1998年全国大学生数学建模竞赛题

合集下载

11539-数学建模-1998年A题《资产投资收益与风险》题目、论文、点评

11539-数学建模-1998年A题《资产投资收益与风险》题目、论文、点评

1998年A题《资产投资收益与风险》题目、论文、点评投资组合与模糊规划模型王正方,赵文明,倪德娟本文讨论了投资的风险与收益的问题,首先我们给出了一个比较完整的模型,然后,考虑投资数额相当大时的一个近似处理模型,并分别用偏好系数加权法和模糊线性规划法进行了求解,接下来,我们又考虑了如何处理投资额相对较小的情况下的最优投资组合情况,引入了绝对收益率进行了较为有效的解决。

投资组合与模糊规划模型.pdf (275.8 KB)投资组合模型伍仕刚,孟宪丽,胡子昂本文建立了考虑交易费用情况下的市场资产组合投资模型,并采用偏好系数加权法对资产的预期收益和总风险进行评价,给出在不同偏好系数下的模型最优解,然后模型讨论了一般情况下的最优投资求解方法,给出定理,在总金额大于某一量值时,可化为线性规划求解。

投资组合模型.pdf (134.92 KB)风险投资分析程文鑫,苑青,骆文润本文主要研究多种资产的组合投资问题,根据题目所给信息,建立了在一定简化条件下的多目标规划模型和单目标风险约束模型,并对问题一与问题二分别使用上述两模型进行求解得到多种投资组合方案,同时对一般情况进行了讨论,最后模型进行了相应的灵敏度分析,讨论了简化条件的适用情况,结果表明模型是较为符合实际的风险投资分析.pdf (241.54 KB)资产投资收益与风险模型陈定涛,蒋浩,肖红英本文应用多目标决策方法建立模型,并通过简化,成为一个单目标线性规划问题。

计算后得到了一个合乎公司要求的、净收益尽可能大,而总体风险尽可能小的最优方案,如下所示: 问题1的最佳投资方案对表二中的数据进行同样的计算和分析,也获得了一个理想的投资方案;从而证明了我们的模型具有一般性。

资产投资收益与风险模型.pdf (298.22 KB)资本市场的最佳投资组合闫珺,王璐,韩嘉睿市场上有多种可提供投资者选择的资产。

本文试图对各种收益和风险进行分析,在一定的标准下给出全部资产组合的效益前沿,即有效资产组合,为投资者提供参考。

1998年全国大学生数学建模竞赛题

1998年全国大学生数学建模竞赛题

1998年全国大学生数学建模竞赛题目B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。

今年夏天该县遭受水灾。

为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。

巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

(1) 若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

(2) 假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

(3) 在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

(4) 若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

灾情巡视路线模型摘要本文将求最佳巡视路线间题转化为图论中求最佳推销员回路(哈米尔顿回路)的问题,并用近似算法去寻求近似最优解。

对赋权图中的路径分组问题定义了均衡度用以衡量分组的均衡性。

对问题1和问题2先定出几个分的准则进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均衡分组和每组的近似最佳推销员回路。

对问题1,运用求任意两点间最短路的Floyd算法,得出总路程较短且各组尽可能均衡的路线,各组的巡视路程分别为216.4公里,191.1公里,192.3公里,总路程599.8公里。

对问题2,证明了应至少分为4组,并求出了分为4组时各组的较优巡视路线,各组的巡视时间分别为22.74小时,22.59小时,21.69小时,22.54小时。

对问题3,求出完成巡视的最短时间为6.43小时,并用较为合理的分组的准则,分成22个组对问题4,研究了在不影响分组的均衡条件下, T,t,V的允许变化范围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论。

国赛历届数学建模赛题题目与解题方法

国赛历届数学建模赛题题目与解题方法

历届数学建模题目浏览:1992--20091992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年 (A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年 (A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康)1999年 (A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年 (A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年 (A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年 (A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局 0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析赛题发展的特点:1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

