换热器文献综述(综述报告)(经典版)
U形管换热器设计文献综述
U形管换热器设计1课题背景随着世界性的能源危机波及到了装备制造业及石油化工这些耗材及耗能的大户,以及国家节能减排长期国策的确立,作为能量回收装备—热交换设备的提高传热效能及降低能耗的研究被提高到了很重要的地位。
这些研究归纳为以下几个方面:(1)传热与流动研究:旨在提髙传热及压降计算的准确性,寻求提髙传热效率,降低压降的途径。
这方面研究主要涉及到:物性模拟研究、分析设计研究(如温度场、流动分布的模拟研究等)、传热及流动试验和工艺计算软件的开发等。
(2)换热设备大型化、新型热交换设备的开发及降低能耗、节水的研究。
(3)强化传热的研究:如强化传热管研究、板管的研究(如板壳式、板空冷等)。
(4)材料研究(相容性及经济性的结合)。
(5)抗腐蚀及控制结垢的研究(涉及使用寿命及保持传热效率)[1]。
2换热器简介换热器是在工业生产中实现物料之间热量传递过程的一种设备,自从21世纪以来,各国的换热器水平都有了长足的发展,我国的换热器技术在我国各方面人才的努力下也有了很大提高,本次设计就是在已有的计算基础上进行的,在查阅了换热器设计的相关资料,进行了此次设计。
2.1换热器在化工生产中的应用换热器是在工业生产中实现物料之间热量传递过程的一种设备,它是化工,炼油、动力、油田储运集输系统和原子能及其许多工业部门广泛应用的一种通用设备,是保证工艺流程和条件,利用二次能源实现余热回收和节约能源的主要设备。
在化工厂换热器约占总投资的10%-20%;在炼油厂换热器约占全部工艺设备投资的35%-40%。
由于工艺流程不同,生产中往往进行着加热、冷却、蒸发或冷凝等过程。
通过换热器热量从温度较高的流体传递给温度较低的流体,以满足工艺需要[2-3]。
2.2换热器的分类及其特点换热器作为传热设备随处可见,在工业中应用非常普遍,特别是在耗能用量十分大的领域。
随着节能技术的飞速发展,换热器的种类开发越来越多。
按使用目的不同,换热器可分为加热器、冷凝器、蒸发器和再沸器等。
换热器文献综述new1
换热器节能研究的文献综述一、引言当今社会,能源危机,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高技能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人关注的课题。
大量的强化传热技术应用于工业装置,我国换热器产业在技术水平上获得了快速提升,板式换热器日渐崛起。
与此同时,近几年,我国在大型管壳式换热器、大直径螺纹锁紧环高压换热器、高效节能板壳式换热器、大型板式空气预热器方面也获得了重大突破[3]。
国外在换热器的强化传热研究、强化传热元件开发、新型壳程结构设计中也有了突破性的进展[4]。
而且随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。
二、研究主要成果2009年4月,中国石化组织专家对“大直径螺纹锁紧环高压换热器国产化研制攻关”项目进行了科学技术成果鉴定。
该换热器的国产化标志着我国已经具备设计和制造DN2000以下的螺纹锁紧环高压换热器的能力,大大降低了石化工程建设成本,单台即可节约采购资金1400万元,且缩短了交货期,打破了国外公司垄断地位[5]。
国内首台超大型管壳式换热器(E一6111型)已经通过最终检查和验收。
该换热器尺寸庞大,结构复杂,是首台国内自主研制的超大型固定管板式换热器,其成功研制打破了国外长期对大型换热器的垄断格局,大大提高了我国石化装备制造业的创新能力,推进了我国每年100万吨乙烯成套装备国产化的进程[6]。
同时国外的换热器研究也取得了可喜的成果。
例如:ABB公司的螺旋折流板换热器[7],此换热器结构克服了普通折流板设计的主要缺点,其先进性已为流体动力学研究和传热实验结果所证实。
换热器文献综述
相变换热器文献综述学院:材料与化学工程学院专业:过程装备与控制工程班级:2011-01姓名:***学号:***相变储热换热器文献综述***(郑州***化工学院)摘要:本文通过对换热器发展历史的回顾,总结相变储热换热器的理论技术和结构设计,对其物性数据,相变储热材料等做了简要评述。
1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。
它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。
对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要.通常在化工厂的建设中,换热器约占总投资的10~20%。
在石油炼厂中,换热器约占全部工艺设备投资的85~40%。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。
由于使用的条件不同,换热设备又有各种各样的形式和结构。
另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。
