 2 y 21在平面解析几何中表示1、指出方程组4 9 ____________图形,在空间解y 3析几何中表示 ______________图形 .2、求球面 x 2y 2z 29 与平面x 的交线在 xOy 面上的投影方程 .z 13、求上半球 0za 2x 2 y 2 与圆柱体 x 2 y 2 ax (a 0) 的公共部分在xOy 面及 xOz 面上的投影 . 五、1、求过点 (3,0,-1) 且与平面 3x-7y+5z-12=0 平行的平面方程 .2、求过点 (1,1,-1),且平行于向量 a=(2,1,1)和 b=(1,-1,0) 的平面方程 .3、求平行于 xOz 面且过点 (2,-5,3) 的平面方程 .4、求平行于 x 轴且过两点 (4,0,-2) 和(5,1,7) 的平面方程 .六、1、求过点 (1,2,3)且平行于直线xy 3 z 1的直线方程 .21 52、求过点 (0,2,4)且与两平面 x2z 1 , y 3z 2 平行的直线方程 .3、求过点 (2,0,-3) 且与直线4、求过点 (3,1,-2)且通过直线x2 y 4z 7 03x 5 y 2z 1 垂直的平面方程 .x 4 y 3 z的平面方程 .521x y 3z 0 y z 1 0 的夹角 .5、求直线y z与平面 xx 06、求下列直线与直线、直线与平面的位置关系1) 直线2) 直线x 2y y z 7 与直线 x 1y 3 z ;2x z 7 2 1 1x2 y 2 z 3和平面 x+y+z=3.3 14 7、求点 (3,-1,2)x y z 1 0 的距离 .到直线2x y z 4B1、已知 a b c 0 ( a, b, c 为非零矢量),试证 : a b b c c a .2、 a b3, a b {1,1,1}, 求 (a, b) .3、已知和为两非零向量,问取何值时,向量模| a tb |最小?并证明此时 b (a tb) .4、求单位向量,使n a 且 n x 轴,其中 a (3,6,8) .5、求过轴,且与平面 2xy5z 0 的夹角为的平面方程 .36、求过点 M 1 (4,1,2) , M 2 (3,5, 1) ,且垂直于 6x 2y 3z 7 0的平面 .7、求过直线x 2y z 1 0x y z平行的平面 .2x y z 2 ,且与直线:1 128、求在平面 : xy z 1上,且与直线 y 1L :垂直相交的直线方程 .z19、设质量为 100kg 的物体从空间点 M 1 (3,1,8) ,移动到点 M 2 (1,4,2) ,计算重力所做的功(长度单位为) .10、求曲线y 2 z 2 2x在 xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲z 3 线?11、已知 OA i 3k , OB j 3k ,求 OAB 的面积12、 . 求直线2x 4 y z 0y z 1上的投影直线方程 .3x y 2z 9在平面 4xC1、设向量 a, b, c 有相同起点 , 且 a bc 0 ,其中0 , , ,不全为零 ,证明 : a, b,c 终点共线 .2、求过点 M 0 (1,2, 1) ,且与直线:x2 y 12相交成 角的直线方程 .2 1 1 33、过 ( 1,0,4) 且平行于平面 3x 4 yz 10 0 又与直线x 1y 3z相交的直线方112程 .4、求两直线:x1 y z与直线:xyz 2的最短距离 .0 1163 05、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量 g {1,1,1} ,求此柱面方程 .6、设向量 a,b 非零, b2, (a,b),求 lima xbax.3xx 2 y 7、求直线 L :z1( y 1) 绕 y 轴旋转一周所围成曲面方程 .2第七章 空间解析几何与向量代数习题答案A一、 1、6,7,611 11 112、M 1M 2=2, cos1, cos2,cos1 ,2 ,3 ,3222343、在 x 轴上的投影为 13,在 y 轴上的分量为 7j 二、 1、 1) a b 3 1 ( 1) 2 ( 2) ( 1) 3ij k a b 3125ij 7k1 21( 2) ( 2a) 3b6(a b) 18 , a 2b2( ab) 10i2 j 14k^ a b 3( 3) cos(a, b)a b2 212、 M 1M 2{ 2,4, 1}, M 2M 3{ 0, 2,2}i j ka M 1M 2M 2M 3 2 41 6i 4 j 4k0 2 2a 6, 4, 4a{17 17 }2 2 2 17即为所求单位向量。

