多元函数微分学复习(精简版)
多元函数微分学知识点梳理
多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
《高等数学》第八章复习要点
第八章 多元函数微分法及其应用 复习要点多元函数的微积分的概念、理论、方法是一元微积分中相应概念、理论、方法的推广和发展,它们既有相似之处(概念及处理问题的思想方法)又有许多本质的不同,要善于进行比较,既要认识到它们的共同点和相互联系,更要注意它们的区别,深刻理解,融会贯通。
1. 会求多元函数的偏导数对二元函数),(y x f z =, x y x f y x x f x z f x ∆-∆+=∂∂='→∆),(),(lim 01,yy x f y y x f y z f y ∆-∆+=∂∂='→∆),(),(lim 02 因此求x z ∂∂时,暂时将y 看作常数,对x 求导; 求y z ∂∂时,暂时将x 看作常数,对y 求导.同理,会求三元函数的偏导数。
2. 会求多元函数的高阶偏导数对二元函数),(y x f z =,有)(2211x z x x z f ∂∂∂∂=∂∂='', )(212xz y y x z f ∂∂∂∂=∂∂∂='', )(221y z x x y z f ∂∂∂∂=∂∂∂='', )(2222y z y yz f ∂∂∂∂=∂∂=''. 定理:xy z y x z x y z y x z ∂∂∂∂∂∂⇔∂∂∂=∂∂∂2222, 连续 3. 会求多元函数的全微分对二元函数),(y x f z =,dy yz dx x z dz ∂∂+∂∂= 对三元函数),,(z y x f u =,dz z u dy y u dx x u du ∂∂+∂∂+∂∂=4. 掌握多元复合函数的求导法则设)],(),,([),(),,(),,(y x v y x u f z y x v v y x u u v u f z =⇒===则 xv f x u f x v v z x u u z x z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21yv f y u f y v v z y u u z y z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21 重点:会求复合函数的二阶偏导数。
高考数学冲刺复习多元函数微分学考点速查
高考数学冲刺复习多元函数微分学考点速查高考数学中的多元函数微分学是一个重要且具有一定难度的考点。
在冲刺复习阶段,对这部分内容进行系统的梳理和速查,有助于同学们查缺补漏,提高应考能力。
一、多元函数的概念多元函数是指有两个或两个以上自变量的函数。
比如,$z = f(x,y)$就是一个二元函数。
理解多元函数的定义,要明确自变量的取值范围,即定义域。
定义域的确定通常需要考虑实际问题的背景或者函数表达式的限制条件。
二、偏导数偏导数是多元函数微分学中的重要概念。
对于二元函数$z = f(x,y)$,关于$x$的偏导数记为$\frac{\partial z}{\partial x}$,关于$y$的偏导数记为$\frac{\partial z}{\partial y}$。
计算偏导数时,将其他自变量视为常数,只对一个自变量求导。
例如,若$f(x,y) = x^2 + 3xy + y^2$,则$\frac{\partial f}{\partial x} = 2x + 3y$,$\frac{\partial f}{\partial y} = 3x + 2y$。
偏导数的几何意义也值得关注。
对于二元函数,偏导数表示函数在某一方向上的变化率。
三、全微分全微分是多元函数微分学中的另一个关键概念。
对于二元函数$z =f(x,y)$,如果函数的全增量$\Delta z$可以表示为$\Delta z =A\Delta x + B\Delta y + o(\sqrt{(\Delta x)^2 +(\Delta y)^2})$,其中$A$,$B$与$\Delta x$,$\Delta y$无关,那么称函数$z= f(x,y)$在点$(x,y)$可微,$A\Delta x + B\Delta y$称为函数在点$(x,y)$的全微分,记为$dz = A\Delta x + B\Delta y$。
全微分的计算通常基于偏导数,若函数$z = f(x,y)$的偏导数$\frac{\partial z}{\partial x}$和$\frac{\partial z}{\partial y}$在点$(x,y)$连续,则函数在该点可微,且$dz =\frac{\partial z}{\partial x}\Delta x +\frac{\partial z}{\partial y}\Delta y$。
多元函数微分学篇复习_12_
多元函数微分学篇总复习内容复习 一、定义多元函数的一些基本概念(邻域,连通集,n 维空间,二重极限,连续等);偏导数;全微分; 二、重要定理1、 二元函数中,可导、连续、可微三者的关系偏导数连续⇒可微⎧⎨⎩偏导数存在⇒连续函数2、(二元函数)极值的必要、充分条件3、全增量公式、多元函数连续性的一些定理(了解) 三、基本计算(一) 偏导数的计算1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=),(0x x y x f dxd=(2)先求后代法 ),(00y x f x '=00),(y y x x x y x f =='(3)定义法 ),(00y x f x '=xy x f y x x f x ∆-∆+→∆),(),(lim00000(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ')(1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y∂∂∂∂ ,,,,,y x z z F F z z x F y F x y z x y z '⎧'⎫∂∂=-=-⎪⎪''∂∂⎬⎪⎨⎪⎭⎪⎪⎩公式法:求导时,地位平等全微分法:一阶全微分形式不变性直接法:地位不平等 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。
