分类精度评价

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感影像分类精度评价
遥感影像分类精度评价
(2009-11-20 14:20:57)
在ENVI中,选择主菜单->Classification->Post Classification->Confusion
Matrix->Using Ground Truth ROIs。

将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。

点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。

对分类结果进行评价,确定分类的精度和可靠性。

有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。

对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。

1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。

混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。

混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。

2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。

被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。

像元总数等于所有地表真实分类中的像元总和。

3、Kappa系数:是另外一种计算分类精度的方法。

它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类
中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。

4、错分误差:指被分为用户感兴趣的类,而实际上属于另一类的像元,错分误差显示在混淆矩阵的行里面。

5、漏分误差:指本属于地表真实分类,但没有被分类器分到相应类别中的像元数。

漏分误差显示在混淆矩阵的列里。

6、制图精度:指假定地表真实为A类,分类器能将一幅图像的像元归为A的概率
7、用户精度:指假定分类器将像元归到A类时,相应的地表真实类别是A的概率。

混淆矩阵中的几项评价指标,如下:
●总体分类精度
等于被正确分类的像元总和除以总像元数。

被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类精度表中的Overall Accuracy = (1849/2346)
78.8150%。

●Kappa系数
它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。

●错分误差
指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。

本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。

●漏分误差
指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。

如在本例
中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为3/465=0.6%●制图精度
是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。

如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25%。

●用户精度
是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A 类的像元总数(混淆矩阵中A类行的总和)比率。

如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是265/277=95.67%。

首先你做分类的时候要选好分类的地区影像,一般要求要有地面数据支持,也就是说要知道你待分类的影像的地物类别,这样在你的分类完成后才可能评价你的分类精度,
分类精度的评价一般是用混淆矩阵来评价,从混淆矩阵中算出总精度和Kappa系数就可作为分类精度了。

分类的精度,一般两种方法,实地调查;高分辨率的影像检验低分辨率影像的分类。

大部分文献的精度验证方法无非还是那些传统的方法:混淆矩阵的总体精度,kappa分析,野外验证,专家组评估验证。

还有没有别的更好一些的模型,就比如说是野外验证,野外如何布点?采用什么样的模型布点?值得一提的是前段时间终于查到一些数据同化(又叫四维同化)的资料。

数据同化原是大气科学中的一个概念。

四维同化:自从气象卫星升空以后,不定期的非常规的观测资料大量增加。

这些卫星资料的利用,对弥补洋面和沙漠地区观测资料的不足以及适时更新预报值很有帮助。

于是在初始资料处理上出现了四维同化方法。

所谓四维同化就是把不同时刻(t),不同地区( x, y),不同高度(z),不同性质(常规或非常规)的、具有不同观测误差的资料源源不断地输入计算机,通过一定的程序对它们进行分析处理,把它们协调起来,融合成常规的、定时的资料。

为数值预报提供初值或及时更新预报值。

0024:精度评价及统计分析
eCognition提供的精度评价工具简单易用,误差矩阵(混淆矩阵)、kappa系数等概念也与常规遥感软件无异,由于它是基于模糊逻辑的软分类,精度评价里又多了一个“分类稳定性”指标,感觉很科学。

而且,精度评价的结果也能在图上直观地显示。

总之,评价一个字:好!
eCognition提供的四种精度评价的方法:
1、分类稳定性。

由于是软分类,每个对象对应于每个类别都有一个概率值。

每个对象(图斑)属于最佳分类的概率值与次佳分类的概率值之差,即为该图斑的分类稳定性。

分类稳定性最大值为1,最为稳定;最小值为0,表示完全模棱两可,最不稳定。

稳定性也可以在图里面直观显示,从深绿到红色的图斑,表示稳定性从高到底。

2、最佳分类结果概率值。

也是0到1,也可以在图中由绿到红显示。

3、根据 TTA Mask 计算的混淆矩阵,以像素为统计对象。

4、根据验证样本计算的混淆矩阵,以图斑为单位。

5、Statistics工具,强大的统计功能,用户可以自定义统计的类别、特征,所属层次,做诸如面积统计之类的各种各样的统计(如下图)。

相关文档
最新文档