考研数学一-向量代数和空间解析几何_真题(含答案与解析)-交互

考研数学一-向量代数和空间解析几何_真题(含答案与解析)-交互

考研数学一-向量代数和空间解析几何(总分110, 做题时间90分钟)二、选择题1.设a,b为非零向量,且a⊥b,则必有SSS_SINGLE_SELA (A) |a+b|=|a|+|b|.B (B) |a-b|=|a|-|b|.C (C) |a+b|=|a-b|.D (D) a+b=a-b.该题您未回答:х该问题分值: 2答案:C[分析] 由“非零向量a,b满足|a+b|=|a|+|b|的充要条件是a与b方向相同”可知,(A)不对.由“非零向量a,b满足|a-b|=|a|-|b|的充要条件是a与b方向相反”可知,(B)也不对.对于(C):非零向量a、b垂直时,以a,b为两邻的平行四边形是矩形,而矩阵的对角线长度相等,故必有|a+b|="a-b|,即(C)正确.至于(D),显然不对.综上分析,应选(C).2.直线与平面6x+15y-10z+31=0的夹角ψ为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 直线方向向量为故选(A).3.下列曲面中,不是旋转曲面的是SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:C[分析] (A)是绕x轴旋转而成;(B)是绕y旋转而成;(D)是绕z轴旋转而成.(A),(B),(D)都应排除,故应选(C).4.下列直线对,不共面的是SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 对于(A):两条直线分别过点M1(-1,0,0)与M2(1,0,2),方向向量分别为对三个向量,由于所以(A)中二直线不共面,故应选(A).5.若单位向量a,b,c满足a+b+c=0,则a·b+b·c+c·a=SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 由,从而.故选(A).6.已知平面∏:x+2y-z+1=0,曲面z=xy上点P处的法线与平面∏垂直,则点P的坐标为SSS_SINGLE_SELA (A) (1,2,2).B (B) (2,1,2).C (C) (-1,-2,2).D (D) (-2,-1,2).该题您未回答:х该问题分值: 2答案:B[分析] z=xy的法向量n={y,x,-1},法线与平面H垂直,从而与平面∏的法向量{1,2,-1}平行,故有,即点P的坐标为(2,1,2).故应选(B).7.设曲面z2-xy=8(z>0)上某点的切平面平行于已知平面x-y+2z-1=0,则该点的坐标为SSS_SINGLE_SELA (A) (-2,2,2).B (B) (1,-4,2).C (C) (2,-2,2).D (D) (4,-1,2).该题您未回答:х该问题分值: 2答案:C[分析] 记F(x,y,z)=z2-xy-8,曲面在任意点的法向量n={F'x ,F'y,F'z}:{-y,-x,2x}.已知平面的法向量n1={1,-1,2},令n∥n1,即,得x=z=t,y=-t,代入曲面方程F=0,得,因为z=t>0,舍去负值,得切点坐标为(2,-2,2),故应选(C).8.设曲线在点(1,3,4)处的法平面为∏,则原点到∏的距离为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:B[分析一] 因在点(1,3,4)处解得dx=4dz,,即,故曲线在点(1,3,4)法平面的法向量,法平面∏的方程为12(x-1)-4(y-3)+3(z-4)=0,即12x-4y+3z-12=0,于是原点到∏的距离故应选(B).[分析二] 曲线在点(1,3,4)处法平面的法向量下同[分析一].9.设非零向量a与b不平行,c=(a×b)×a,则SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:B[分析] 如下图所示.因,故应选(B).评注若a⊥b,则(a×b)×a=λb,=0.10.过点M(1,-1,1)与平面x=y+2z=1平行且与相交的的直线方程为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析一]于是[分析二] 过B的直线方程为L:过A与L垂直的平面方程为∏:6(x-3)+6(y-4)+7(z-2)=0,即6x+6y+7z-56=0。