其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的.总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它.2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热.30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意.60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
管壳式换热器文献综述
翅片管换热器传热特性的数值模拟研究文献综述姓名:姜晴班级:热动1班学号:20120390115 引言能源是人类社会生存和发展的重要保障。
近年来;我国工业化和城镇化步伐加快,能源需求量进一步增加。
据有关专家预测,若以2000年我国能源消费数据为基点,到2010和2020年,我国能源消费总量增长幅度将分别达到38%和89%,2010年能源消费总量将增长到22.4亿吨标准煤,而2020年则为25.5亿吨一30亿吨标准煤[1]。
由此可见,在未来几十年里,随着我国经济的飞速发展和人口的不断增长,能源供给相对不足的矛盾将日益突出,能源供给问题将成为制约我国经济社会发展的重要因素。
为确保我国经济平稳、协调和可持续发展,寻找新能源或可再生资源,以及合理地利用现有资源将是关键所在。
对于合理利用现有资源,我国政府提出在“十一五”期间,各级政府和企业要把“节能减排”工作放在重要地位。
我国目前的能源利用效率仅为36%左右,远低于发达国家50%的能源利用率水平[2]。
而我国能源利用率低下的一个重要因素,是大量工业余热没有得到充分利用。
有统计数据表明,我国钢铁、有色、化工、建材、石化、轻纺、机械等几大能耗大户,余热利用率仅为4%一5%,工业炉窑热效率低于70%[3]。
不同温度水平的余热其利用价值也不同,一般可将余热资源分为高温余热、中温余热和低温余热。
由于不同物质形态的余热,可利用程度不同,所以温度划分也有差别。
对于固态余热,500℃以下的为中、低温;气态余热200℃以下的算中、低温;对于液体余热80℃以下可视为中、低温[4]。
从现代热物理学的观点来看,同样多的热量,在不同的温度下可供利用的价值不同。
余热源的温度越低,能量的品位就愈低。
而据统计,在工业生产中,人们所利用的热能中平均有50%最终以低品位余热的形式直接排放[5]。
这部分未经利用的余热直接排放到环境中,不但造成了巨大的能源浪费,也给环境带来了严重的热污染。
据初步测算,能源利用效率每提高1个百分点,即可节省能源费用130多亿元[6]。
换热网络综述报告模板
换热网络综述报告模板换热网络综述报告一、绪论换热网络是工业过程中常见的能源转移方式,通过高温与低温之间的热交换,实现能源的有效利用。
换热网络的设计和优化对于提高能源效率、降低能源消耗具有重要意义。
本文主要综述了换热网络的设计、优化方法以及相关应用情况。
二、换热网络设计方法1. 网络结构设计:换热网络的结构设计包括换热器的排布、管道连接以及热媒的流动方式等。
常用的设计方法有贪婪算法、图论方法和优化算法等。
2. 管网的确定:在换热网络设计中,管网的确定是一个关键环节。
可以基于贪婪法、动态规划法和模拟退火等方法进行优化,以减少能量消耗和降低压力损失。
三、换热网络优化方法1. 能量综合利用:通过对热源与热负荷的匹配分析,实现能量的综合利用。
此外,采用合适的热媒流动方式,如顺流、逆流和混合流动方式等,可以进一步提高能量利用效率。
2. 负荷分级调整:将热源负荷进行分级调整,根据不同负荷的大小,进行优化设计,以实现能源的最佳分配。
3. 热媒温度分级:通过控制不同热媒的温度级数,实现换热网络的优化设计,将高温热媒与低温热媒进行合理匹配,从而提高能源利用效率。
四、换热网络应用情况1. 化工工艺中的应用:换热网络在化工行业中广泛应用,如石化、冶金、化肥等。
通过合理设计和优化,能够提高生产效率,减少能源消耗。
2. 电力工业中的应用:换热网络在电力工业中也有重要应用,例如燃煤电厂、核电厂等。
通过优化设计换热网络,可以提高发电效率,降低排放。
3. 建筑节能中的应用:换热网络在建筑节能中也有一定应用,如地源热泵、太阳能热水器等。
通过合理利用换热网络,可以节约能源,减少对环境的影响。
五、结论换热网络的设计与优化是提高能源利用效率、降低能源消耗的重要手段。
通过合理的网络结构设计和优化方法,可以实现能源的综合利用,提高产能和效益。
同时,换热网络在工业生产和建筑节能领域都具有重要应用价值。
未来,随着科技的发展和环保要求的提高,换热网络的设计与优化方法也将不断创新和完善,以更好地满足能源需求,推动可持续发展。
换热器文献综述
相变换热器文献综述学院:材料与化学工程学院专业:过程装备与控制工程班级:2011-01姓名:***学号:***相变储热换热器文献综述***(郑州***化工学院)摘要:本文通过对换热器发展历史的回顾,总结相变储热换热器的理论技术和结构设计,对其物性数据,相变储热材料等做了简要评述。
1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。
它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。
对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。
通常在化工厂的建设中,换热器约占总投资的10~20%。
