内燃机车液力传动1综述资料.111页PPT

合集下载

液力液力机械传动PPT课件

液力液力机械传动PPT课件
(4)能容系数显著增大,启动力矩也显著增大。
(5)正透穿性大大增加。
20
第20页/共48页
5.4 内分流液力机械传动
功率内分流液力机械变矩器的机械传动部分(行星齿轮机 构)放在变矩器之外,如图5-8所示,其功率分流是在液力变 矩器内部实现的。功率由泵轮输入,而由两个或两个以上独立 旋转的叶轮分别传递一部分功率,最后通过机械传动机构将叶 轮的输出功率汇流输出。
图5-5为外分流式液力机械传动框图,输入总功率流一分 为二,其中一路功率流通过液力变矩器,而另一路功率流则直 接通过机械传动(行星齿轮机构)。输入功率在输入轴分流, 然后双流功率在输出轴处汇合。
总功率P
分 功 率 流 P1
差速器
P0 执行机构
分 功 率 流 P2
图5-5 外分流式液力机械传动框图 15 第15页/共48页
复合分流
功率分流内外兼有
2
第2页/共48页
第一类传动装置,其传动功率的流向,在输入端(R) 与输出端(C)之间存在液力元件和机械元件两条平行的 支路,如图5-2a所示。图中“Y”、“J”、“YJ”分别 表示液力元件、机械元件和液力机械传动元件,也称这种 传动为外分流式液力机械传动。
YJ
BY
T
R
C
图5-2a 液力机械传动的功率分流示意
液力机械传动中,不装主离合器,换档也不必切断动力,且 采用液压动力换档,既简化了操作,又使操作轻便,使驾驶员在 体力上、精神上都不致引起过度的疲劳,对提高车辆安全行驶十 分有利,因而其操纵性能较好。
综上所述,在提高车辆的安全行驶方面,液力机械传动有着 其明显的优势,是一种较为先进的传动装置,已在世界各国广泛 应用,也是我国车辆传动装置的发展方向。

第一章液力传动PPT课件

第一章液力传动PPT课件
按工作轮不同的配合方式所具有的不同工作状态 的数目
工作轮实现工作方式转换的机构:自由轮机构、离合器、 制动器等
综合式 液力变矩器 是几相的?
-
31
实例
该变矩器是几相?
-
32
多相变矩器 优点:提高了变矩系数K,消除了高传动比时的低效率区
域,加宽了高效范围。 应用:主要用在推土机、装载机、工程汽车等
-
53
-
33
变矩器类型4
4、多级液力变矩器 定义理解 按布置在泵轮 与导轮或导轮与 导轮之间的刚性 连接在一起的 涡轮数
-
34
特性
思考
启动及重载工况 变矩系数大。 ??适合用于 哪些工程机械
-
35
多级液力变矩器特点 ① 低级变矩器相比,可以在小传动比时提高变矩系数K ② 高效率范围扩大,从而扩大了工作范围 ③ 最高效率值低于单级 应用
偶合器的效 率??
MBBnB2D5
M T K B M K B n B 2 D 5 T n B 2 D 5
-
21
变矩器外特性
n 1 f1 ( n 2 )M ; 2 f2 ( n 2 ); f3 ( n 2 )
M 1 f 1 ( n 2 )M ; 2 f 2 ( n 2 ) ;f 3 ( n 2 )
M1 11D115n1 2 12D125n1 2
3、 部分接合时
0n12n1,以 nx表示n, x随压紧力而无级
M1 11D115n12 12D125nx2
根据需要按任意比例
向两套机构分配动力
-
51
本章小结
液力传动的本质及与液压传动的区别 液力传动实现的部件 液力传动部件基本构造 液力传动的力学应用分析:转矩模型及理解 液力传动部件的特性 液力传动部件的具体应用及存在的问题