第七章_空间解析几何与向量代数复习题(答案)教学提纲

第七章_空间解析几何与向量代数复习题(答案)教学提纲

第八章 空间解析几何与向量代数答案一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A5 B 3 C6 D 92. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )A (-1,1,5).B (-1,-1,5).C (1,-1,5).D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C )A2π B 4π C 3πD π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A2π B 4π C 3πD π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A )A 138B 118C 158D 17. 设,23,a i k b i j k =-=++r r r r r r r 求a b ⨯rr 是:( D )A -i -2j +5kB -i -j +3kC -i -j +5kD 3i -3j +3k8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A2 B 364 C 32D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )A 2x+3y=5=0B x-y+1=0C x+y+1=0D 01=-+y x .10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );A -+a b =a b ;B =a b ;C 0⋅a b =;D ⨯a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C )A a b a b +=+B a b a b -=-C +=-a b a bD +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A53; B 5; C 3; D . 13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A6π; B 3π; C 4π; D 2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭.15、向量a 与b 的数量积⋅a b =( C ).A a rj P b a ;B ⋅a rj P a b ;C a rj P a b ;D b rj P a b . 16、非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b . 17、设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件. 18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ). A 7 B 7j C –1; D -9k19、方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ).A 椭球面;B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影. 20、方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面. 21、设空间直线的对称式方程为 012xy z==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴; C 过原点且垂直于z 轴; D 过原点且平行于x 轴.22、设空间三直线的方程分别为123321034:;:13;:2025327x tx y z x y z L L y t L x y z z t=⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩,则必有( D ).A 1L ∥2L ;B 1L ∥3L ;C 32L L ⊥;D 21L L ⊥.23、直线34273x y z++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知1,==a b 且(,)4∧π=a b , 则 +a b = ( D ). A 1; B1+ C 2; D.25、下列等式中正确的是( C ).A +=i j k ;B ⋅=i j k ;C ⋅=⋅i i j j ;D ⨯=⋅i i i i . 26、曲面22x y z -=在xoz 平面上的截线方程为 (D).A 2x z =; B 20y zx ⎧=-⎪⎨=⎪⎩; C2200x y z ⎧-=⎪⎨=⎪⎩; D 20x zy ⎧=⎪⎨=⎪⎩. 二、计算题1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 空间解析几何与向量代数答案一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 92. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )A (-1,1,5).B (-1,-1,5).C (1,-1,5).D (-1,-1,6).3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A )A -i -2j +5kB -i -j +3kC -i -j +5kD -2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 17. 设,23,a i k b i j k =-=++r r r r r r r 求a b ⨯r r 是:( D )A -i -2j +5kB -i -j +3kC -i -j +5kD 3i -3j +3k8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A 2B 364C 32 D3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )A 2x+3y=5=0B x-y+1=0C x+y+1=0D 01=-+y x .10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );A -+a b =a b ;B =a b ;C 0⋅a b =;D ⨯a b =0.11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 53; B 5; C 3;13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A 6π; B 3π; C 4π; D 2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、向量a 与b 的数量积⋅a b =( C ). A a rj P b a ; B ⋅a rj P a b ; C a rj P a b ; D b rj P a b .16、非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .17、设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k19、方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ).A 椭球面;B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影.20、方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.21、设空间直线的对称式方程为 012xy z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.22、设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩,则必有( D ). A 1L ∥2L ; B 1L ∥3L ; C 32L L ⊥; D 21L L ⊥.23、直线34273x y z ++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知1,==a b 且(,)4∧π=a b , 则 +a b = ( D ). A 1;B 1+C 2;.25、下列等式中正确的是( C ).A +=i j k ;B ⋅=i j k ;C ⋅=⋅i i j j ;D ⨯=⋅i i i i .26、曲面22x y z -=在xoz 平面上的截线方程为 (D).A 2x z =; B 20y z x ⎧=-⎪⎨=⎪⎩; C 2200x y z ⎧-=⎪⎨=⎪⎩; D 20x z y ⎧=⎪⎨=⎪⎩. 二、计算题1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。

解:由题设知((1212,32,01,1,,M M =--=-u u u u u u r 则 21cos -=α,21cos =β,22cos -=γ, 于是,32πα=,3πβ=,43πγ=。

2.设853++=,742--=和45-+=,求向量-+=34在x 轴上的投影及在y 轴上的分向量。

解:()()()k j i k j i k j i a 4574238534-+---+++=k j i 15713++= 故在x 轴上的投影为13,在y 轴上的分向量为j 7。