3、高阶导数的计算注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理),(y x f z =, dy yzdx x z dz ∂∂+∂∂=——dy dx ,勿丢 2、一阶全微分形式不变性 dy yzdx x z dz ∂∂+∂∂=对y x ,是自变量或是中间变量均成立。
高数下多元微分学复习
。
解:
z x
2xy
1 y2
,
2z xy
2x2
2 y3
。
7.已知 z ln ex ey ,求 z 和 2 z 。 x xy
解:
z x
ex ex ey
,
2z xy
exey ex ey
。
2
8.设 z exy yx2 ,则 zx 1,2 [ C ]。
(A) e 4 ; (B) e2 4 ;(C) 2e2 4 ;(D) 2e 4 。
9.已知
f
x,
y
cos x cos x
y y
,求
fy
,
4
。
解:
f
,
y
cos y cos y
1,故
fy
,
4
0。
10.已知 f x, y, z ex2 y2 z2 ,求 fyy 5,1, 0 。 解: f 5, y,0 e25y2 , f y 5, y,0 2 ye25 y2 ,
f yy 5, y, 0 2 4 y2 e25y2 , fyy 5,1,0 6e26 。
11.试证函数 z y arcsin x 满足 x z y z 0 。
x
y
x y
解:
z x
y x2
arcsin
x y
y x
1 1
1 x y2 y
y x2
arcsin
x y
x
y; y2 x2
2 x2 y2 z2
x2 y2 z2
15.若 z f x, y 在点 x0, y0 处有连续一阶偏导数,
则 f x, y 在 x0, y0 处 [ B ]。
(A)不一定可微;
多元函数微分知识点总结
多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。
梯度是一个向量,表示函数在某一点的变化率最快的方向。
对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。
梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。
因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。
在实际应用中,梯度可以帮助我们求解多元函数的最值问题。
通过求解梯度为0的点,可以找到函数的极值点。
梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。
二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。
链式法则是用来计算复合函数的导数的方法。
对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。
在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。
三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。
对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。
偏导数表示了函数在某一点的变化率。
通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。
四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。
泰勒展开可以将一个函数在某一点处展开为一个无穷级数。
对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。
通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。
多元函数微积分复习概要
第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
第一轮复习之多元函数微分学
( x0 , y0 )
∂f ( x0 , y0 ) f ( x0 + ∆x, y0 ) − f ( x0 , y0 ) = lim 0 ∆ x → ∂x ∆x
与一元函数连续性的概念相似:
f ( x) = f ( x0 ) xlim →x
0
f ( x) lim f ( x) f ( x0 ) = = xlim →x + x→ x −
(二) 多元函数取得极值的充分条件和必要条件 必要条件:
在点 ( x0 , y0 ) 具有二 阶偏导数
在点 ( x0 , y0 ) 具有偏导数
f x′( x0 , y0 ) = 0 f y′( x0 , y0 ) = 0
f ( x, y ) 在 M 0 ( x0 , y0 ) 取得极值
充分条件:
极限与无穷小的关系
( x , y ) → ( x0 , y0 )
lim
f ( x, y ) = A
f ( x, y )= A + ∂ ( x, y )
其中:
x , y → x0 , y0
lim ∂ ( x, y ) = 0
2、 二元函数与一元函数有相同的极限运算法则与极限性质 求二元函数极限常用的方法:
f ( x, y ) 在 M 0 ( x0 , y0 ) 有极大值,点 M 0 ( x0 , y0 ) 称为 f ( x, y ) 的极值点。
极大值和极小值统称为极值。
驻点:
(x, y) 称为 f ( x, y ) 能够使 f x′( x, y ) = 0 和 f y′( x, y ) = 0 同时成立的点 的驻点。
二. 二元函数的极限 1、 二元函数极限的定义:
设函数 f ( x, y ) 在开区域内或闭区域 D 内有定义, M 0 ( x0 , y0 ) 是 D 的内点, 或者边界点。
第7章多元函数的微分学总复习剖析
x2 y2
x2 y2
总复习(第7章) 四、抽象复合函数的一阶偏导数
——填空、选择
2、设z f( x2 y2,e xy ),其中f 为可微函数,求zx ,zy .