液力传动内燃机车原理

液力传动内燃机车原理

液力传动内燃机车原理
液力传动内燃机车是一种采用流体力学原理的汽车,通过液力传动系统将发动机的动力传递到驱动轮上,以实现汽车的运行。

液力传动内燃机车原理相对于其他普通汽车原理更为复杂,但在特定的情况下能更好地满足驾驶者的需求。

一、液力传动系统
液力传动系统主要分为液力变矩器和液力离合器组成,液力变矩器是液力传动系统的核心部分,负责将发动机的动力传递到变速箱中。

液力离合器则负责变速器与发动机之间的连接和分离。

二、液力变矩器
液力变矩器主要由泵轮、涡轮和液力涡轮扭矩增强器组成。

泵轮和涡轮之间装有一种被称为液力涡轮扭矩增强器的装置,该装置能够使液力传动系统具有更大的输出扭矩,从而使汽车更为强劲。

三、液力离合器
液力离合器主要由泵轮和涡轮之间的液体联轴器组成,用于控制发动机与变速箱之间的转速。

当液力离合器卸载时,发动机就可以在没有阻力的情况下不断转动,从而使燃油利用率更高。

四、减速器和变速器
液力传动内燃机车的减速器和变速器与其他汽车的减速器和变速器相同,其作用是减少轮轮盘的转速并提高扭矩比。

但液力传动内燃机车的减速器和变速器有一个独特的设计,能够更好地应对复杂的地形和
环境,使驾驶者更容易驾驭汽车。

五、总结
液力传动内燃机车原理相对比较复杂,但在特定的情况下能够更好地满足驾驶者的需求,例如在山路、湿滑路面或大调转弯时,液力传动内燃机车能更好地保持平衡和稳定性。

同时,液力传动内燃机车也因复杂的结构和高昂的价格而不适用于普通道路行驶。

液力传动

液力传动

扭矩。这样,变扭器既满足了柴油机输出扭矩基本不变要求,又
满足了机车低速扭矩大(牵引力大),高速扭矩小(牵引力小) 的要求。 因此,变扭器可以作为传动装置装在柴油机和机车动轮之间。 变扭器外特性曲线
四、传动装置的功能 1.满足机车牵引特性的要求。即机车低速时牵引力大,随 着机车运行速度的增加,牵引力逐渐减小。 2.保证机车在所要求的持续速度范围内均保持恒功率。
(2)操作复杂。机械换向过程包括司机一系列的观察和操 作。首先将主控制手把置于零位,使柴油机空转,液力元件排
空,用空气制动机将机车停稳,然后搬动换向手把进行换向。
如出现“齿顶齿”现象,则需通过部分充油或拨齿机构转动换 向 齿轮,使换向离合器顺利结合。 (3)换向时间长。因机械换向动作复杂,整个过程延续时
2.液力换向的特点 与机械换向相比,有以下特点
(1)换向迅速,容易实现自动化,操纵也很简单。因液力换
向是靠前向变扭器或后向变扭器的充排油来实现机车换向的,在 机车运行过程中即可换向,无需停车换向,因此换向迅速;由于 是液力的方式来换向,使得机车从一个方向的牵引工况到减速、 停车,直至进入另一个方向的牵引工况,无需进行复杂的操作,
也就是说机车牵引力大时速度低,牵引力小时速度快,机车的这
种性能称为机车的牵引特性,俗称“牛马特性”。 机车牵引特性曲线
二、柴油机的外特性 柴油机的外特性主要是指其扭矩特性,即柴油机的输出扭矩 (M)与柴油机转速(n)的关系曲线。 柴油机的特性曲线 实验证明: 1.柴油机只能在柴油机的最小转速(nmin)与最大转速(nmax)之 间正常工作(指柴油机带载荷工作)。柴油机的工作转速超过最
不能充分发挥柴油机的功率。
三、液力变扭器的特性
目前,国产液力传动内燃机车都采用三轮变扭器,即变扭器

