反比例函数性质-对称性与几何意义ppt

合集下载

21.5.3反比例函数的几何意义课件

21.5.3反比例函数的几何意义课件

解析
本题考查了反比例函数的性质以及等比数列求和 公式。首先根据 x^2n = 9 求出 x^n 的值,然后 将原式变形为等比数列求和的形式进行计算即可 。
解析
本题考查了反比例函数的性质以及不等式组的解 法。首先根据题意列出不等式组求解即可得出 m 的取值范围。
06
总结回顾与课后作业布置
重点难点总结回顾
21.5.3反比例函数 的几何意义课件
汇报人:XXX 2024-01-26
目录
• 反比例函数基本概念 • 反比例函数与直线交点问题 • 反比例函数与面积问题 • 反比例函数在几何图形中应用 • 拓展延伸:反比例函数综合题解析 • 总结回顾与课后作业布置
01
反比例函数基本概念
定义与性质
定义:形如 $y = frac{k}{x}$($k$ 为常 数,$k neq 0$)的函数称为反比例函 数。
在三角形中应用
面积与底高的反比例关系
在三角形中,当底边长度固定时,面积与高成反比例关系; 同样,当高固定时,面积与底边长度成反比例关系。
相似三角形的边长与面积关系
对于两个相似的三角形,其对应边长之比等于相似比的平方 ,而面积之比等于相似比的平方。利用反比例函数可以方便 地求解相关问题。
在四边形中应用
本题考查了反比例函数与一次 函数的交点问题,通过已知条 件列出方程组求解即可。
已知反比例函数 y = k/x (k > 0) 的图象上有两点 A(x1, y1) 和 B(x2, y2),且 x1 < x2,试 比较 y1 和 y2 的大小。
本题考查了反比例函数的增减 性,根据反比例函数的性质, 当 k > 0 时,在每个象限内, y 随 x 的增大而减小。因此, 由于 x1 < x2,可以得出 y1 > y2。

反比例函数性质-对称性与几何意义ppt

反比例函数性质-对称性与几何意义ppt

的面积求K值时,一定要注意图像所在 的象限,从而确定K的符号。
能力提高,拓展思维--典型例题 确定解析式
反比例函数
k y= x
与一次函数y=-x-k的图象相交
于点A,过点A作AB垂直于x轴于点B,已知三角形AOB 的面积等于2,直线y=-x-k与x轴相交于点C,求反比 例函数与一次函数的解析式。 y
4 2.若在反比例函数 y 中也用同样的方法分别 x 取P,Q两点填写表格: 4 y x
P(1,-4) Q(2,-2)
S1的值 4
S2的值
S1与S2 关系
与k的关 系
4
s1=s2
s1=s2=|k|
于是:我们发现了反比例函数的几何意义
k 对于反比例函数 y x 点Q是其图像上的任意 一点,作QA垂直于y轴, 作QB垂直于X轴,矩 形QABO的面积与k有 |k| 什么关系SAOBQ= 三角形QAO与三角形 QBO的面积和k又有什 K 么关系呢?SQAO=SQBO=
如图,点M是反比例函数 为 2 .
y=
4 x
图象上的一
点,MP⊥x轴于P.则△POM的面积
y
M
o P
x
应用新知,加深理解--几何意义应用
应用三、已知面积,求K
﹣ 12 下面各点 PA⊥x轴于A.则△POA的面积为6,则k= --------。
也在这个反比例函数图象上的是( B )
A(2,3) B(-2,6) C(2,6)
y A
o C x
(2)若一次函数y=ax+1经过A
点,求此一次函数的解析式。 B
(3)若一次函数与x轴相交于点C,
求∠AOC的度数和|AO|: |AC|的值
K