在石油炼厂中,换热器约占全部工艺设备投资的85~40%。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。
由于使用的条件不同,换热设备又有各种各样的形式和结构。
另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。
其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。
总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
文献综述 热水器
学校代码:11517学号:201150712220HENAN INSTITUTE OF ENGINEERING文献综述题目基于单片机的家用热水器控制器的设计学生姓名王明慧专业班级电气工程及其自动化1122班学号201150712220系(部)电气信息工程学院指导教师(职称)李小魁(讲师)完成时间 2013年1月2日基于单片机的家用热水器控制器的设计基于单片机的家用热水器控制器的设计摘要目前热水器已成为日常生活中不可缺少的家用电器,设计制造更实用、更方便、更安全、更节能的热水器是产品设计师和生产厂商不断追求的目标。
本系统硬件方案论证包括单片机、温度检测传感器、加热控制驱动电路、电源电路、及键盘和显示等电路的选择。
而本文对基于单片机的家用热水器的设计思想及硬件结构的实现进行了简要的分析,对各种方案的发展现状和趋势进行了论述,对国内外研究现状及研究意义做了简要的总结和阐述。
关键字:热水器、单片机、发展前景1 绪论我们的生活电热水器是一种可供浴室、洗手间及厨房使用,按照人们的需要的温度,提供温水的家用电器。
市场上传统的机械式电热水器控制精度低、可靠性差,甚至存在一定的危险隐患。
太阳能热水器虽然在众多乡镇广泛应用,但是在当今高速发展的时代,太阳能热水器在大城市里却有着其局限性,因此,随着社会的发展、人们生活质量的提高,人们对电热水器的要求越来越高,并且趋向于智能化和数字化,一些老式而简单的电热水器和太阳能已经不能够满足人们的需要了。
而快热式家用电热水器无需储水罐热水即开即用无需预热减少了电能的浪费应用价值极高。
另外它还具有体积小、使用安全、安装方便等优点。
因此设计制造更实用、更方便、更安全、更节能的热水器是产品设计师和生产厂商不断追求的目标。
也是我们研究和发展的方向。
2主要内容文献【1】【2】主要介绍了单片机、家用热水器的的基础知识。
文献【1】介绍了单片机开发软件的快速入门,以及AT89C51单片机的结构和原理,C51语法简介,汇编指令的使用,定时器中断,串行通信,LED显示等相关基础内容,为本设计奠定了扎实的基础。
换热器文献综述
管壳式换热器强化传热研究摘要:从管程强化和壳程强化两方面论述了管壳式换热器强化传热技术的机理,指出了管壳式换热器今后发展中的主要方向;同时对换热器的防腐措施以及改进动向作了介绍。
关键词:强化传热;管壳式换热器;防腐Abstract: shell and tube heat exchanger was discussed from two aspects of the strengthening of the tube side and the strengthening of the shell to strengthen the mechanism of heat transfer technology, pointing out that the main direction of future development of the shell and tube heat exchanger; heat exchanger anti-corrosion measures well as improved trends were introduced. Keywords: heat transfer enhancement; shell and tube heat exchanger; anti-corrosion引言管壳式换热器是当今应用最广泛的换热设备,它具有高的可靠性和简单易用性。
特别是在较高参数的工况条件下,管壳式更显示了其独有的长处“目前在提高该类换热器性能所开展的研究主要是强化传热,适应高参数和各类有腐蚀介质的耐腐材料以及为大型化的发展所作的结构改进。
一、换热器的强化传热研究换热器的强化传热就是采用一定的措施增大换热设备的传热速率,力图用较少的传热面积或体积的设备来完成传热任务。
各种强化型换热器在石油、化工、制冷、航空、车辆、动力机械等工业部门己得到广泛应用。
强化传热已被学术界称为第二代传热技术。
最新u形管换热器设计文献综述教学内容
U形管换热器设计1课题背景随着世界性的能源危机波及到了装备制造业及石油化工这些耗材及耗能的大户,以及国家节能减排长期国策的确立,作为能量回收装备—热交换设备的提高传热效能及降低能耗的研究被提高到了很重要的地位。
这些研究归纳为以下几个方面:(1)传热与流动研究:旨在提髙传热及压降计算的准确性,寻求提髙传热效率,降低压降的途径。
这方面研究主要涉及到:物性模拟研究、分析设计研究(如温度场、流动分布的模拟研究等)、传热及流动试验和工艺计算软件的开发等。
(2)换热设备大型化、新型热交换设备的开发及降低能耗、节水的研究。