液力传动内燃机车

液力传动内燃机车

优缺点
优缺点
液力传动内燃机车结构紧凑重量相对较轻,相同重量的电传动内燃机车与液力传动内燃机车相比,液力传动 内燃机车的功率更大,速度更快,载量也更多,缺点是传动效率较低,油耗大,因为液体的流动是随意的,传递 动力的过程中会因为流动的随意性损失一部分能量,而且液体在流动过程中自身也损失一部分动能,所以比电传 动内燃机车效率低很多,一般来说电传动机车效率可达90%,而液力传动的机车只有83.3%,所以液力传动的机车 经济性较差,也成为其保有量远不及电传动机车的重要原因。
对于液力传动内燃机车,柴油机发出的动力传递到液力变速器的液压油中,液压油通过液力涡轮,液力变矩 器和液力耦合器等原件将能量传递到车轮,变成驱动车轮的动力。
液力传动装置
液力耦合器
液力变矩器
液力耦合器
液力耦合器是由泵轮和涡轮组成的。泵轮与主动轴相连,涡轮与从动轴相接。如果不计机械损失,则液力耦 合器的输入力矩与输出力矩相等,而输入与输出轴转速不相等。因工作介质是液体,所以泵轮和涡轮之间属非刚 性连接。
简介
简介
液力传动内燃机车(9张)内燃机车有液力传动,电传动和机械传动等类型,其中电传动内燃机车应用最广泛, 液力传动内燃机车次之,无论何种内燃机车的传动特性都符合牛马特征,所谓牛马特征就像骑自行车,人不能直 接驱动车轮,需要链条作为传动机构把人发出的力变成自行车前进的动力,这就是牛马特征。
所有带轮子的工具都符合这一特征,都要靠传动机构传递动力。液力传动内燃机车的道理和自动变速器一样, 与自动挡汽车的道理类似,但是又不完全一样。
国外
在北美洲,大部分的内燃机车(特别是大功率的机车)都是采用电传动。欧洲则以液力传动内燃机车较多。
谢谢观看
发展状况
国内

《内燃机车液力传动》课件

《内燃机车液力传动》课件

常见故障及排除方法
泄漏
油温过高
检查液力传动系统是否存在泄漏现象 ,如发现泄漏应及时处理。
检查液力传动油的温度是否过高,如 过高应及时查明原因并采取措施降低 油温。
异常噪音
检查液力传动系统是否存在异常噪音 ,如有异常噪音应及时查明原因并排 除。
04
内燃机车液力传动的发展趋势与未来展 望
高效能液力传动技术的研究与开发
清洁
保持液力传动部件的清洁 ,防止杂物和污垢的积累 。
油位检查
确保液力传动油的油位在 正常范围内。
定期检查与维修
定期更换滤清器
根据需要更换液力传动系 统的滤清器,以防止杂质 进入系统。
定期检查油质
定期检查液力传动油的油 质,如发现油质变差应及 时更换。
紧固件检查
定期检查并紧固液力传动 系统的紧固件,确保其牢 固可靠。
工作原理
内燃机产生的动力通过液力传动装置 中的涡轮、导轮和液力变矩器等元件 ,利用液体介质的循环流动实现动力 的传递和调节。
液力传动在内燃机车中的应用
内燃机车的液力传动系统主要由液力传动装置、冷却系统、润滑系统和控制系统等 组成,其中液力传动装置是核心部分。
内燃机车采用液力传动可以实现动力的平稳传递、过载保护、减震和节能等功能, 提高机车的牵引性能和乘坐舒适性。
维护成本
液力传动系统的维护成本相对较高 ,因为需要定期更换传动液和其他 易损件。
与电力传动的比较
能源效率
01
电力传动在内燃机车的应用中能源效率更高,因为电能可以直
接转换为机械能,避免了中间的能量损失。
环境友好性
02
电力传动更加环保,没有尾气排放和机械噪音,适合在城市和
敏感环境中使用。