反比例函数的图象PPT课件

反比例函数的图象PPT课件

4.
55
86
18
24
96
65
6
78
作业 请完成《典中点》的“应用提升练”和“思 维拓展练”习题,具体内容见习题课件。
50-30=20 20+6=26
答:小青蛙比大青蛙少吃了__2_6__只虫子。
算一算,说一说。
54
61
36
70
2.用小棒摆一摆,算一算。
98
35
摆一摆略。
归纳总结:
计算两位数加、减整十数,先把两位数拆分成整十数和 一位数,再把整十数相加、减,最后和一位数相加。
(讲解源于《典中点》)
一共吃了多少只虫子?
第21章 二次函数与反比例函数
21.5 反比例函数
第2课时 反比例函数的 图象
学习目标
1 课时讲解 2 课时流程
反比例函数的图象 反比例函数图象的对称性 反比例函数的系数k的几何意义
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问 引出问题
问题1:什么叫做反比例函数?下列函数中哪些是反比例函数?
的点及横坐标为正数的点,各得到图象的一个分 支,这两个分支合起来就是函数 y 4 的图象.
x 如图.
感悟新知
归纳
知1-讲
列表时,自变量的值可以以0为中心,在0的 两边选择绝对值相等而符号相反的值,既可简化 运算又便于描点;在列表、描点时要尽量多取一 些数据,多描一些点,方便连线.
感悟新知
1.反比例函数 y=2x的图象在( B ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
感悟新知
知3-练
1.如图,直线 l⊥x 轴于点 P,且与反比例函数 y1=kx1(x >0)及 y2=kx2(x>0)的图象分别交于 A,B 两点,连 接 OA,OB,已知△ OAB 的 面积为 4,则 k1-k2=___8_____.

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3

《反比例函数图像性质-k的几何意义》课件

《反比例函数图像性质-k的几何意义》课件

随着x的增大或减小,曲线会逐渐靠近 坐标轴,但永远不会与坐标轴相交。
曲线形状
图像是由两支分别位于第一和第三象 限的曲线组成,这两支曲线关于原点 对称。
k<0时图像特征
1 2
图像位于第二、四象限
当k<0时,反比例函数的图像会出现在第二和第 四象限。
曲线形状
图像同样是由两支分别位于第二和第四象限的曲 线组成,这两支曲线也关于原点对称。
图像的性质。
总结
反比例函数的图像性质与 $k$ 的 正负有关。当 $k > 0$ 时,图像 位于第一、三象限;当 $k < 0$
时,图像位于第二、四象限。
涉及综合应用问题
01
例题5
已知反比例函数 $y = frac{k}{x}$ 的图像与一次函数 $y = ax + b$ 的
图像交于点 $M(2,1)$ 和 $N(-1,-2)$,求这两个函数的解析式。
反比例函数的极限与连续性问题
讨论反比例函数在特定点的极限行为,以 及在定义域内的连续性。
反比例函数与其他函数的复合问 题
研究反比例函数与其他基本函数(如幂函 数、三角函数等)的复合性质及图像特征 。
THANK YOU
06
总结回顾与拓展延伸
重点知识点总结回顾
反比例函数图像的基本性质
反比例函数图像为双曲线,当k>0时,图像位于第一、三象限;当k<0时,图像位于第二 、四象限。
k的几何意义
k的绝对值表示双曲线与坐标轴所围成的矩形的面积。当k>0时,矩形在第一象限;当 k<0时,矩形在第二象限。
反比例函数图像的对称性
通过中心对称性,我们可以更好 地理解反比例函数的性质和行为 ,以及它在解决实际问题中的应

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件
增大而增大.
探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试

y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较

人教版初三数学9年级下册 26.1.2反比例函数的图象和性质反比例函数k的几何意义 课件(17张)

人教版初三数学9年级下册 26.1.2反比例函数的图象和性质反比例函数k的几何意义 课件(17张)

变式练习:
(1)(娄底中考数学)已知:如图,点M是反比例 函数 (x>0)的图象上任意一点,MN丄y轴于点
N,点P是x(轴1) 上的一个动点,则△MNP的面积