经济数学模型

经济数学模型

1998年全国大学生数学建模竞赛题目
A题 投资的收益和风险
市场上有 n 种资产(如股票、债券、…)Si ( i=1,…,n)供投资者选择,某公司有数额为 M 的一笔 相当大的资金可用作一个时期的投资,公司财务分析人员对 这 n 种资产进行了评估,估算出在这一时期内购买Si的平 均收益率为ri,并预测出购买Si的风险损失率为qi。考虑到 投资越分散,总的风险越小,公司确定,当用这笔资金购买 若干种资产时,总体风险可用所投资的Si中最大的一个风险 来度量。
y
2
1
x
0
2
4
6
8
-1
-2
这样一来,每一条与水平直线Y=-1相遇的折线唯一地确定
一条这种从(0,0)到(m+n , n-m -2)的新折线。
设向上的线段条数为U,向下的线段条数为D,则对于新折线有
U+D=m+n
1*U+(-1)D=-(m-n)-2
两式相加即得
2U=2n-2 可见向上的线段条数为
U=n-1 向下的线段条数为
1.5
2
198
S3 23
5.5
4.5 52
S4 25
2.6
6.5 40
试给该公司设计一种投资组合方案,即用给定的资
金M,有选择地购买若干种资产或存银行生息,使 净收益尽可能大,而总体风险尽可能小。
2)试就一般情况对以上问题进行讨论,并利用以下数据 进行计算。
Si
Ri(%) Qi(%) Pi(%) Ui(元)
(2) 若记存款为1,并用向上的线段来表示, 取款为-1 ,并用向下的线段来表示,
则这一天内2m个储户随意地来存取款的可能 排列分别对应一条从(0,b)到(2m,b)的折线,而无款可 取的情况当且仅当存取款余额出现负值时发生,此时其对应 的折线将穿过X而与水平直线Y=-1相遇。从而

1998年世界大学生数学竞赛初试试题及详细答案

1998年世界大学生数学竞赛初试试题及详细答案
1 2 1 2
k
1 2
2 − 2(x − 1 2 ) . If (1) holds for
k 1 2 2
1 2
− 22 −1 −2(x k+1 − 22 −1 (x −
− 22
1 2 k 2 2 −1 2) 1 (x − 2 ) −
which is (2) for n = k + 1. Using (1) we can compute the integral,
2
1 Because h(0) = h(1) = − 2 , there exists a real number 0 < η < 1 for which h (η ) = 0. But g = f 2 · h , and we are done. b) If f has at least one zero, let z1 be the first one and z2 be the last one. (The set of the zeros is closed.) By the conditions, 0 < z1 ≤ z2 < 1. The function f is positive on the intervals [0, z1 ) and (z2 , 1]; this implies that f (z1 ) ≤ 0 and f (z2 ) ≥ 0. Then g (z1 ) = f (z1 ) ≤ 0 and g (z2 ) = f (z2 ) ≥ 0, and there exists a real number η ∈ [z1 , z2 ] for which g (η ) = 0. 2 the conditions hold and f · f + f is constantly 0. Remark. For the function f (x) = x+1

1996年全国大学生数学建模竞赛题目A题最优捕鱼策略B题节水

1996年全国大学生数学建模竞赛题目A题最优捕鱼策略B题节水

1996年全国大学生数学建模竞赛题目...................................................................... 错误!未定义书签。

A题最优捕鱼策略.............................................................................................. 错误!未定义书签。

B题节水洗衣机................................................................................................ 错误!未定义书签。

1997年全国大学生数学建模竞赛题目...................................................................... 错误!未定义书签。

A题零件的参数设计........................................................................................ 错误!未定义书签。

B题截断切割.................................................................................................... 错误!未定义书签。

1998年全国大学生数学建模竞赛题目...................................................................... 错误!未定义书签。

A题投资的收益和风险...................................................................................... 错误!未定义书签。

1998全国大学生数学建模竞赛全国一、二等奖获奖名单

1998全国大学生数学建模竞赛全国一、二等奖获奖名单

尚寿亭 孔令彬 王玉学 教师组 尚寿亭
一等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖
1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1
徐松艳吕 尚寿亭 馨 张刚 田家国吴小 教师组 丽 夏传刚
上海赛 区:
上海交通 大学 中国纺织 大学 中国纺织 大学 中国纺织 大学 华东师范 大学 华东理工 大学 上海大学
浙江赛 区:
杭州电子 工业学院 浙江工业 大学 杭州电子 工业学院 杭州电子 工业学院 杭州电子 工业学院 浙江大学
王正方赵文 教练组 明 倪德娟 虞磊品史飞 指导组 云 王海澜 伍仕刚孟宪 教练组 丽 胡子昂
一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 二等奖
季 凯兰海 华 石 娟 刘锡兵吴 杰 马军棋 杨 骏张子 健 刘自强 浙江大学 肖 菲胡凌 宣 忻 栋
宋 珍
二等奖 二等奖
韩金舫
山西赛 区:
山西财经 大学 华北工学 院 山西大学
李玉国刘菊 数模教练 一等奖 红 张峰沁 组
曾劲松俞 杰 薛大雷 韩 杰葛 亮 郭卿 山西大学 李晋斌孙成 宇 梁云峰
雷英杰
一等奖
太原理工 大学 太原理工 大学 华北工学 院 华北工学 院 华北工学 院
康 凯杨 帆 孙美菊 谭 海蔺金 冯增朝 斗 郝志刚 郑龙涛刘 魏福义 飙 徐清宇 唐有海王景 潘晋孝 文 杨晓成 石 萍刘根 李有文 福 唐大勇
戚桂杰 程钧谟 指导组 张来亮 王子亭
亓 健
指导组
邓 登贾东 指导组 宁 刘 睿 王晓明陈 宿小迪 伟 李权
河南赛 区:
郑州大学 李 迪李
王 杰
一等奖 一等奖
军 杨小正 解放军信 寇晓蕤眭新 韩中庚 息工程学 光 曾俊杰