液力传动

液力传动

泵轮
一定曲度的径向叶片);偶合器外壳
涡轮 (接发动机曲轴接盘)
曲轴
从动元件(涡轮):(同样涡轮径向
从动轴
排列着许多有-定曲度的工作叶片r泵=
r涡,两轮相向安装在密封的外壳内,有
3~4mm的间隙)。两者装合后,通过
轴线的纵断面呈环形,称为循环圆。
工作液体:
2、工作原理及特性
2、工作原理及特性
工作泵轮由发动机带动旋转→叶片带动工作液作牵 连运动→在离心力作用下→工作液由泵轮叶片内缘流 向外缘
N出 = MT nT 1 i i
N入 M b nb
4、作用
(1)、起步平稳(变刚性连结为柔性连结,衰 减了发动机传给传动系的振动,也减小了传动系 对发动机的影响) (2)、防止发动机过载熄火 (3)、减少了换档次数 (4)、二者间允许有很大的转速差
二、液力耦合器分类
目前广泛使用的液力偶合器,按照性能分为以下 四类:
起步后中间状态
液流的方向与导轮叶 片平行时,变矩器由 变矩变为偶合工况
当nw=0.85nB 时(导轮固定),Mw=MB
(3)、机械继续加速
液流速度u2方向继续向左偏,液流冲击导轮 叶子背面,形成背压,Md方向相反,为负。则
Mw= Mb- Md
(4)、当nw=nb时 (涡轮速度增加到等于泵轮转速时),液流没
4、牵引型液力偶合器——主要用于传动功率, 同时起到柔性离合器的作用。 。
三、液力耦合器的构造
1、限矩型液力耦合器
挡板12的作用,在涡轮转 速较低时,环状流动的液 流将触及挡板受到阻碍, 因此流量减小,从而减小 了传递转矩的数值,以防 止传动系过载。
当涡轮转速较高时,环流 并不触及挡板,就不会造 成能量损失。

第十六章液力机械传动和机械式无级变速器ppt课件

第十六章液力机械传动和机械式无级变速器ppt课件
13
2、四元件综合式液力变矩器 四元件综合式液力变矩器比三元件液力变
矩器多了一个导轮,两个导轮分别装在各自 的单向离合器上。
14
四元件综合式液力变矩器的特性是两个变矩器
特性和一个耦合器特性的综合。在传动比0~i1区
段,两个导轮固定不动,二者的叶片组成一个弯 曲程度更大的叶片,以保证在低传动比工况下获
湿式多盘离合器结构:
壳体 活塞 弹簧
主动盘 卡环
压盘 从动盘
输入轴
花键毂
27
⑵换挡制动器
作用:用于把行星排的太阳轮、齿圈、行星三个基本元件 之一固定,使之不能转动。
类型:湿式多片制动器、外束带式制动器。
外束带式制动器结构:
活塞
制动鼓
调整螺钉
活塞杆
制动带
工作油路
28
控制机构
组成:供油、手动选挡、参数调节、换挡时刻控制、换 挡品质控制等。
n1=n2=n3
由上可见,单排行星齿轮机构可以获得4种不同的传动 比。
20
复合式行星齿轮机构的工作原理演示(以两排辛普森式为例)
其特点是由两排行星齿轮机构共用一个太阳轮组成的复合式 行星齿轮机构,可以获得3个前进档和1个倒档。
21
2、液力变矩器与行星齿轮变速器组成的液力机械变速器
属于拉威挪式: 其特点是两排行星
得大的变矩系数。在传动比i1~iK=1区段,第一
导轮脱开,变矩器带有一个叶片弯曲程度较小的 导轮工作,因而此时可得到较高的效率。当传动
比为iK=1时,变矩器转入耦合器工况,效率按
线性规律增长。
15
3、带锁止离合器的液力变矩器 带锁止离合器液力变矩器的特点是,汽车在变
工况下行驶时(如起步、经常加减速),锁止离 合器分离,相当于普通液力变矩器;当汽车在稳 定工况下行驶时,锁止离合器接合,动力不经液 力传动,直接通过机械传动传递,变矩器效率为1。

内燃机车液力传动1综述资料.