3.在xoz 坐标面上求一与已知向量()2,3,4a =-r 垂直的向量。

解:设所求向量为()00,0,b x z =r ,由题意,取10=z ,得20=x ,故()2,0,1b =r 与垂直。

当然任一不为零的数λ与的乘积λ也垂直a 。

4.求以()3,2,1A ,()5,4,3B ,()7,2,1--C 为顶点的三角形的面积S 。

解:由向量积的定义,可知三角形的面积为S ⨯=21,因为()2,2,2AB =u u u r ,()2,4,4AC =--u u u r ,所以()22216,12,4244i j k AB AC ⨯==----r r r u u u r u u u r , 于是, ()().69242162144222221222=-+-+=--=S 5.求与向量()2,0,1a =r ,()1,1,2b =-r 都垂直的单位向量。

解:由向量积的定义可各,若c b a =⨯,则c 同时垂直于a 和b ,且23211102--=-=⨯=, 因此,与⨯=平行的单位向量有两个: ()()()k j i b a c c 2314123123||||222--=-+-+--=⨯==ο和 6.求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。

解:由1=+z x ,得x z -=1,代入9222=++z y x ,消去z 得()91222=-++x y x ,即82222=+-y x x ,这就是通过球面9222=++z y x 与平面1=+z x 的交线,并且母线平行于z 轴的柱面方程,将它与0=z 联系,得:⎩⎨⎧==+-082222z y x x ,即为所求的投影方程。

7、求过()1,1,1-A ,()2,,2,2--B 和()2,1,1-C 三点的平面方程。

解一:点法式:{}3,3,3--=,{}3,2,0-=,取 {}2,3,13320333---=---=⨯=jj i AC AB n , 于是所求方程:023=--z y x 。

解法二:用一般式,设所求平面方程为将已知三点的坐标分别代入方程得解得⎪⎩⎪⎨⎧=-=-=023D A C A B ,得平面方程:023=--z y x 。

8.求平面0522=++-z y x 与xoy 面的夹角余弦。

解:()2,2,1n =-r 为此平面的法向量,设此平面与xoy 的夹角为γ,则9.分别按下列条件求平面方程(1)平行于xoz 面且经过点()3,5,2-;(2)通过z 轴和点()2,1,3-;(3)平行于x 轴且经过两点()2,0,4-和()7,1,5。

解:(1)因为所求平面平行于xoz 面,故()0,1,0j =r 为其法向量,由点法式可得:()()()0305120=-⋅++⋅+-⋅z y x ,即所求平面的方程:05=+y 。

(2)因所求平面通过z 轴,其方程可设为(*)0=+By Ax ,已知点()2,1,3--在此平面上,因而有03=+-B A ,即A B 3=,代入(*)式得:03=+Ay Ax ,即所求平面的方程为:03=+y x 。

(3)从共面式入手,设()z y x P ,,为所求平面上的任一点,点()2,0,4-和()7,1,5分别用A ,B 表示,则,,共面,从而[]000191124,,=+-=z yx ,于是可得所求平面方程为:029=--z y 。

10.用对称式方程及参数式方程表示直线l :⎩⎨⎧=++=+-421z y x z y x 。

解:因为直线l 的方向向量可设为()121112,1,3211i j k s n n =⨯=-=-r r r r u r u u r ,在直线上巧取一点()2,0,3-A (令0=y ,解直线l 的方程组即可得3=x ,2-=z ),则直线的对称式方程为32123+==--z y x ,参数方程为:t x 23-=,t y =,t z 32+-=。

11.求过点()4,2,0且与两平面12=+z x 和23=-z y 平行的直线方程。

解:因为两平面的法向量()11,0,2n =u r 与()20,1,3n =-u u r 不平行,所以两平面相交于一直线,此直线的方向向量()121022,3,1013i j k s n n =⨯==--r r r r u r u u r ,故所求直线方程为14322-=-=-z y x 。

12.确定直线 37423z y x =-+=-+和平面3224=--z y x 间的位置关系。

解:直线的方向向量()2,7,3,s =--r平面的法向量()4,2,2,n =--r 从而⊥,由此可知直线平等于平面或直线在平面上。

相关文档
最新文档