解 设u x2 y2 ,v e xy , 则z f(u,v),
zx zu ux zv vx fu(u,v) 2x fv(u,v) ye xy
1. u xe y z2
解 du u dx u dy u dz
x
y
z
e y z2dx xe y z2dy 2 xze ydz.
2. z ln( x2 y2)
解 dz z dx z dy
x
y
( x2
y
2
) x
dx
( x2
y
2
) y
dy
x2 y2
x2 y2
2x
2 y
dx
dy
1. x 2 y z 2xyz 0.
解 令F( x, y,z) x 2 y z 2xyz
Fx 1 2 yz, Fy 2 2xz, Fz 1 2xy
z Fx
x
Fz
1 2yz 1 2xy
z Fy
y
Fz
2 2xz 1 2xy
总复习(第7章)
2. x2 z2 ln z ln y
2 xf ( x2 y2 ,e xy ) ye xy f ( x2 y2 ,e xy )
zy zu uy zv v y fu(u,v) (2 y) fv(u,v) xexy 2 yf ( x2 y2 ,e xy ) xe xy f ( x2 y2 ,e xy )
总复习(第7章)
144 p1 4 p2
总复习(第7章)
(完整版)多元函数微分学复习(精简版)
高等数学下册复习提纲第八章 多元函数微分学本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值-——拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆)1. 多元复合函数高阶导数例 设),,cos ,(sin yx e y x f z +=其中f 具有二阶连续偏导数,求xy zx z ∂∂∂∂∂2及。
解y x e f x f xz+⋅'+⋅'=∂∂31cos , y x y x y x y x e e f y f f e x e f y f y x zx y z ++++⋅''+-⋅''+'+⋅''+-⋅''=∂∂∂=∂∂∂])sin ([cos ])sin ([33323131222析 1)明确函数的结构(树形图)这里yx e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构图,可以知道:对x的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”.2)31,f f ''是),cos ,(sin ),,cos ,(sin 31yx y x e y x f e y x f ++''的简写形式,它们与z 的结构相同,仍然是y x e y x +,cos ,sin 的函数。
所以1f '对y 求导数为zu vwxx y yy x e f y f yf +⋅''+-⋅''=∂'∂13121)sin (。
(整理)第六章多元函数微积分复习概要
第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 内有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f xy =当P(x ,y )趋于000(,)P x y 时的极限.记作0l i m (,)x x y y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0l i m ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 内有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dzx y z ∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz u x du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
多元函数微分学知识点梳理2页
多元函数微分学知识点梳理2页一、偏导数定义:对于多元函数$f(x_1,x_2,\cdots,x_n)$,当其自变量$x_i$在某一点固定而其他自变量发生变化时,函数值的变化量与$x_i$的变化量之比,称为$f$对$x_i$的偏导数,记为$\dfrac{\partial f}{\partial x_i}$。
计算方法:将$x_i$看作变量,其他自变量视为常数,对$f(x_1,x_2,\cdots,x_n)$以$x_i$为自变量求导。
二、全微分定义:当$f(x,y)$在$(x_0,y_0)$的某一邻域内具有一阶连续偏导数时,存在常数$A,B$,使得$$\Delta z=A\Delta x+B\Delta y+\alpha\Delta x+\beta\Delta y$$其中$\lim\limits_{\Delta x\rightarrow 0,\Delta y\rightarrow0}\alpha=\lim\limits_{\Delta x\rightarrow 0,\Delta y\rightarrow 0}\beta=0$,则称$f(x,y)$在点$(x_0,y_0)$可微分,$\Delta z$称为$f(x,y)$在点$(x_0,y_0)$的全增量,$A\Delta x+B\Delta y$称为$\Delta z$的一次主部,记作$dz$,称为$f(x,y)$在点$(x_0,y_0)$的全微分。