(3)强化传热的研究:如强化传热管研究、板管的研究(如板壳式、板空冷等)。
(4)材料研究(相容性及经济性的结合)。
(5)抗腐蚀及控制结垢的研究(涉及使用寿命及保持传热效率)[1]。
2换热器简介换热器是在工业生产中实现物料之间热量传递过程的一种设备,自从21世纪以来,各国的换热器水平都有了长足的发展,我国的换热器技术在我国各方面人才的努力下也有了很大提高,本次设计就是在已有的计算基础上进行的,在查阅了换热器设计的相关资料,进行了此次设计。
2.1换热器在化工生产中的应用换热器是在工业生产中实现物料之间热量传递过程的一种设备,它是化工,炼油、动力、油田储运集输系统和原子能及其许多工业部门广泛应用的一种通用设备,是保证工艺流程和条件,利用二次能源实现余热回收和节约能源的主要设备。
在化工厂换热器约占总投资的10%-20%;在炼油厂换热器约占全部工艺设备投资的35%-40%。
由于工艺流程不同,生产中往往进行着加热、冷却、蒸发或冷凝等过程。
通过换热器热量从温度较高的流体传递给温度较低的流体,以满足工艺需要[2-3]。
2.2换热器的分类及其特点换热器作为传热设备随处可见,在工业中应用非常普遍,特别是在耗能用量十分大的领域。
随着节能技术的飞速发展,换热器的种类开发越来越多。
按使用目的不同,换热器可分为加热器、冷凝器、蒸发器和再沸器等。
换热器综述--中国石油大学化工原理
化工原理换热器的强化传热技术综述班级:卓越11-2班姓名:徐向东甄宇匡崇1.化工行业能源现状简介1.1中国石油化工发展概述经过几十年的发展,我国石油化工的生产规模已逐渐扩大,自动化水平也有较高发展,是中国的支柱产业之一,也是保证国民经济稳定持续发展重要要素之一。
但是由于在研发新产品和技术创新方面有所欠缺,石油化工产品结构不合理,发生供过于求或资源浪费的现象,针对目前石油化工产业发展情况,需要掌握更多先进生产技术,优化生产设备的配置,提高产品的产出率和资源的循环利用。
本文就石油化工行业中最为常见的设备——换热器来探讨一下能量的利用过程中如何来提高其利用率。
1.2换热器强化传热技术研究的必要性由于温室效应导致全球气候变暖,为了改善我们的环境,需要我们节能减排,单位GDP所消耗的能量减少,而整个石化行业又是我们国家的一个耗能大户,所以我们需要对整个化工生产中的热量进行合理配置。
这对于节约能源和保护环境都有重要的意义强化传热技术是采用强化传热元件,对换热器的结构进行改进,从而提高传热效率同时提高余热利用率,以期达到最优生产目的先进技术。
换热器是保证石油化工生产和石油炼制的生产和加工过程能正常进行的重要设备之一。
石油化工生产过程中会有大量的余热产生,通过应用强化传热技术,使换热器在单位时间内,单位传热面积传递的热量达到最大量,这就可以高效回收生产过程中的余热,并且加以充分利用,达到循环利用资源的目的。
2.换热器强化传热的途径2.1理论依据根据总传热速率方程Q=KAΔt m可知,要想强化换热器的传热过程,我们可以从三个方面入手,提高传热系数K,提高传热推动力Δt m,增大传热面积A。
2.2换热器结构的改进2.2.1传热管的表面结构处理2.2.1.1无相变传热无相变传热是指在对流换热中不发生蒸汽凝结或液体沸腾的换热过程。
工业生产中, 主要应用的异形管有: 螺旋槽管、旋流管、波纹管、缩放管、横纹管、螺旋椭圆扁管、变截面管、内肋管等。
板式换热器文献综述
文献综述1.前言用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。
随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。
板式换热器就是在这种形式下发展起来的新产品。
2.板式换热器的简介板式换热器由多片通道板、一片盲板、一片端板和端封及通道密封组成。
换热器的两端分别是盲板和端板,中间部分则全是通道板,密封分别夹在通道板及端板之间,使之形成了许多隔开的容腔,通道板的四角开有圆孔。
允许加热介质和被加热介质在此流过,由于板片是具有特定形状,周边及孔的周围压有密封垫片槽,所以一种介质只能留到隔一个容腔中,而不会留到相邻的容腔中,这样就使加热介质和被加热介质充分接触,从而达到换热目的。
传热部分的人字形波纹板、水平平直波纹板或瘤形板片交成网状,并形成众多触点。
几何形状复杂的板间流道断面使得其具有较高的传热系数,这是因为介质经过时,流动方向和流动速度在不断变化,流速最低时还会产生湍流,强化了传热效果。
2.1板式换热器的特点(板式换热器与管壳式换热器的比较)a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。
b.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃。
c.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。
换热器综述
换热器的综述前言随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体. 相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题. 并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。