1。
(2)( 永州中考)
3 2
S△AOB =S△AOC -S△BOC
C
=6 3
22
=3 2
(3)(苏州)如图:点A是反比例函数
(y x<x6 0)的图象上的
课题:反比例函数k的几何意义
科目:数学 年级:初三年级 主讲人:
反比例函数K的几何意义
(一)基本图形1及其应用:
(x,y)
例1:如图,点A在双曲线
y
4 xபைடு நூலகம்
上,点B在双曲线y
k
x(k≠0)
上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,
若矩形ABCD的面积是8,则k的值为 1__2__。
• 解:∵双曲线 y (k k≠0)在第一象限,∴k
>0,
x
• 延长线段BA,交y轴于点E,
• ∵AB∥x轴,
E
• ∴AE⊥y轴,
• ∴四边形AEOD是矩形,
• ∵点A在双曲线上,
• ∴S矩形AEOD=4, • 同理S矩形OCBE=k, • ∵S矩形ABCD=S矩形OCBE-S矩形AEOD=k-4=8, • ∴k=12.
一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在
y轴上,则平行四边形ABCD的面积为( )C
A.1 B.3 C.6 D.12
(二)基本图形2及其应用:
图中面积相等的图形有哪些?
例2:如图,点A、B、是双曲线
y3 x
上的点,分

北师大版九年级数学上册反比例函数的图像和性质课件(共41张)

北师大版九年级数学上册反比例函数的图像和性质课件(共41张)

为反比例函数,则m的值是
(C)
1 2
(D) 1
返回
2.如图,A为反比例函数 y k 图象上一点,AB⊥x轴
x 于点B,若 SAOB 3 则k为( A)
(A) 6 (B) 3 (C) 3 D 无法确定
2
返回
3.函数y
k x
的图象经过(1,-1),则函
数 y kx 2 的图象是 (A )
y
-2 O x
大,则m的取值范围是( A).
A、m<-1 B、m>-1 C、m>1
D、m<1
返回

y随x的增大而减小



置 二四象限
二四象限
数 的
K<0
增 减
y随x的增大而减小 在每个象限内,


y随x的增大而增大

对称性
轴对称 中心对称
轴对称 中心对称
专题一
反比例函数的图像和性质
例1:已知反比例函数的图象经过点A(2,6).
(1)这个函数的图象散布在哪些象限?y随x的增大如何变化?
(2)点B(3,4)、C(
y=
4 x
与y=
2 x
在第一象限内的图象如图所示,作一条平
行于y轴的直线分别交双曲线于A、B两点,
连接OA、OB,则△AOB的面积为( A )
(A)1
(B)2
(C)3
(D)4
拓展提高
双曲线: y= 4 与y= 2
x
x
在第一象限内的图象如图所示,作一条平行于y轴的
直线分别交双曲线于A、B两点,连接OA、OB,则
2.反比例函数的图象关于原点成中心对称.

1.2反比例函数k的几何意义PPT优秀课件

1.2反比例函数k的几何意义PPT优秀课件

S OA 1 2 POA A P 1 2|m |•|n|1 2|k|
y
y
P(m,n)
P(m,n)
2021/6/3
oA
x
oA
x
18
2.如图,点P是反比例函数图象上的一点,过点P分别向x
轴、y轴作垂线,若阴影部分面积为1,则这个反比例函
数的关系式是
.y 2 x
y
y
P
P
C o O D xx
y k (k 0) 的面积不变性
3.如图,S矩形
OAPB= __y__,S△OAP= .
y 4
BP P
x
OA
x
4.观察图中各个三角形 的面积,你有什么发现?
y
o
A
y 4 x
x
2021/6/3
10
反比例函数 y
k x
上一点P(x0,y0),过点
P分别作PA⊥y轴,PB⊥X轴,垂足分别为A、
B,则矩形AOBP的面积为 k ;
且S△AOP= S△BOP = k