计算方法:$$df=\dfrac{\partial f}{\partial x}dx+\dfrac{\partial f}{\partial y}dy$$三、隐函数及其求导法定义:设有方程$F(x,y)=0$,如果在点$(x_0,y_0)$的某一邻域内,恒有一函数$y=\varphi(x)$,使得$F(x,\varphi(x))=0$,则称方程$F(x,y)=0$在该邻域内以$x$为自变量,$y$为因变量确定着一函数$\varphi(x)$。
多元微分学复习题答案.doc
―z =击5?的定义域是({(x, y)| / < 4x,0 < X2 + / <1}).函数g =润+),. 2]OXA 5.函数z = -x/y2在点(2 , 1 )处对x的偏导数为(;OX_ 17 (2J))广=-1(2,1))•成).(1,2)4dz = 48c/x+i08dy(A)]血,(*。
+&',。
+匀)-/(*。
'“。
)A O (B)Hm/(*。
+&40+颂)一/(*。
"。
)Ax(C)/(—+&,,.)-六*.,))Ax (D)hm/(毛)'月 + 颂)一,(%丸)Ax多元微分学复习题答案一、填空题7 = In X——的定义域是({3y)|x>0,0 V]2 +,2 < [}) yji-x2 - y22.设二元函数/。
,了)=旦】,则f(x-y,x+y)=(-21—).x y JT _)广2 23.设函数/(x+j) = xj,则f(x,y)=(* 一)').44.设函数z = e'+,,则翌=(;=2/+、(1 + 2/)).dx志~6.函数z = 2xy2-x/y2在点(1 , 2)处对),的偏导数为X= (4xy + 2~)(i,2) y7.二元函数z=x2y3在点(3, 2)处的全微分是(8.函数z = %2+5y2 -6x + 10y+ 6 的驻点是(三、选择题:I.以下极限中,(c )表示阳2.以下结论中正确的是(C )(A)f(x,y)在点(%了。
)处一阶偏导数存在,则f(x,y)在点(乩,光)连续;(B)f(x,y)在点(%坊)处一阶偏导数存在,则f(X,y)在点(工0,光)可微;(C )f(x,y)在点(Do)时微,则f(X, y)在点(x0o T0)处一阶偏导数存在;(A)若|(S =。
,的(》0,光)=0(A)点(0 , 0 )是该函数的一个驻点;sin-2/-2r(2sin4r-6r)(D ) f (x ,y )在点(m )连续,则f (x,y )在点(X 。
03高数——多元函数微分学要点速记
多元函数微分学1、极限与连续性平面上的点列的极限:设{}n M 为平面点列,20M R ∈,若()0lim ,0n M M ρ=,则称{}n M 是收敛点列,0M 是点列的极限,记做0lim n n M M→∞=(00lim ,lim n n x x y y ⇔==)。
极限:设n 元函数()f P ,n P D R ∈⊂,0P 是D 的聚点,若存在常数A ,对0ε∀>,0,δ∃>对一切0(,δ)oP D U P ∈ ,有()f P A ε-<,则称常数A 为函数()f x 当0P P →时的极限,记做()0lim P P f P A →=(也叫n 重极限)。
二元函数的极限可写作:()()000,lim (,)lim (,)lim (,)x x x y x y y y f x y f x y f x y A ρ→→→→→===。
连续性:0M 为D 的聚点时,0lim ()()M M f M f M →=;或0M 为D 的孤立点时,也是连续点。
2、微分和偏导数微分:0000(,)(,)()f x x y y f x y A x B y o ρ+∆+∆-=∆+∆+⇒00(,)dz df x y A x B y ==∆+∆。
偏导数:设(),z f x y =在点()000,M x y 的某邻域中有极限00000(,)(,)lim x f x x y f x y x∆→+∆-∆(将y 当作常数)存在,则称此极限高 数多元函数微分学知识点速记为函数(),z f x y =在点()000,M x y 对x 的偏导数,即0000000(,)(,)(,)limx x f x x y f x y f x y x∆→+∆-'=∆;同理,函数(),z f x y =在点()000,M x y 对y 的偏导数0000000(,)(,)(,)limy y f x y y f x y f x y y∆→+∆-'=∆。
第9章多元函数微分学知识点总结
第9章多元函数微分学知识点总结1.多元函数的偏导数:-定义:对于多元函数来说,当变量除了要考虑沿着自变量方向变化外,还要考虑其他自变量是否保持不变,用偏导数来表示。
-计算方法:求各个偏微分时,将其他自变量视为常数,只对需要求的变量求导即可。
2.全微分:-定义:全微分是多元函数在其中一点上沿各个偏导数方向的和所对应的微分形式。
-计算方法:使用偏导数对各个自变量求导数,并乘以相应的变化量,再相加得到全微分。
3.方向导数:-定义:方向导数是函数在其中一点上沿着指定方向的变化率,表征了函数沿着该方向上变化的快慢程度。
-计算方法:先对多元函数求偏导数,然后将其与方向向量进行点积运算,再乘以方向向量的模长。
4.梯度:-定义:梯度是一个向量,其方向是函数在其中一点增大最快的方向,大小表示函数在该点变化率的大小。
-计算方法:求多元函数在其中一点的各个偏导数,并写成一个向量,即为该点的梯度。
5.方向导数与梯度的关系:-定理:函数在其中一点上的方向导数等于该点的梯度向量与方向向量的点积。
6.极值点:-定义:多元函数的极值点是指函数取得极大值或极小值的点。
-判定方法:通过求偏导数等于零的点,再利用二阶导数进行判定。
7.拉格朗日乘数法:-定义:拉格朗日乘数法是求解给定条件下多元函数的极值问题的一种方法。
-使用方法:通过构造拉格朗日函数,利用偏导数为零和给定条件进行求解。
8.海森矩阵:-定义:海森矩阵是多元函数的二次导数在其中一点上的矩阵形式。