内燃机车液力传动1综述资料.
1 、把发动机的特性变成适合车辆运行的牵引特性
牵引特性:牵引力与运行速度之间的关系 机车的理想牵引特性: --在机车持续速度范围内充分发挥柴油机的额定功率,有效
转变为轮周功率 --低速牵引力大(保证起动、加速力大) --高速牵引力小(能达到规定的速度并剩余加速力
内燃机车液力传动——绪论——传动装置
泵轮由动力机带动旋转,在其叶片作 用下,动力机的机械能转变成流体的 动能和压力能, 液流以较高的速度和压力流出泵轮, 随后紧接着进入涡轮,作用其叶片上, 推动涡轮旋转,流体的动能和压力能 再转变为机械能。 流体离开涡轮后再进入导轮,由于导 轮不动,故液体与导轮无能量交换, 在导轮叶片作用下,液流又以一定方 向流回泵轮,重复前面的过程,循环 不止。
内燃机车液力传动
循环圆的作用
各叶轮的排列顺序、布置位置、几何尺寸(据此可预知变矩器的特性 及其类型)
循环圆的有效直径,D—最大直径(代表尺寸,可估计变矩器吸收 功率大小)
变矩器的内环与外环(BTD流道内外侧回转曲面在轴面上的封闭 曲线)
变矩器的芯部(内环所构成的空间)
叶轮的进出口边(旋转投影的轴面交线)位置和宽度
内燃机车液力传动
二、 什么是液力传动?
传动路线中含有液力元件的传动系统(装置) 液力元件:液力变矩器、液力偶合器
液力传动
液压传动
静液压传动
液力元件
液力变矩器 液力偶合器
液压元件 缸 阀 泵
液压元件
泵 马达
内燃机车液力传动
机车传动装置的分类类型
动力传动形式:
机械传动 电力传动 液力传动
静液压传动
干线内燃机车 小型内燃机车、窄轨内燃机车
定义几何参数、分析解释特性曲线
几何 流动

第三章液力传动2019

第三章液力传动2019

4、优点
能提高变矩器在大传动比范围内的传动效率
η
η


η
η 变
nw=nb
n w=nb
第三节 液力变矩器的类型及应用
一、液力变矩器的类型
1、按各工作轮在循环圆中的排 列顺序分
(1)、正转(123)变矩器
由循环圆方向看,导轮在泵轮之 前;
涡轮旋转方向与泵轮一致
2019/11/7
液力传动
45
(2)、反转(132)型变矩器
(2)、单级三相液力变矩器 如图:2-27
结构:两个导轮,各自通过自由轮固定在壳体上 特性:由两个变矩器特性和一个偶合器特性组成 原理: I在0~i1段时,即I<i1时,导轮31、32不动,以变 矩器工作 I1<I<Im时,导轮31自由旋转,32不动,以变矩器 工作 Im<I<1时,31、32都自由旋转,以偶合器工作
(2)、当液流冲击导轮叶片的背面时,Md<0, 自由轮外圈相对内圈自由转动,即导轮自由转动, 相当于偶合器工作。
2019/11/7
液力传动
41
3、特性曲线
如图: η
η


当nw<nw1时,Md>0,
当nw>nw1时,Md<0,
nw=nb
液>偶
液 偶
特性曲线
2019/11/7
液力传动
43
2019/11/7
液力传动
32
(三)、变矩器的基本性能
1、经济性能 评价参数:
(1)最高效率的大小 *
(2)高效工作区的大
小 G;7% 5或 8% 0
2019/11/7
液力传动
33
2、变矩性能

《内燃机车液力传动》PPT课件

《内燃机车液力传动》PPT课件

内燃机车液力传动
液力传动装置设计——牵引重量计算
按起动地段的坡度计算:
G
F q[ (P q ') P iq]g1 3 0 (q "iq)g1 3 0
Fq
机车起动牵引力, kN
P
机车计算重量, t
G
牵引重量,t
iq
列车起动地点加算坡度千分数
' q
列车起动时机车单位基本阻力, N/kN
q' 30.4iq
机械传动比计算 V k D 2 k3 16 0 k 0 1 0 .8 D 0 k 0 k k/m h (m ,ra /s )d
ij
T 1.8DkT
k
V
——T-动轮机械传动减速比
机械传动比分配:传动箱内 ij1 车轴齿轮箱 ic ij ij1ic
计算绘制机车预期牵引特性
Fk
MTij j
Dk /2
Vk
三循环圆传动系统图
精选ppt
23
内燃机车液力传动
燃气轮-变矩器偶合器传动装置
精选ppt
24
内燃机车液力传动
VOITH T311
精选ppt
25
Battery Charger
内燃机车液力传动
VOITH T312
精选ppt
26
Battery Charger
内燃机车液力传动
前苏联
精选ppt
27
Battery Charger
精选ppt
10
内燃机车液力传动
北京型
精选ppt
11
内燃机车液力传动
BJ传动系统图
精选ppt
12
内燃机车液力传动
BJ传动箱(二轴)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档