2
2021/6/3
11
1.通过本节课的学习,你有什么收获? 还有什么困惑吗?
2.你对自己本节课的表现满意吗?为
什么? 数缺形时少直觉,
形少数时难入微.
2021/6/3
12
如图 ,在y1(x0)的图像上有A三 ,B,C点, x
经过三点分x轴 别引 向垂,交 线x轴于 A1,B1,C1三点 , 边结 OA,OB,OC,记OA1A,OB1B,OCC 1的 面积分别 S1,为 S2,S3,则有__. y
则 S矩O 形APBOAAP |m|•|n||k|(如图)所
y
y

反比例函数的图象与性质-ppt课件

反比例函数的图象与性质-ppt课件
方 ■ 方法:利用数形结合思想解决反比例函数与几何的综

技 合问题

解决这类问题,一般先设出几何图形中未知边的长,然

拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质

如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质






■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质






2. 反比例函数图象的特点
反比例函数 y=

(k

为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限

读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质

《反比例函数的图像和性质》PPT教学课件(第2课时)

《反比例函数的图像和性质》PPT教学课件(第2课时)
∵-3<-1,∴y1>y2.
反比例函数中比例系数的几何意义
如图所示,点A在反比例函数 y
3
x
(x >0)的图像上,AB⊥x轴于
B,AC⊥y轴于C,你能求出矩形OBAC的面积吗?
回答问题:
(1)矩形的两条邻边长与点A的坐标之间有什么关系?
(2)点A在反比例函数图像上,它的横、纵坐标与比例系数之间
反比例函数的图像和性质
第2课时
学习目标
1 通过对反比例函数图像进行比较和归纳,得到反比
例函数的性质,并能灵活运用函数的图象和性质解
决问题. (重点)
2 理解反比例函数的比例系数的几何意义,并会
应用其解决问题. (难点)
知识讲解
6
6
y

y

观察上节课我们画出的反比例函数


x
x
图像及表达式,探究下列问题:
4.双曲线的两支关于坐标原点成中心对称.
例1
反比例函数 y
k
x
的图像如图所示.
(1)判断k为正数还是负数.
(2)如果A(-3,y1)和B(-1, y2)为这个函
数图像上的两点,那么y1与y2的大小
关系是怎样的?
解:(1)∵反比例函数
限,∴k>0.
y
k
的图像在第一、三象
x
(2)由k>0可知,在每个象限内, y的值随x的值增大而减小.
是否有等量关系?
(3)你能求出矩形OBAC的面积吗?
(4)求出的矩形面积与比例系数之间有什么关系?
解:设点A的坐标为(x,y),则x y=3.
∴S矩形OBAC= x y=3.
拓展思考:

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

x
练一练
1. 如图,过反比例函数 y k 图象上的一点 P,作 x
PA⊥x 轴于A. 若△POA 的面积为 6,则 k = -12 .
提示:当反比例函数图象 在第二、四象限时,注意
y
k
P
y= x
k<0.
AO
x
2. 若点 P 是反比例函数图象上的一点,过点 P 分别向 x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形 PMON 的面积为 3,则这个反比例函数的关系式是
O
x
y
y 4 x
O
xห้องสมุดไป่ตู้
归纳:
反比例函数 y k (k<0) 的图象和性质:
x
●由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;
●在每个象限内,y随x的增大而增大.
一般地,反比例函数 y k 的图象是双曲线, x
它具有以下性质:
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
S△OFE = S1 = S2,而 S3>S△OFE, 所以 S1,S2,S3的大小关系为
S1 = S2 < S3
S1 S3
F S2
例8 如图,点 A 是反比例函数 y 2 (x>0)的图象

x y


3
任意一点,AB//x 轴交反比例函数
x (x<0) 的
图象于点 B,以 AB 为边作平行四边形 A5 BCD,其中
-6-5-4-3-2-1O -1
1 2 3 4 5 6 x (2) 在每一个象限内,
-2
随着x的增大,y 如何
-3 -4