本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。
一、换热器1.1换热器的介绍换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器被应用于超过80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一. 因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一. 经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。
在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。
这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。
相变储热换热器文献综述
相变储热换热器文献综述1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。
它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。
对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。
通常在化工厂得建设中,换热器约占总投资的10~20%。
在石油炼厂中,换热器约占全部工艺设备投资的85~40%。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。
由于使用的条件不同,换热设备又有各种各样的形式和结构。
另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。
其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。
总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。
70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。
管式换热器文献综述
管壳式换热器广泛应用于化工、石油、电力、轻工、冶金、原子能、造船、航空、供热等工业部门。
特别是在石油炼制和化学加工装置中,占有极其重要的地位[1]。
由于它结构坚固,且能选用多种材料制造,适应性极强,尤其在高温、高压和大型装置中得到普遍应用。
据统计,在石油化工生产中,换热器的总投资约占总设备的30%~45%[2]。
管壳式换热器因其利用和回收热能的优点,在上世纪70年代的全球化能源危机之后,促使世界各国对强化传热技术进行研究、开发和应用。
迄今为止,国内外对管壳式换热器的强化传热技术的研究取得了丰硕的成果。
1.管壳式换热器强化传热技术进展一直以来,管壳式换热器的强化传热技术研究都是以实验为主。
随着计算流体力学(CFD)和计算机的飞速发展,数值模拟方法以其成本低、周期短等优点成为换热器研究的一种重要手段。
大量的CFD商业软件的出现,使得传热和流体问题的数值计算取得了突破性进展。
强化传热主要分为有源强化传热和无源强化传热。
有源强化传热技术因其受到外在能量的制约,因此工程实际中主要采用无源强化传热技术,即通过增加单位体积内的传热面积或者提高传热系数增加传热量。
迄今为止,国内外的管壳式换热器强化传热技术主要从两个方面进行:管程强化传热技术和壳程强化传热技术。
1.1管程强化传热管壳式换热器管程的强化传热主要为改变换热管的外形和管内加内插件。
其中改变换热管的外形是通过对管子进行各种加工,以期在管子的壁面上形成有规律或无规律的凸起物,这些凸起物既可以对流体进行扰动,又能断续地阻断边界层的发展。
这些强化传热管主要有波纹管、螺旋槽纹管、螺旋扭曲扁管等。
管内内插件作为一种扰流子,以固定的形状安装在换热管内,与管壁相对固定或者随流体振动,对流体产生扰动或破坏管壁表面的液体边界层以达到强化传热的目的,而且具有防垢和除垢的效果。
1.1.1波纹管波纹换热管是由沈阳广厦热力设备开发制造公司在上世纪90年代研制并成功投入使用,它由波纹管和两端的接头组成。
浮头式换热器的设计文献综述
浮头式换热器的设计文献综述化学生物学专业:茹意指导老师:彭钢摘要:进入8O年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。
据统计,换热器的投资约占全部设备投资的40%。
因此,从节能、节材和节约资金角度来说,如何选用高效换热器已不可避免地成为每个工程设计人员面临的问题。
目前,节能减排已成为我国“十二五”期间重要战略的举措,高效节能换热器的研究也成为当今地下换热领域研究的热点[1]。
关键词:换热器;传热系数;浮头式换热器二、正文1.国内外换热器的发展以及分类1.1国强化传热系数指提高流体和传热之间的传热系数。
其主要方法归结为下述两个原理:温度边界层减勃和调换传热面附近的流体。
因此最近十几年来,强化传热技术受到了工业界的广泛重视,得到了十分迅速的发展,凝结是工业中普遍遇到的另一种相变换热过程,凝结换热系数很高,但经过强化措施还可以进一步提升换热效率。