CUMCM历年赛题一览

CUMCM历年赛题一览

中国大学生数学建模竞赛(CUMCM)历年赛题一览CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览1992年A.施肥效果分析问题(北京理工大学:叶其孝)B.实验数据分解问题(复旦大学:谭永基)1993年A.非线性交调的频率设计问题(北京大学:谢衷洁)B.足球排名次问题(清华大学:蔡大用)1994年A.逢山开路问题(西安电子科技大学:何大可)B.锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年A.飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)B.天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年A.最优捕鱼策略问题(北京师范大学:刘来福)B.节水洗衣机问题(重庆大学:付鹂)1997年A.零件参数设计问题(清华大学:姜启源)B.截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年A.投资的收益和风险问题(浙江大学:陈淑平)B.灾情巡视路线问题(上海海运学院:丁颂康)1999年A.自动化车床管理问题(北京大学:孙山泽)B.钻井布局问题(郑州大学:林诒勋)C.煤矸石堆积问题(太原理工大学:贾晓峰)2000年A.DNA序列分类问题(北京工业大学:孟大志)B.钢管订购和运输问题(武汉大学:费甫生)C.飞越北极问题(复旦大学:谭永基)D.空洞探测问题(东北电力学院:关信)2001年A.血管的三维重建问题(浙江大学:汪国昭)B.公交车调度问题(清华大学:谭泽光)C.基金使用计划问题(东南大学:陈恩水)2002年A.车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)B.彩票中的数学问题(解放军信息工程大学:韩中庚)C.赛程安排问题(清华大学:姜启源)2003年A.SARS的传播问题(组委会)B.露天矿生产的车辆安排问题(吉林大学:方沛辰)C.抢渡长江问题(华中农业大学:殷建肃)2004年A.奥运会临时超市网点设计问题(北京工业大学:孟大志)B.电力市场的输电阻塞管理问题(浙江大学:刘康生)C.酒后开车问题(清华大学:姜启源)D.招聘公务员问题(解放军信息工程大学:韩中庚)2005年A.长江水质的评价和预测问题(解放军信息工程大学:韩中庚)B.DVD在线租赁问题(清华大学:谢金星等)C.雨量预报方法的评价问题(复旦大学:谭永基)2006年A.出版社的资源配置问题(北京工业大学:孟大志)B.艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)C.易拉罐的优化设计问题(北京理工大学:叶其孝)D.煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年A.中国人口增长预测问题(清华大学:唐云)B.乘公交,看奥运问题(吉林大学:方沛辰,国防科大:吴孟达)C.手机“套餐”优惠几何问题(解放军信息工程大学:韩中庚)D.体能测试时间安排问题(全国组委会)。

大学生数学建模

大学生数学建模

第2章大学生数学建模竞赛简介大学生数学建模竞赛在20世纪八十年代产生于美国。

我国应用数学家在国际交流中,深感美国的高科技水平及先进的大学教育理念对国家发展进步所起的推动作用,便积极呼吁、发起、组织中国的大学生数学建模竞赛,1996年,由教育部高教司和中国工业与应用数学学会共同主办了首届全国大学生数学建模竞赛,为我国一年一度的大学生数学建模竞赛拉开了序幕。

§2.1 数学建模竞赛的兴起1.Putnam(普特南)数学竞赛Putnam(普特南)家族几代人都擅长数学,关心数学教育,竞赛的首创者是William Lowell Putnam,他曾在美国著名的哈佛大学数学系任职(后来当过校长),1921年撰文论述仿照奥林匹克运动会举办大学生数学竞赛的好处,得到他的妻兄、哈佛大学校长A.L.洛厄尔的支持,在20世纪20年代末举办过几次校际竞赛作为实验。