《反比例函数的图象和性质》课件

《反比例函数的图象和性质》课件
《反比例函数的图象和性质》
新知探究 知识点1:反比例函数图象和性质的综合
例3 已知反比例函数的图象经过点 A(2,6).
(1) 这个函数的图象位于哪些象限?y 随 x 的增大如何变
化?A(2,6)Fra bibliotek第一象限
反比例函数
函数位于第
一,三象限
在每一个象限内,
y随x的增大而减小
解:(1)因为点 A(2,6)在第一象限 ,所以这个函数的
解析:∵k=﹣12<0,∴双曲线在第二,四象限,
∵x1<0<x2,∴点A在第二象限,点B在第四象限,
∴y2<0<y1.
6
2.如图,正比例函数y=kx与函数y=

的图象交于A,
B两点,BC∥x轴,AC∥y轴,则S△ABC=__________.
12
解析:连接OC,设AC交x轴于点N,BC交y
轴于M点,∴S△AON=S△OBM =3.


>0的


> 0 的解集.
课堂小结
画法
列表、描点、连线
形状
双曲线
图象





图象位置
性质
增减性
k 的几何意义
对接中考
1.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣
12
的图象上.若x1<0<x
,则(
2

A.y1<0<y2
C.y1<y2<0

B
B.y2<0<y1
D.y2<y1<0
S△OAE =5,
S四边形BECD =5
S阴影=1
随堂练习
1.已知点 A(x1,3),B(x2,6)都在反比例函数 =

反比例函数几何意义课件

反比例函数几何意义课件
当矩形的长和宽成反比例关系时,其面积保持恒 定。
三角形面积
在某些特定条件下,如等底三角形,高与底边长 度成反比例关系时,面积保持恒定。
平行四边形面积
当平行四边形的相邻两边长度成反比例关系时, 其面积保持恒定。
长度问题
线段长度
在几何图形中,若两条线段长度 成反比例关系,则一条线段长度 增加时,另一条线段长度减少。
06