-计算方法:对多元函数的各个偏导数再次求偏导数,并按照顺序组成矩阵。
9.二次型:-定义:二次型是多元函数二阶偏导数在其中一点上的二次齐次多项式。
-判定方法:通过海森矩阵的特征值进行判别,判断其正负来决定函数在该点上的行为。
以上是第9章多元函数微分学的主要知识点总结。
掌握了这些知识点,我们可以更好地理解多元函数的变化规律,求解问题时也能够更有效地运用微分学的方法进行分析和计算。
(完整版)多元函数微分学复习题及答案精选全文完整版
可编辑修改精选全文完整版第八章 多元函数微分法及其应用 复习题及解答一、选择题 1. 极限= (提示:令22y k x =) ( B )(A) 等于0 (B) 不存在 (C) 等于(D) 存在且不等于0或2、设函数,则极限= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数在点处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 5、设,则= ( B )(A)(B)(C)(D)6、设,则 ( A )(A ) (B ) (C ) (D )7、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C ) (A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若,则= ( D ) (A) (B)(C)(D)9、设,则( A )(A) 2 (B) 1+ln2 (C) 0 (D) 1 10、设,则 ( D )(A) (B)(C) (D)11、曲线在点处的法平面方程是 (C ) (A) (B)(C)(D)12、曲线在点处的切线方程是 (A )(A) 842204x z y --=-=(B) (C) (D)13、曲面在点处的切平面方程为 (D )(A ) (B )(C )(D )14、曲面在点处的法线方程为 (A )(A ) (B ) (C ) (D )15、设函数,则点是函数 的 ( B )(A )极大值点但非最大值点 (B )极大值点且是最大值点(C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数具有二阶连续偏导数,在处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点是函数的极大值点 (B )点是函数的极小值点(C )点非函数的极值点 (D )条件不够,无法判定17、函数在222421x y z ++=条件下的极大值是 ( C )(A) (B) (C) (D)二、填空题 1、极限= ⎽⎽⎽⎽⎽⎽⎽ .答:2、极限=⎽⎽⎽⎽⎽⎽⎽ .答:3、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:4、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:,5、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:6、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-)7、设,要使处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:8、设,要使在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:19、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线及11、设,则_________ .答:3cos5 12、设,则= _________ .答:1 13、设,则=_________ .答:14、设,则在极坐标系下,= _________ .答:015、设,则= _________.答:16、设,则= ___________ .答:17、函数由所确定,则= ___________ .答:18、设函数由方程所确定,则= _______ .答:19、由方程所确定的函数在点(1,0,-1)处的全微分= _________ .答:20、曲线在点处的切线方程是_________.答:21、曲线在对应于点处的法平面方程是___________. 答:01132=+--e y x22、曲面在点处的法线方程为_________ .答:eze y x 22212=-+=- 23、曲面在点处的切平面方程是_________.答:24、设函数由方程确定,则函数的驻点是_________ .答:(-1,2) 27、函数的驻点是_________.答:(1,1)25、若函数在点处取得极值,则常数_________,_________.答:0,426、函数在条件下的极大值是_______答:三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.4 2、求极限 .解:= 43、求极限 .解:原式=4、求极限 .解:= -85、设,求.解:6、设,求.解:7、设函数由所确定,试求(其中).解一:原式两边对求导得,则同理可得:解二:xy xz F F y z xy yz F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数的极值.解:由,得驻点074334>=--==yyyxxy xx z z z z D,函数在点处取极小值.9、设,而,求.解:=-++(sin )3432t t e x y10、设,求.解:11、设,求.解:,,12、求函数的全微分.解:四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为米.