1935年逝世,他的遗孀秉承其遗志,设立了一笔12.5万美元的普特南基金会,并命他的两个儿子执行,这件事得到他们全家的挚友、著名美国数学家G.D.伯克霍夫的支持,伯克霍夫认为,再没有一门学科比数学更易于通过考试来测定能力的了。

G.D.伯克霍夫起草了竞赛的四项规定:①遵照普特南的遗愿,各校应派代表队参加,以集体成绩为自己的学校争取荣誉,代表队由三人组成,另外还可派个别选手参加,这对于派不出三个高水平学生组成代表队的一些较小的学校尤为相宜。

②由美国数学会管理,该协会是美国大学数学教师的专业组织,不但名正言顺,而且便于动员和组织各校参加竞赛。

③给优胜队及个人颁发奖金和予以荣誉鼓励。

④给个人第一名提供在哈佛大学攻读“普特南研究学位”和奖学金。

首届普特南数学竞赛于1938年4月16日在哈佛大学举行, 1943年~1945年因第2次世界大战暂停了3届,到1946年第6届又恢复了,这时已由G.D.伯克霍夫之子B伯克霍夫经管此事,竞赛的组织也越来越完善,迄今已举行了70届,每年有数百所大学,数千名大学生参加,许多这一活动造优胜者,后来成为著名的科学家、数学家和企业家。

1998-2015数学建模真题分析

1998-2015数学建模真题分析
养老金制度怎么达到最合理分配
预测优化
社会学人口学
MATLAB二次拟合灰色预测(GM1,1)模型Logistic模型
均值法
D
天然肠衣搭配问题
最合理使用肠衣使尽量不浪费
优化
食品学细菌学
整数线性规划优化搭配
MATLAB lingo
2012
A
葡萄酒的评价
对葡萄酒质量的判别
评价
酒文化酿造学质量评价
双重多因素分析0-1数据分析排序检验法关联性分析Alpha模型
优化
金融、投资
线性规划
线性规划
D
公交车调度
设计便于操作的全天的公交车调度方案
优化
交通运输
多目标非线性规划
线性规划
2002
A
车灯线光源的优化设计
在某一设计规范标准下确定线光源的长度
优化
光学、物理学、能源
数值模拟,微元法,连续模型,Jacobi行列式,非线性规划
数值模拟,微元法,
' \( q+ v9 G0 F; f"`0 J" N非线性规划
优化
光学、物理学、能源
连续模型;模拟散斑;微元法
反射原理
D
赛程安排
如何安排赛程使对各队来说都尽量公平
优化
统计、运筹
排除一假设法,最大号固定右上角的逆时针轮转法;同余理论;最小号固定的双向轮转法
排除一假设法;逆时针轮转法;双向轮转法
2003
A
SARS的传播
针对附件评价其合理性和实用性;搜集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测
轨道模型,图论
D
会议筹备
制定宾馆、会议室、租车的合理方案

1998年全国大学生数学建模竞赛题

1998年全国大学生数学建模竞赛题

B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。

今年夏天该县遭受水灾。

为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。

巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

(1) 若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

(2) 假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

(3) 在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

(4) 若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

灾情巡视路线模型摘要本文将求最佳巡视路线间题转化为图论中求最佳推销员回路(哈米尔顿回路)的问题,并用近似算法去寻求近似最优解。

对赋权图中的路径分组问题定义了均衡度用以衡量分组的均衡性。

对问题1和问题2先定出几个分的准则进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均衡分组和每组的近似最佳推销员回路。

对问题1,运用求任意两点间最短路的Floyd算法,得出总路程较短且各组尽可能均衡的路线,各组的巡视路程分别为公里,公里,公里,总路程公里。

对问题2,证明了应至少分为4组,并求出了分为4组时各组的较优巡视路线,各组的巡视时间分别为小时,小时,小时,小时。

对问题3,求出完成巡视的最短时间为小时,并用较为合理的分组的准则,分成22个组对问题4,研究了在不影响分组的均衡条件下, T,t,V的允许变化范围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论。