管外凝结换热的强化对冷却表面的特殊处理,主要是为了在冷却表面上产生珠状凝结。
珠状凝结的换热系数可比通常的膜状凝结高5~10倍,由于水和有机液体能润湿大部分的金属壁面,所以应采用特殊的表面处理方法(化学覆盖法、聚合物涂层法和电镀法等),使冷凝液不能润湿壁面,从而形成珠状凝结。
用电镀法在表面涂一层贵金属,如金、铂、钯等效果很好,缺点是价格昂贵。
冷却表面的粗糙化粗糙表面可增加凝结液膜的湍流度,亦可强化凝结换热。
实验证明,当粗糙高度为0.5mm时,水蒸气的凝结换热系数可提高90%。
值得注意的是,当凝结液膜增厚到可将粗糙壁面淹没时,粗糙度对增强凝结换热不起作用。
有时当液膜流速较低时,粗糙壁面还会滞留液膜,对换热反而不利。
采用扩展表面,在管外膜状凝结中常常采用低肋管,低肋管不但增加换热面积,而且由于冷凝流体的表面张力,肋片上形成的液膜较薄,因此其凝结换热系数可比光管高75%~100%。
应用螺旋槽管和管外加螺旋线圈。
换热器综述5篇
换热器综述5篇第一篇:换热器综述换热器的综述前言随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体.相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题.并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。
本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。
一、换热器 1.1换热器的介绍换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器被应用于超过 80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一.因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一.经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。
在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。
这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。
换热器文献综述(综述报告)(经典版)
板式换热器综述报告院系:机械工程学院姓名: xxxxx x学号: xxxxxxxxxx班级:过控10-3班日期:2012年12月28日前言用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器.随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。
板式换热器就是在这种形式下发展起来的新产品。
国内外板式换热器的发展是欧美发达国家于20世纪80年代起开始竞相开发、研制各种型式的板式换热器.其中具有代表性的为法国Packinox公司,该公司于20世纪80年代首次在催化重整装置中用一台大型板式换热器替代传统的管壳式换热器组。
20世纪90年代末期,Packinox公司又将大型板式换热器用于加氢装置。
该公司的产品得到UOP(美国联合油)的认证,其产品主要用于的催化重整、芳烃及加氢装置。
而板式换热器在中国的起步比较晚。
1999年兰州石油机械研究所研制成功大型板式换热器,该产品(专利号:ZL98249056。
9)具有国际先进水平、首创独特结构的全焊式板式换热器,并已在炼油厂重整装置,化肥厂水解解吸装置及集中供热换热站等场合得到应用。
近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补.同时,我国出口的换热器均价平均不到进口均价的一半.可以想见,我国出口的产品多是附加值低的中、低端产品,而进口的产品多是附加值高的高端产品。
这充分说明我国对高端换热器产品需求旺盛但供给不足的市场现状.作为一个高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,除了高温、高压和特殊介质条件外,板式换热器均已替代管壳式换热器。
经试验证明在板式换热器适用范围内,绝大多数工况时,用不锈钢板式换热器比一般碳钢换热器投资低,而且可以预见板式换热器与管壳式换热器的竞争会更加激烈.随着科技的进步,板式换热器也有了飞速发展.自进入21世纪以来,常规对称形、非对称形,高NTU型(浅密波纹型)、免粘型、板式蒸发器、板式冷凝器等国外已有的可拆卸板式换热器均已实现国产化,并成功应用于不同领域。
换热器发展现状与未来趋势研究综述
换热器发展现状与未来趋势研究综述研究目标本文的研究目标是综述换热器的发展现状以及未来的趋势。
通过对换热器相关领域的文献进行深入调查和分析,探讨换热器技术在不同领域中的应用和发展。
同时,本文还将重点关注新兴技术在换热器中的应用,并探讨其可能带来的影响和挑战。
方法本文采用了文献综述法作为主要的研究方法。
首先,通过检索相关数据库和期刊,收集与换热器发展相关的文献。
然后,对这些文献进行筛选、分类和整理,并提取其中与本文主题相关的信息。
最后,通过对这些信息进行分析和综合,得出结论并展望未来趋势。