水池底部的单位造价为. 则水池造价 且令由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e x z y x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+- 2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx ekn xy k tkn sin 2222--=∂∂, 所以22xy k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学下册复习提纲第八章 多元函数微分学本章知识点(按历年考试出现次数从高到低排列):复合函数求导(☆☆☆☆☆)条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆)曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆)一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆)1. 多元复合函数高阶导数例 设),,cos ,(sin yx ey x f z +=其中f 具有二阶连续偏导数,求xy zx z ∂∂∂∂∂2及.解y x e f x f xz+⋅'+⋅'=∂∂31cos , y x y x y x y x e e f y f f e x e f y f yx zx y z ++++⋅''+-⋅''+'+⋅''+-⋅''=∂∂∂=∂∂∂])sin ([cos ])sin ([33323131222析 1)明确函数的结构(树形图)这里yx ew y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”.2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x yx e y x f e y x f ++''的简写形式,它们与z 的结构相同,仍然是yx ey x +,cos ,sin 的函数.所以1f '对y 求导数为zu vwxx y yy x e f y f yf +⋅''+-⋅''=∂'∂13121)sin (. 所以求导过程中要始终理清函数结构,确保运算不重、不漏.3)f 具有二阶连续偏导数,从而yx zx y z ∂∂∂∂∂∂22,连续,所以y x z x y z ∂∂∂=∂∂∂22. 练 1. 设),,2(22x y x f x z =其中f 具有二阶连续偏导数,求22xz∂∂. 2. 设),sin ()2(22y x y e g y x f z x ++-=其中f 二阶可导,g 具有二阶连续偏导数,求yx z∂∂∂2. 2. 多元函数极值例1. 求函数)2(e ),(22y x y x f yx -=-的极值.解 (1)求驻点.由⎪⎩⎪⎨⎧=---==+-=----0e 4)2(e ),(,0e 2)2(e ),(2222yx y x y yx y x x y y x y x f x y x y x f 得两个驻点 )0,0(,)2,4(--,(2)求),(y x f 的二阶偏导数)242(e ),(22++-=-x y x y x f y x xx ,)422(e ),(22y x x y y x f y x xy ---=-,)482(e ),(22-+-=-y y x y x f y x yy ,(3)讨论驻点是否为极值点在)0,0(处,有2=A ,0=B ,4-=C ,082<-=-B AC ,由极值的充分条件知)0,0(不是极值点,0)0,0(=f 不是函数的极值;在)2,4(--处,有2e 6--=A ,2e8-=B ,2e 12--=C ,0e842>=--B AC ,而0<A ,由极值的充分条件知 )2,4(--为极大值点,2e 8)2,4(-=--f 是函数的极大值.析 1)这是二元函数无条件极值问题.2)解题步骤:第一步是求出驻点---一阶偏导数为零的点;第二步求目标函数的二阶导数;第三步求出驻点的判别式2B AC -,判断是否为极值点以及极大极小. 2. 将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大. 解:令)12(),,(23-+++=z y x z y x z y x F λ,则⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=.12,0,02,0323322z y x y x F yz x F z y x F z y x λλλ 解得唯一驻点)2,4,6(,故最大值为.691224623max =⋅⋅=u析 1)题目是为了熟悉条件极值的求法---拉格朗日乘数法.这里拉格朗日函数也可写成)12(ln ln 2ln 3),,(-+++++=z y x z y x z y x F λ.2)由于目标函数是乘积形式,而其和为常数,可以利用均值不等式62362233342722433327⎪⎪⎪⎪⎭⎫ ⎝⎛+++++⋅≤⋅⋅⋅⋅⋅⋅⋅=z y y x x x z y y x x x z y x 691224276=⋅⋅=.方法较为简单,但没有拉格朗日乘数具有一般性.3. 求函数22y x z +=在圆9)2()2(22≤-+-y x 上的最大值与最小值.解 先求函数在圆内部可能的极值点.令⎩⎨⎧====02,02y z x z yx 解得点)0,0(,而0)0,0(=z .再求函数在圆周上的最值.