重点知识点总结
01
反比例函数的定义
形如 $y = frac{k}{x}$ (其中 $k$ 是常数且 $k neq 0$) 的函数称为反比
例函数。
02
反比例函数的图像
反比例函数的图像是双曲线,且当 $k > 0$ 时,双曲线位于第一、三
象限;当 $k < 0$ 时,双曲线位于第二、四象限。
03
解析
由于切线 m 与 x 轴平行,所以切线的斜率为 0。对反比 例函数求导,并令导数为 0,解出 x4。再代入原方程求 出 y4。
求法线方程类问题
题目一
解析
题目二
解析
已知反比例函数 y = k/x (k > 0) 在点 R(x5, y5) 处的法线方 程为 n,求 n 的方程。
对反比例函数求导,得到在点 R 处的导数值即为切线的斜率 。法线的斜率是切线斜率的负 倒数。利用点斜式方程,求出 法线 n 的方程。
反比例函数与其他知识点的联系
反比例函数与一次函数、二次函数等知识点有密切联系。例如,反比例函数的图像可以与一次函数的图像相交或 相切,形成特定的几何图形。通过拓展延伸,可以让学生更好地掌握相关知识点之间的联系和区别。
THANKS.
关系
曲线与反比例函数图像交点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S1的值
S2的值
S1与S2 关系 s1=s2 s1=s2
与k的关 系 s1=s2=︱k︳ s1=s2=︱k︳
4
4
4 4
探究发现反比例函数的几何意义
k 反比例函数 y x 点Q是其图像上的任意一 点,作QA垂直于y轴, 作QB垂直于X轴,矩 形QABO的面积与k有 什么关系呢?三角形 QAO与三角形QBO的 面积和k又有什么关系 呢?
PQ S1 S
2
2 y x
P(1,2) Q(2,1)
S1的值
S2的值
S1与S2 与k的关 关系 系
2 2
2 2
s1=s2
s1=s2
s1=s2=k s1=s2=k
4 2.若在反比例函数 y 中也用同样的方法分别 x 取P,Q两点填写表格: 4 y x
P(1,-4) Q(2,-2)
回顾知识
反比例函数的性质
y
k 反比例函数: y (k≠0) x 1.当k>0时,图象的两个分支 分别在第一、三象限内,在 每一个象限内,y随x的增大 而减小;
2.当k<0时,图象的两个分支 分别在第二、四象限内,在 每一个象限内,y随x的增大 而增大。
x 0
y
0
x
探究发现反比例函数的对称性
观察联想,探究新知
C sA =SB=sC D sA<sC<sB
o
A B C
x
应用新知,加深理解--几何意义应用
应用二:求面积
如图,点M是反比例函数 为 2 .
y=
4 x
图象上的一
点,MP⊥x轴于P.则△POM的面积
y
M
o P
x
应用新知,加深理解--几何意义应用
应用三、已知面积,求K
2、如图,过反比例函数
k y= x
K S△= 2
2、探索反比例函数性质过程中学到了 哪些方法? 3、评价自己的学习表现与同桌交流你 获得了哪些进步?
作业:
1、课本习题5.3 第2、5题 2、学案上相应的内容。
B o
x
小结:
1、梳理反比例函数的图形和性质
解析式 图 像
双曲线
k y= x
(K是常数,k≠0)
图像位 置
k>0,两个分支位于一,三象限 k<0,两个分支位于二,四象限
增减性 对称性 面积不 变性
k>0,每一个象限内,y随x的增大而减小 k<0,每一个象限内,y随x的增大而增大 既是轴对称图形,又是中心对称图形 S矩=|k|
图象上的一点
P,作PA⊥x轴于A.则△POA的面积为6,下面
各点也在这个反比例函数图象上的是() B
y P
A (2,3)B (-2,6) C (2,6) D (-2,3)
A o x
能力提高,拓展思维--典型例题
拓展:确定解析式
例1 反比例函数 于A点,过A点作AB垂直于x轴于点B,已知 三角形AOB 的 面积等于2,直线y=-x-k与x轴相交于点C,求反比 例与一次函数的解析式 y
k y= x
与一次函数y=-x-k的图象相交
A
C
B
o
x
能力提高,拓展思维--典型例题
练习: 反比例函数
过A点作AB垂直于x轴于点B,已知 三角形AOB的 面积
等于2,
k y= x
的图象经过点A(-2,m),
(1)求k和m的值
(2)若一次函数y=axx轴相交于点C,
求∠AOC的度数和|AO|: |AC|的值
双曲线形三角形的面积S△=
K 2
应用新知,加深理解--几何意义应用
应用一:比较面积大小
如图,在函数
1 y = ( x >0) x
的图像上有三点A、B 、
C,过这三点分别向x轴、y轴作垂线,过每一点所
作的两条垂线与x轴、 y轴围成的矩形的面积分别
为sA ,sB,sC,则(C )
y
A sA >sB>sC B sA<sB<sC
C
A 0
B1
C 2
D 3
• 练习二: • 如图,正比例函数y=k1x与反比例函数 y = 图像交于A,B两点,其中A点得坐标为 (1,4),那么B点得坐标是 (-1,-4) y •
A
k2 x

o B
x
自主探索,领悟规律
2 1.在反比例函数 y x 的图
像中取点P,Q分别向x轴y轴 做垂线围成面积分别为S1, S2填写表格:
4 观察已作好的反比例函数 y 的图像,你 x 发现图像的两个分支的位置关系有什么特点
呢?
归纳:反比例函数既是轴对称图形,又是中 心对称图形,对称轴是直线y=x和y=-x, 对称中心是原点(0,0)
y
y=-x
4 y x
y=x
o
x
应用新知,加深理解--对称性应用
• 练习一
4 的图像的对称轴的条数 已知反比例函数 y x 是( )
A
Q
B
k 3.对于所有的反比例函数 y x
P
S1 S2 R S3
(k≠0) 都成立吗?
k y x
S1=S2=S3=|k| 所得矩形的面 Q 积S为定值|k|
S1、S2、S3有什么关系?为什么?
• 归纳:
k 在反比例函数 y (k≠0) 中存在以下事实: x 双曲线形矩形的面积S矩=|k|
相关文档
最新文档