关键词:最佳推销员回路问题哈米尔顿回路赋权图近似算法均衡度一、问题重述1998年夏天某县遭受水灾。

1998年数学建模a题 -回复

1998年数学建模a题 -回复

1998年数学建模a题在1998年的数学建模竞赛中,a题是一个备受关注的话题。

本文将对该题进行深入的探讨和分析,希望可以对广大数学爱好者和参与建模竞赛的学生们有所帮助。

一、题目背景1.1 1998年数学建模a题的背景是什么?1998年的数学建模a题涉及到了一个热点问题,在当时引起了广泛的关注。

该题的背景一定程度上反映了当时社会和科技的发展状况,具有重要的现实意义。

1.2 为什么要关注该题的背景?了解题目背景可以帮助我们更好地理解问题的提出背景和意义,有助于我们从更宏观的角度去思考问题,为后续的解题提供更深刻的思路。

二、题目内容2.1 1998年数学建模a题的具体内容是什么?在1998年数学建模a题中,具体涉及到了哪些数学模型和计算方法?学生们需要如何处理这些内容?这些内容是否存在着具体的数学解法和结论?2.2 学生们应该如何理解并解答该题?在面对复杂的数学建模题目时,学生们应该如何切入问题,理清思路,合理运用数学知识和方法进行解题?有哪些经典的解题思路和方法可以应用在该题上?三、解题技巧3.1 1998年数学建模a题需要哪些数学技巧?在解答该题时,学生们需要具备哪些数学知识和技巧?例如概率论、统计学、微分方程等数学工具是否需要被灵活运用?学生们需要通过哪些途径去获取这些技巧和知识?3.2 如何培养解题思维和创新能力?解答数学建模题目不仅仅是考验学生对数学知识的掌握程度,更考验学生的解题思维和创新能力。

鉴于此,我们有必要探讨一下如何提升学生的解题思维和创新能力,为他们在数学建模竞赛中取得更好的成绩提供有益的借鉴和指导。

四、总结1998年的数学建模a题涉及到了许多重要的数学问题和解题思路,解答该题对培养学生解题思维和创新能力具有重要意义。

我们希望通过本文的探讨和分析,可以对广大数学爱好者和参与建模竞赛的学生们有所启发和帮助,为他们在数学建模竞赛中取得更好的成绩提供有益的借鉴和指导。

为了更深入地探讨1998年数学建模a题,我们可以从具体的数学模型和计算方法、解题技巧、以及学生们在解题过程中可能遇到的困难等方面进行更详细的讨论。

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目(2010-09-28 21:58:01)分类:专业教学标签:数学建模应用数学模型教育一、数学建模的内涵(一)数学建模的概念数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。

(二)应用数学模型应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。

通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。

(四)数学建模的指导思想数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

(五)数学建模的意义数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。

通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。

1.培养创新意识和创造能力;2.训练快速获取信息和资料的能力;3.锻炼快速了解和掌握新知识的技能;4.培养团队合作意识和团队合作精神;5.增强写作技能和排版技术;6.训练人的逻辑思维和开放性思考方式。

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题

(浙江大学:刘祥官,李吉 分析法、PETRIБайду номын сангаас法、图论方
此)
鸾)
法、排队论方法
最优捕鱼策略问题(北京师范 大学:刘来福)
微分方程、积分、优化(非线性 规划)
节水洗衣机问题(重庆大学: 付鹂)
非线性规划
零件参数设计问题(清华大 学:姜启源)
截断切割问题(复旦大学:谭 微积分、非线性规划、随机模拟 永基,华东理工大学:俞文
微分方程
数码相机定位
非线性方程模型
制动器试验台的控制方法分析
DVD在线租赁问题(清华大学: 谢金星等)
GM
0-1规划 多目标规划
艾滋病疗法的评价及疗效的预
测(天大:边馥萍)
乘公交,看奥运(吉大:方沛
辰,国防科大:吴孟达)
高等教育学费标准探讨
(开放性题目)
眼科病床的合理安排
1999 2000 2001
拟合、规划
足球排名次问题(清华大学: 矩阵论、图论、层次分、整数
蔡大用)
规划
逢山开路问题(西安电子科技 大学:何大可)
图论、插值、动态规划
锁具装箱问题(复旦大学:谭 永基,华东理工大学:俞文 图论、组合数学 此)
飞行管理问题(复旦大学:谭
天车与冶炼炉的作业调度问题 非线性规划、动态规划、层次
永基,华东理工大学:俞文 非线性规划、线性规划
酒后开车问题(清华大学:姜 启源)
微分方程
雨量预报方法的评价问题(复 旦大学:谭永基)
模糊评价 插值
易拉罐形状和尺寸的最优设计
(北理工:叶其孝)
手机“套餐”优惠几何(信息
工程大学:韩中庚)
地面搜索
一笔画问题、数学规划模型