为此做拉格朗日函数]9)2()2[(),(2222--+-++=y x y x y x F λ,⎪⎩⎪⎨⎧=-+-=-+==-+=.9)2()2(,0)2(22,0)2(2222y x y y F x x F y x λλ 解之得)22,22(),225,225(--,而1)22,22(,25)225,225(=--=z z .比较)22,22(),225,225(),0,0(--z z z 三值可知,在圆9)2()2(22≤-+-y x 上函数最大值为25=z ,最小值为0=z .析 1)在闭域上求函数最值只需找出在开区域和边界上的可疑点,最后比较函数值即可.而不需要判断是否为极值点.2)在求方程组的解时,要注意方程的对称性,必要时也可做换元处理,以简化计算. 3)本题在边界上的最值也可考虑写出圆周的参数方程,将问题转化为一元函数的最值问题.练 1. 求y x xy x y x f 12153),(23--+=的极值.2. 证明函数yy ye x e y x f -+=cos )1(),(有无穷多个极大值,但无极小值.3. 在椭球面1222222=++cz b y a x 的第一卦限求一点,使该点的且平面与三坐标面围成的四面体的体积最小.4. 求抛物线2x y =与直线02---y x 之间的距离.3. 偏导数的几何应用例1. 求曲面2132222=++z y x 平行于平面064=++z y x 的切平面方程. 解 令 2132),,(222-++=z y x z y x F , 曲面在点),,(z y x 处的法向量为)6,4,2(),,(z y x F F F n z y x ==,已知平面的法向量为)6,4,1(1=n ,而切平面与已知平面平行,所以1//n n,从而有664412zy x ==, (1) 又因为点在切面上,应满足曲面方程2132222=++z y x (2)(1)、(2)联立解得切点为)2,2,1(及)2,2,1(---,所以所求切平面方程为:0)2(6)2(4)1(=-+-+-z y x ,或 0)2(6)2(4)1(=+++++z y x .析 1)由于已经给出平面的法向量,关键是求出切点,直接利用平面的点法式方程即可.2) 法向量的求法:由曲面方程0),,(=z y x F 得 ),,(z y x F F F n =. 如果曲面方程为),(y x f z =,那么),(),,(y x f z z y x F -=,或=),,(z y x F z y x f -),(. 对应的法向量就为 )1,,(y x f f n --= 或 )1,,(-=y x f f n.3)注意不要把 1//n n 写成 1n n=,它们的分量是对应成比例而不一定相等,否则将得出错误结论.4)两个平面要独立写出,千万不要用大括号联立.还有就是万万不可把平面方程写成了直线啊.2. 求曲线6222=++z y x ,0=++z y x 在点)1,2,1(0-P 处的切线及法平面方程. 解 曲线方程为⎩⎨⎧=++=++06222z y x z y x , 取x 为自变量,则y 和z 看作x 的函数,即)(),(x z z x y y ==.那么曲线的切向量))(),(,1(x z x y ''=τ.方程组两边对x 求导,得⎩⎨⎧='++='+'+016222z y z z y y x , 解得 zy y x z z y x z y --='--=',. 将点)1,2,1(0-P 代入,得切向量为)1,0,1(-=τ.所以曲线在点)1,2,1(0-P 处的切线为110211--=+=-z y x , 法平面为0)1()1(=---z x .析 1)曲线方程为参数形式⎪⎩⎪⎨⎧===),(),(),(t z z t y y t x x 在点),,(0000z y x P 处对应参数为0t ,那么曲线在0P 处的切向量为))(),(),((000t z t y t x '''=τ.由直线的对称式(点向式)方程可得切线方程为)()()(000000t z z z t y y y t x x x '-='-='-, 法平面方程为0))(())(())((000000=-'+-+'-'z z t z y y t y x x t x .2)若曲线方程是一般式(隐函数形式)⎩⎨⎧==0),,(,0),,(z y x G z y x F , 则,那么曲线在0P 处的切向量为,,P y xy xz z x zz y z y G G F F G G F F G G F F ⎪⎪⎭⎫⎝⎛=τ. 由于此公式较为复杂,我们经常从z y x ,,三个变量中选取一个作为参数,剩余两个看作其函数例题中的解法就是如此.练 1. 设曲线⎩⎨⎧==+0,122322z y x 绕y 轴旋转一周得到一旋转曲面,求该曲面在点)2,3,0(指向外侧的单位法向量.2. 求椭球面2132222=++z y x 上某点M 处的切平面π的方程,使π过已知直线2121326:--=-=-z y x L . 3. 在曲线 32,x z x y ==上求点,使该点处的切线平行于平面42=++z y x .4. 求曲线⎩⎨⎧=-+-=-++04532,03222z y x x z y x 在点)1,1,1(处的切线方程.4. 隐函数(组)导数例1. 设 0e 2e=+---z xyz ,求xz ∂∂ ,y z ∂∂.解 方程两端对x 求偏导数,得0e 2)(e=∂∂⋅-∂∂----x z x z y z xy即 xz ∂∂=zxy y --+-e 2e ; 方程两端对y 求偏导数,得0e 2)(e=∂∂⋅-∂∂----y z y z x z xy即 y z ∂∂=zxy x --+-e2e . 析 当然题目也可用公式法求隐函数的偏导数,那是将),,(z y x F 看成是三个自变量x ,y ,z 的函数,即x ,y ,z 处于同等地位. 