发现发展现状1.换热器在工业生产中起着重要作用,广泛应用于化工、能源、制药等领域。
2.传统换热器存在一些问题,如效率低、占地面积大、清洗困难等,需要进一步改进和优化。
3.新兴技术如微尺度换热器、纳米流体换热器等在换热效率和尺寸方面具有优势,逐渐得到应用和推广。
未来趋势1.微尺度换热器将成为发展的重点方向,其小尺寸、高效率的特点适用于微型化设备和系统。
2.纳米材料在换热器中的应用将得到进一步拓展,通过纳米颗粒的增加表面积和传导性能,提高换热效率。
3.多功能换热器的需求将增加,例如集成储能功能、污水处理功能等,以提高资源利用效率和环境友好性。
4.换热器与其他技术的融合也是未来的趋势,如与太阳能、生物质能源等技术结合,实现能源转化和利用。
结论本文综述了换热器的发展现状与未来趋势。
传统换热器在工业生产中起着重要作用,但存在一些问题需要解决。
新兴技术如微尺度换热器、纳米流体换热器等具有较大的发展潜力,并将成为未来的重点研究方向。
多功能换热器的需求也将增加,以提高资源利用效率和环境友好性。
此外,换热器与其他技术的融合也是未来的趋势,将有助于实现能源转化和利用的目标。
总之,通过对换热器发展现状与未来趋势的综述,我们可以更好地了解该领域的发展动态,并为相关领域的科学家和工程师提供参考和指导。
随着新技术的不断涌现,换热器在工业生产中将发挥更加重要的作用,并为经济可持续发展做出贡献。
文献5555综述
文献综述冷却器换热设备的一类,用以冷却流体。
通常用水或空气为冷却剂以除去热量。
有间壁式冷却器、喷淋式冷却器、夹套式冷却器和蛇管式冷却器等。
换热器作为传热设备被广泛用于耗能用量大的领域。
随着节能技术的飞速发展,换热器的种类越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理可分为:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分为:1、加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
三、按换热器的结构可分为:可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
二.一些换热器原理及特点1.板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板式换热器综述报告
院系:机械工程学院
姓名:xxxxxx
学号:xxxxxxxxxx
班级:过控10-3班
日期:2012年12月28日
前言
用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。板式换热器就是在这种形式下发展起来的新产品。
k. 单位长度的压力损失大 由于传热面之间的间隙较小,传热面上有凹凸,因此比传统的光滑管的压力损失大。
l. 不易结垢 由于内部充分湍动,所以不易结垢,其结垢系数仅为管壳式换热器的1/3~1/10.
m. 工作压力不宜过大,介质温度不宜过高,有可能泄露 板式换热器采用密封垫密封,工作压力一般不宜超过2.5MPa,介质温度应在低于250℃以下,否则有可能泄露。
e.重量轻 板式换热器的板片厚度仅为0.4~0.8mm,而管壳式换热器的换热管的厚度为2.0~2.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5左右。
f. 价格低 采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%~60%。
g. 制作方便 板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。
在我国,目前占燃气发动机燃料近55%热值的废气和冷却水余热资源基本上被白白浪费掉,发动机余热利用技术的开发和应用尚处于起步阶段,市场前景广阔。在西方国家,发动机余热80%以上被利用。
随着人民生活质量提高,制冷和采暖越来越普及,能源消耗越来越大,同时发动机余热资源目前没有得到综合利用,燃油、燃气及电热锅炉和中央空调在广泛使用,消耗了大量能源。随着能源供应日益紧张,节能、降耗、提高能源利用率,越来越引起人们重视,余热利用热电联供已经被列入国家“十五”规划节能重点投资领域。发动机余热的利用是必然趋势。
2.2 流程和流道的选择
流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。
流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。
(2)不等流量液体板式换热器ALFA-LAVAL生产1种冷、热流体接管直径不同,板片导流区结构特殊的PHE,即使对最宽的板片也能保证流体均匀分布,压力降小,传热性能好,可以用于冷、热流体流量比为3的工况。
(3)板管式换热器ALFA-LAVAL公司的Flow-Flex产品,在板片的一面可组成管状流道,而另一面则为常规的板状流道。冷、热流体的流量比可达2,适用于低压冷凝、汽化,以及含纤维和颗粒杂质的流体。
2.3 压降校核
在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。
二、板式换热器的研究