1998年世界大学生数学竞赛复试试题及详细答案

1998年世界大学生数学竞赛复试试题及详细答案
5th INTERNATIONAL MATHEMATICS COMPETITION FOR UNIVERSITY STUDENTS July 29 - August 3, 1998, Blagoevgrad, Bulgaria Second day PROBLEMS AND SOLUTION
Problem 1. (20 points) Let V be a real vector space, and let f, f1 , f2 , . . . , fk be linear maps from V to I R. Suppose that f (x) = 0 whenever f1 (x) = f2 (x) = . . . = fk (x) = 0. Prove that f is a linear combination of f1 , f2 , ..., fk . Solution. We use induction on k . By passing to a subset, we may assume that f1 , . . . , fk are linearly independent. Since fk is independent of f1 , . . . , fk−1 , by induction there exists a vector ak ∈ V such that f1 (ak ) = . . . = fk−1 (ak ) = 0 and fk (ak ) = 0. After normalising, we may assume that fk (ak ) = 1. The vectors a1 , . . . , ak−1 are defined similarly to get fi (aj ) = 1 if i = j 0 if i = j.

数学建模入门基本知识

数学建模入门基本知识

数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。

不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。

”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。

如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。

不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

1998全国大学生数学建模大赛试题

1998全国大学生数学建模大赛试题

1998年全国大学生数学建模竞赛题目A题投资的收益和风险( i=1,…n) 供投资者选择,某公司市场上有n种资产(如股票、债券、…)Si有数额为M的一笔相当大的资金可用作一个时期的投资。

公司财务分析人员对这的平均收益率为,并预测出n种资产进行了评估,估算出在这一时期内购买Si购买S的风险损失率为。

考虑到投资越分散,总的风险越小,公司确定,当i中最大的一个风险来用这笔资金购买若干种资产时,总体风险可用所投资的Si度量。

购买S要付交易费,费率为,并且当购买额不超过给定值时,交易费按购i买计算(不买当然无须付费)。

另外,假定同期银行存款利率是, 且既无交易费又无风险。

(=5%)1.已知n = 4时的相关数据如下:2.试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。

3.试就一般情况对以上问题进行讨论,并利用以下数据进行计算。

B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。

今年夏天该县遭受水灾。

为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。

巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

1.若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

2.假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

3.在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

4.若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

1998年全国大学生数学建模竞赛题目A题投资的收益和风险( i=1,…n) 供投资者选择,某公司市场上有n种资产(如股票、债券、…)Si有数额为M的一笔相当大的资金可用作一个时期的投资。

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

1998年大学生数学建模优秀论文投资收益和风险问题

1998年大学生数学建模优秀论文投资收益和风险问题

基本假设
一, 投资行为只能发生在开始阶段,中途不得撤资或追加投资。 二, 任一资产可购买量足够多,足以吸纳全部投资资金。 三,几种资产相互之间不会产生影响,例如股市的涨跌不会影响到债券的 涨跌。 四,财务分析人员对平均收益率和风险的预测值是可信的。 五,M 值足够大,大至可忽略 ui 的影响。(因为一般情况下企业的投资动辄 成百上千万元,而 ui 仅为数百元,故可忽略其影响) 六,公司总会选择满意度高的方案。
? , 模型假设:由问题分析可知,在问题 1 的情况下,风险值只能是 2.5%, 1.5%,5.5%,2.6%,0%中的某一个。
? , 模型的建立与求解: 当风险为 2.5%时,此时购买 S1 的资金超过了 M 的一半。剩余的资金为了追 求最大收益,都将会购买净收益率最大的资产。最后发现所有的资金全部购买 了 S1。净收益率为 27%。 当风险为 1.5%时,可得购买 S1 和 S2 的资金大约各占一半,S2 所耗资金略多 一点。净收益率约为 23%。 当风险为 5.5%时,可得购买 S1 和 S3 的资金大约各占一半,S3 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 2.6%时,可得购买 S1 和 S4 的资金大约各占一半,S4 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 0%时,可得购买 S1 和 S0 的资金大约各占一半,S0 所耗资金略多一 点。净收益率约为 16%。 通过对以上结果的分析,我们发现模型中未体现出总风险随投资的分散而减 小,另外当有某种投资所耗资金超过 M 的一半时,无论其余的资金作何种投资, 总风险都不会发生变化。这些显然都是不符合实际情况的,因此我们需要对条 件进行完善。
当各资产投资份额不同时,即给 S1,S2,S3,S4,S0(银行)投资各不相同时, 将会得到市场总收益与市场总风险的对应关系,在二维坐标(Rj-Q)中其表示 为二维图形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1998年全国大学生数学建模竞赛题目B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。