方程两边对x 求偏导数时,x ,y 是自变量,z 是x ,y 的函数,它们的地位是不同的.2. 设 ⎩⎨⎧=+-+-=--+01,0222xy v u y x v u ,求y v x v y u x u ∂∂∂∂∂∂∂∂,,,. 解 方程组两端对x 求导,得⎩⎨⎧=-+-=-+.0,0222y v u x vv uu x x x x 即⎩⎨⎧=+-=+y v u x vv uu x x x x ,222 则 v u yv x v u y vx xu +-=-=∂∂1122122,vu yux v u yxu x v ++=--=∂∂1122122. 同样方程组两端对y 求导,得v u xv y u 2221+-=∂∂, vu xu y v 2221++=∂∂. 析 1) 方程组确定的隐函数个数等于方程的个数,而每个函数自变量的个数为“方程组中所有变量个数”减“方程的个数”.2) 大家解线性方程组时可以用代入法或直接使用求解公式.练1. 设方程xyz e z=确定隐函数()y x f z ,=,求x z ∂∂和22yz∂∂.2. 设函数 ()y x f z ,=由方程0),(=++x z y y z x F 确定,求x z∂∂和xy z ∂∂∂2.3. 设 ),(t x f y =,而),(y t x x =是由方程0),,(=t y x F 所确定的函数,其中F f ,都具有一阶连续偏导数.求tx d d . 4. 设 ⎩⎨⎧-=+=),,(),,(2y v x u g v y v xu f u ,,其中g f ,都具有一阶连续偏导数.求 y u ∂∂,和y v∂∂. 5. 偏导数及全微分例1. 设)2(ln 22y x y x z -=,求 x z ∂∂,y z ∂∂.解 x z ∂∂)2(2)2(ln 2222y x y x y x y x -+-=, =∂∂y z )2()2(ln 32222y x y x y x y x ----. 析 1) 利用一元函数求导即可.对其中变量求导,其余的自变量都看作常数. 2) 也可利用多元复合函数求导公式求导. 2. 已知)ln(e),(23sin xy x y x f xy +⋅=,求 )0,1(x f .解 )0,(x f x ln 3=.于是xx f x 3)0,(=,3)0,1(=x f . 析 1) 此类题目“先代后求”,或“先求后代”.对于确定一点的一般选后一种方法. 2) 另外分段函数在分界点处要用偏导数定义来求. 3. 设)ln(22y x z +=,求11d x y z==解 设 u y x =+22,则 u z ln =,所以d 12d z z u x x u x u∂∂==⋅∂∂,d 12d z z u y y u y u ∂∂==⋅∂∂, 从而 11d x y z===1111d d x x y y z z x y xy====∂∂+∂∂=d d x y +.练 1. 设⎪⎩⎪⎨⎧=+≠++=0,0,0,),(222222y x y x y x xyy x f ,求(0,0),(0,0)x y f f .2. 求 x y z cosln = 在点)4,1(π处的全微分.3. 求 2sin z u xy e =⋅的全微分.4. 证明函数⎪⎩⎪⎨⎧=+≠+++=0,00,1sin )(),(22222222y x y x y x y x y x f 在点)0,0(连续且偏导数存在,但偏导数在)0,0(不连续,而f 在)0,0(可微.6. 方向导数级梯度例 求 32yz xy u += 在)1,1,2(0-P 的梯度及沿)1,2,2(-=l方向的方向导数.解 k zu j y u i x u u ∂∂+∂∂+∂∂=grad , 而2323,2,yz zu z xy y u y x u =∂∂+=∂∂=∂∂ 故 k z u j y u i x u u ∂∂+∂∂+∂∂=grad k yz j z xy i y 2323)2(+++=, 则在)1,1,2(0-P 处的梯度为 k j i u35grad -+=. 又)1,2,2(-=l,故其方向余弦为31cos ,32cos ,32cos -===γβα, 所以 沿l方向的方向导数为38cos cos cos grad 0=∂∂+∂∂+∂∂==∂∂γβαz u y u x u u lul P . 析 1) 熟悉方向导数和梯度概念及求法. 2) 需要注意的是只有在才可用γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂求方向导数.如分段函数在分界点常用定义求出方向导数.练 设函数⎪⎩⎪⎨⎧=+≠++++=0,00,),(22222222y x y x y x y x y x y x f求函数在点)0,0(处沿方向)cos ,(cos γα的方向导数.7. 二重极限及累次极限例1. 讨论 2200limy x xyy x +→→ 的收敛性.解 令,kx y =2200limy x xy y x +→→2220lim x k x kx x kxy x +⋅==→,12k k += 其值随k 的不同而变化,故极限不存在. 2. 221lim )sin(lim )sin(lim )sin(lim20202020=⋅=⋅=⎪⎪⎭⎫ ⎝⎛⋅=→→→→→→→→y xy xy y xy xy x xy y x y x y x y x . 练 1. 讨论二元函数yx y x y x y x f +++-=22),(在点)0,0(的二重极限及两个二次极限. 2. 讨论函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222242y x y x y x y x y x f 在点)0,0(的连续性.。