板式换热器(PHE)是一种高效、紧凑的换热设备。由于在许多方面优于管壳式换热器,所以,尽管只有百余年的历史,但发展迅速,应用领域遍及国民经济各部门。板式换热器分为可拆卸式和焊接式两大类。80年代以来,品种规格、密封结构、设计与制造技术等方面均有了突破性进展,发展方向趋于"大参数、多品种、高性能"。其中,包括耐温、耐压、耐腐蚀及其它特种PHE。
近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状,巨大的供给缺口需要进口来弥补。
同时,我国出口的换热器均价平均不到进口均价的一半。可以想见,我国出口的产品多是附加值低的中、低端产品,而进口的产品多是附加值高的高端产品。这充分说明我国对高端换热器产品需求旺盛但供给不足的市场现状。
1可拆卸板式换热器
板片种类繁多,但仍以人字形波纹板片为主。瑞典ALFA-LAVAL、英国APV、德国GEA和W.Schmidt、法国VICARB、日本HISAKA(日阪制作所)以及美国Tranter等公司的产品技术先进,较有特色。
1.1"热混合"设计的板式换热器
传热单元数NTU(或θ)是表征板片和流道特性的系数。同一几何尺寸和波纹结构的板片NTU相同,只能组成单一特性的流道,不能满足实际工况中非对称流体传热的需要,故在PHE设计选型时,往往存在2种情况:①冷、热流道内的流速差别较大,低流速侧压力降过小,常需串连,导致换热面积过大,即"压力降控制设计"。②满足两侧压力降要求时,换热面积太小,传热量不够,即"热控制设计"。1983年,ALFA-LAVAL应用"热混合"设计原理,以高、低2种NTU值的板片组成高、中、低3种NTU值的流道,分别与冷、热流体的需要"精确匹配",可使PHE的性能和面积最佳化,较成功地解决了这些问题,被认为是PHE设计应用的一项重大突破。在充分利用允许压力降的情况下,"热混合"设计的换热面积有时可比传统的PHE减少25%~30%,现已普遍推广。
h. 容易清洗 框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。
i. 热损失小 板式换热器只有传热板的外壳板暴露在大气中,因此散热损失可以忽略不计,也不需要保温措施。而管壳式换热器热损失大,需要隔热层。
j. 容量较小 是管壳式换热器的10%~20%。
1板式换热器的特点(板式换热器与管壳式换热器的比较)
a.传热系数高 由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。
b.对数平均温差大,末端温差小 在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃。
作为一个高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,除了高温、高压和特殊介质条件外,板式换热器均已替代管壳式换热器。经试验证明在板式换热器适用范围内,绝大多数工况时,用不锈钢板式换热器比一般碳钢换热器投资低,而且可以预见板式换热器与管壳式换热器的竞争会更加激烈。
随着科技的进步,板式换热器也有了飞速发展。自进入21世纪以来,常规对称形、非对称形,高NTU型(浅密波纹型)、免粘型、板式蒸发器、板式冷凝器等国外已有的可拆卸板式换热器均已实现国产化,并成功应用于不同领域。
1.2非对称流道板式换热器
这种产品的基本原理仍为"热混合"。主要特点是:①冷、热流道的几何形状和(或)截面面积不同。②冷、热流体的流量比最大可到2~3,而常规的PHE仅0.7~1.5。
(1)非对称板式换热器在同一块板片上,具有不同夹角的人字形波纹,可组成6种不同特性的流道,比"热混合"PHE增加1倍,换热面积可减少16%~20%,费用降低10%~20%,板片和模具的数量也大大减少。1985年,瑞典Reheat公司首创该产品,并且誉为第二代PHE。Tranter和德国的Fischer公司等均有这种产品。
可拆式板式换热器已成为板式换热器的潮流,他将朝着大规格、多品种、系列化、高性能、高可靠性、低成本以及生产企业的专业化、规模化发展。未来,随着国内市场的需求和国内经济发展所带来的良好机遇,以及进口产品巨大的可转化性共同预示着我国板式换热器行业良好的发展前景。
目前燃料的能量只有约35%被发电机组转化为电能,约有30%随废气排出,25%被发电机冷却水带走,通过机身散发等其它损失约占10%左右,废气和换热器损失的功率比有用功还多。
发动机的废气余热利用在我国还是一个新兴的科技领域,是发展的必然趋势,我们还要不断学习国外在这方面的先进技术,提高水平,多与广大用户交流和学习,提高余热利用效率,扩大应用范围,以使其扩展到更宽的领域。
板式换热器可以有效的利用废气余热,以达到节能的作用。通过对板式换热器进行合理的参数选择和结构设计:总管数、程数、管程总体阻力校核;壳体直径;结构设计包括流体壁厚;主要进出口管径的确定包括:冷热流体的进出口管、传热计算和压降计算、流动阻力计算;设计计算和校核计算。使其能够最大效率的利用废气的热量,使其热量转化成动力得以输出。
c.占地面积小 板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。
d.容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。