今年夏天该县遭受水灾。

为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。

巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

(1) 若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

(2) 假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

(3) 在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

(4) 若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

?灾情巡视路线模型摘要本文将求最佳巡视路线间题转化为图论中求最佳推销员回路(哈米尔顿回路)的问题,并用近似算法去寻求近似最优解。

对赋权图中的路径分组问题定义了均衡度用以衡量分组的均衡性。

对问题1和问题2先定出几个分的准则进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均衡分组和每组的近似最佳推销员回路。

对问题1,运用求任意两点间最短路的Floyd算法,得出总路程较短且各组尽可能均衡的路线,各组的巡视路程分别为公里,公里,公里,总路程公里。

对问题2,证明了应至少分为4组,并求出了分为4组时各组的较优巡视路线,各组的巡视时间分别为小时,小时,小时,小时。

对问题3,求出完成巡视的最短时间为小时,并用较为合理的分组的准则,分成22个组对问题4,研究了在不影响分组的均衡条件下, T,t,V的允许变化范围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论。

关键词:最佳推销员回路问题哈米尔顿回路赋权图近似算法均衡度一、问题重述1998年夏天某县遭受水灾。

为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各17个乡(镇)、35个村巡视。

巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。

(1) 若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

(2) 假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。

(3) 在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

(4) 若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。

二、问题分析本题给出了某县的公路网络图,要求的是在不同的条件下,灾情巡视的最分组方案和路线.将每个乡(镇)或村看作一个图的顶点,各乡镇、村之间的公路看作此图对应顶点间的边,各条公路的长度(或行驶时间)看作对应边上的权,所给公路网就转化为加权网络图,问题就转化图论中一类称之为旅行售货员问题,即在给定的加权网络图中寻找从给定点O出发,行遍所有顶点至少一次再回到点O ,使得总权(路程或时间)最小.本题是旅行售货员问题的延伸-多旅行售货员问题.本题所求的分组巡视的最佳路线,也就是m 条经过同一点并覆盖所有其他顶点又使边权之和达到最小的闭链(闭迹).如第一问是三个旅行售货员问题,第二问是四个旅行售货员问题. 众所周知,旅行售货员问题属于NP 完全问题,即求解没有多项式时间算法.显然本问题更应属于NP 完全问题. 有鉴于此,一定要针对问题的实际特点寻找简便方法,想找到解决此类问题的一般方法是不现实的,对于规模较大的问题可使用近似算法来求得近似最优解.三、模型假设1.汽车在路上的速度总是一定,不会出现抛锚等现象;忽略天气、故障等因素的影响。

2.巡视当中,在每个乡镇、村的停留时间一定,不会出现特殊情况而延误时间;3.每个小组的汽车行驶速度完全一样;4.分组后,各小组只能走自己区内的路,不能走其他小组的路,除公共路外。

四、符号说明(,)w i j ……………………………………..任意两点i ,j 间的间距。

i e ……………………………………..各点的停留时间,即点权。

V ………………………………………汽车行驶速度。

ij d ………………………………从任意点i 至点j 的时间,则(,)/ij d w i j V =。

五、模型建立与求解公路网图中,每个乡(镇)或村看作图中的一个节点,各乡(镇)、村之间的公路看作图中对应节点间的边,各条公路的长度(或行驶时间)看作对应边上的权,所给公路网就转化为加权网络图,问题就转化为在给定的加权网络图中寻找从给定点O 出发,行遍所有顶点至少一次再回到O 点,使得总权(路程或时间)最小,此即最佳推销员回路问题。

在加权图G 中求最佳推销员回路问题是NP —完全问题,我们采用一种近似算法求出该问题的一个近似最优解,来代替最优解,算法如下:算法一 求加权图G (V ,E )的最佳推销员回路的近似算法:1. 用图论软件包求出G 中任意两个顶点间的最短路,构造出完备图),(E V G '',()E y x '∈∀,, ()()y x Mind y x G ,,=ω;2. 输入图G '的一个初始H 圈;3. 用对角线完全算法(见[23])产生一个初始H 圈;4. 随机搜索出G '中若干个H 圈,例如2000个;5. 对第2、3、4步所得的每个H 圈,用二边逐次修正法进行优化,得到近似最佳H 圈;6. 在第5步求出的所有H 圈中,找出权最小的一个,此即要找的最佳H 圈的近似解.由于二边逐次修正法的结果与初始圈有关,故本算法第2、3、4步分别用三种方法产生初始圈,以保证能得到较优的计算结果。

问题一:此问题是多个推销员的最佳推销员回路问题.即在加权图G 中求顶点集V 的划分12,,.......n V V V ,将G 分成n 个生成子图[][][]n V G V G V G ,......,21,使得(1)顶点i O V ∈ i=1,2,3……n(2)()1n i i V V G ==U (3)()()(),i ji j i i w Max C w C Max w C α-≤,其中i C 为i V 的导出子图[]i V G 中的最佳推销员回路,()i C ω为i C 的权,i ,j=1,2,3……n(4)()1ni i w C Min ==∑定义 称()()(),0i j i j i i Max w C w C Max w C α-=为该分组的实际均衡度。

α为最大容许均衡度。

显然100≤≤α,0α越小,说明分组的均衡性越好.取定一个α后,0α与α满足条件(3)的分组是一个均衡分组.条件(4)表示总巡视路线最短。

此问题包含两方面:第一、对顶点分组;第二、在每组中求最佳推销员回路,即为单个推销员的最佳推销员问题。

由于单个推销员的最佳推销员回路问题不存在多项式时间内的精确算法,故多个推销员的问题也不存在多项式时间内的精确算法.而图中节点数较多,为53个,我们只能去寻求一种较合理的划分准则,对图11-9进行粗步划分后,求出各部分的近似最佳推销员回路的权,再进一步进行调整,使得各部分满足均衡性条件(3)。

从O 点出发去其它点,要使路程较小应尽量走O 点到该点的最短路.故用图论软件包求出O 点到其余顶点的最短路,这些最短路构成一棵O 为树根的树,将从O 点出发的树枝称为干枝,见图11-10,从图中可以看出,从O 点出发到图11-10 O 点到任意点的最短路图(单位:公里)其它点共有6条干枝,它们的名称分别为①,②,③,④,⑤,⑥。

根据实际工作的经验及上述分析,在分组时应遵从以下准则:准则一:尽量使同一干枝上及其分枝上的点分在同一组;准则二:应将相邻的干枝上的点分在同一组;准则三:尽量将长的干枝与短的干枝分在同一组.由上述分组准则,我们找到两种分组形式如下:分组一:(⑥,①),(②,③),(⑤,④)分组二:(①,②),(③,④),(⑤,⑥)显然分组一的方法极不均衡,故考虑分组二。

对分组二中每组顶点的生成子图,用算法一求出近似最优解及相应的巡视路线.使用算法一时,在每个子图所构造的完备图中,取一个尽量包含图11-10中树上的边的H 圈作为其第2步输入的初始圈。

分组二的近似解见表1。

因为该分组的均衡度0α=()()()=-=-=9.2415.1259.2413,2,121i i C Max C C ωωω%所以此分法的均衡性很差。

为改善均衡性,将第Ⅱ组中的顶点C ,2,3,D ,4分给第Ⅲ组(顶点2为这两组的公共点),重新分组后的近似最优解见表2。

因该分组的均衡度=0α()===4.2163,2,113i i C Max ω% 所以这种分法的均衡性较好。

问题二由于T=2小时,t=1小时,V=35公里/小时,需访问的乡镇共有17个,村共有35个.计算出在乡(镇)及村的总停留时间为17⨯2+35=69小时,要在24小时内完成巡回,若不考虑行走时间,有: 2469<i(i 为分的组数).得i 最小为4,故至少要分4组。

由于该网络的乡(镇)、村分布较为均匀,故有可能找出停留时间尽量均衡的分组,当分4组时各组停留时间大约为25.17469=小时,则每组分配在路途上的时间大约为=小时.而前面讨论过,分三组时有个总路程公里的巡视路线,分4组时的总路程不会比公里大太多,不妨以公里来计算.路上时间约为17358.599=小时,若平均分配给4个组,每个组约需417=小时〈小时,故分成4组是可能办到的。

现在尝试将顶点分为4组.分组的原则:除遵从前面准则一、二、三外,还应遵从以下准则:准则四:尽量使各组的停留时间相等。

用上述原则在图11-10上将图分为4组,同时计算各组的停留时间,然后用算法一算出各组的近似最佳推销员巡回,得出路线长度及行走时间,从而得出完成巡视的近似最佳时间.用算法一计算时,初始圈的输入与分三组时同样处理。

这4组的近似最优解见表3:加框的表示此点只经过不停留。

该分组实际均衡度0α==-74.2269.2174.22%可以看出,表3分组的均衡度很好,且完全满足24小时完成巡视的要求。

问题三我们发现从O 点巡视H 点的最短时间是所有最短时间中最长的,其距离为公里。

其时间为77.522 6.4335H t =⨯+=小时 因此,T=2小时,t=1小时,V=35公里/小时。

若巡视人员足够多,完成巡视的最短时间为小时。

相关文档
最新文档