用样本估计总体 教学设计

合集下载

用样本估计总体教案

用样本估计总体教案

用样本估计总体【第一课时】【教学目标】1.会画一组数据的频率分布表、频率分布直方图.2.会用频率分布表、频率分布直方图、条形图、扇形图、折线图等对总体进行估计.3.掌握求n个数据的第p百分位数的方法.【教学重难点】1.频率分布表、频率分布直方图.2.用样本估计总体.3.总体百分位数的估计.【教学过程】一、问题导入预习教材内容,思考以下问题:1.绘制频率分布表和频率分布直方图有哪些步骤?2.频率分布直方图有哪些特征?3.如何求n个数据的第p百分位数?二、基础知识1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.三、合作探究1.频率分布表、频率分布直方图、频率分布折线图的绘制角度一:频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4为组距,列表如下:分组频率累计频数频率[41.5,45.5)20.0455[45.5,49.5)70.1591[49.5,53.5)80.1818[53.5,57.5)160.3636[57.5,61.5)50.1136[61.5,65.5)40.0909[65.5,69.5)20.0455频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系:①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二:频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?【解】(1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12.所以样本中不达标的学生人数为150×0.12=18(人).(4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题(1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数.2.条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题:(1)求抽取的学生数;(2)若该校有3000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比.【解】(1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人;喜欢收听《故宫博物院》的男生有30人,女生有15人;喜欢收听于丹析《论语》的男生有30人,女生有38人;喜欢收听易中天《品三国》的男生有64人,女生有42人;喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106 300,由于该校有3000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3000=1060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45 300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越精确.(2)在条形统计图中,各个矩形图的宽度没有严格要求,但高度必须以数据为准,它直观反映了各部分在总体中所占比重的大小.3.折线统计图小明同学因发热而住院,下图是根据护士为他测量的体温所绘制的体温折线图.根据图中的信息,回答以下问题:(1)护士每隔几小时给小明测量一次体温?(2)近三天来,小明的最高体温、最低体温分别是多少?(3)从体温看,小明的病情是在恶化还是在好转?(4)如果连续36小时体温不超过37.2摄氏度的话,可认为基本康复,那么小明最快什么出院?【解】(1)根据横轴表示的意义,可知护士每隔6小时给小明测量一次体温.(2)从折线统计图中的最高点和最低点对应的纵轴意义,可知最高体温是39.5摄氏度,最低体温是36.8摄氏度.(3)从图中可知小明的体温已经下降,并趋于稳定,因此病情在好转.(4)9月8日18时小明的体温是37摄氏度.其后的体温未超过37.2摄氏度,自9月8日18时起计算,连续36小时后对应的时间为9月10日凌晨6时.因此小明最快可以在9月10凌晨6时出院.(1)绘制折线统计图时,第一步,确定直角坐标系中横、纵坐标表示的意义;第二步,确定一个单位长度表示一定的数量,根据数量的多少描出各点;第三步,用直线段顺次连接即可.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.4.扇形统计图下图是A ,B 两所学校艺术节期间收到的各类艺术作品的情况的统计图:(1)从图中能否看出哪所学校收到的水粉画作品数量多?为什么?(2)已知A 学校收到的剪纸作品比B 学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?【解】(1)不能.因为两所学校收到艺术作品的总数不知道.(2)设A 学校收到艺术作品的总数为x 件,B 学校收到艺术作品的总数为y 件,则x -5%y =20,y -40%x =100,=500,=600,即A 学校收到艺术作品的总数为500件,B 学校收到艺术作品的总数为600件.(1)绘制扇形统计图时,第一步计算各部分所占百分比以及对应圆心角的度数;第二步在圆中按照上述圆心角画出各个扇形并恰当标注.(2)扇形统计图表示总体的各部分之间的百分比关系,但不同总量下的扇形统计图,其不同的百分比不可以作为比较的依据.5.百分位数的计算现有甲、乙两组数据如下表所示.序号1234567891011121314151617181920甲组1222233355668891010121313乙组00001123456677101414141415试求甲、乙两组数的25%分位数与75%分位数.【解】因为数据个数为20,而且20×25%=5,20×75%=15.因此,甲组数的25%分位数为x5+x62=2+32=2.5;甲组数的75%分位数为x15+x162=9+102=9.5.乙组数的25%分位数为x5+x62=1+12=1,乙组的75%分位数为x15+x162=10+142=12.求百分位数时,一定要将数据按照从小到大的顺序排列.【课堂检测】1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()解析:选D.用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是条形统计图.注意B选项中的图不能称为统计图.2.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2700,3000)g的频率为()A.0.1B.0.2C.0.3D.0.4解析:选C.由题图可得,新生儿体重在[2700,3000)g的频率为0.001×300=0.3,故选C.3.观察下图所示的统计图,下列结论正确的是()A.甲校女生比乙校女生多B.乙校男生比甲校男生少C.乙校女生比甲校男生少D.甲、乙两校女生人数无法比较解析:选D.图中数据只是百分比,甲、乙两个学校的学生总数不知道,因此男生与女生的具体人数也无法得知.【第二课时】【教学目标】1.理解样本数据标众数、中位数、平均数的意义和作用,学会计算数据的众数、中位数、平均数.2.理解样本数据方差、标准差的意义和作用,学会计算数据的方差、标准差.【教学重难点】会用样本的基本数字特征来估计总体的基本数字特征.【教学过程】一、基础知识1.众数、中位数、平均数众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n个数x1,x2,…,x n,那么x=1n(x1+x2+…+x n)叫做这n个数的平均数.思考:平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?答案:平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.2.方差、标准差标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s表示.s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(2)标准差的平方s2叫做方差.s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2](x n是样本数据,n是样本容量,x是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x .二、合作探究1.众数、中位数、平均数的计算(1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为()A .85,85,85B .87,85,86C .87,85,85D .87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为()A .2,5B .5,5C .5,8D .8,8答案(1)C(2)C解析(1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x ,所以x =5.又乙组数据的平均数为9+15+10+y +18+245=16.8,所以y =8,所以x ,y 的值分别为5,8.【教师小结】平均数、众数、中位数的计算方法:平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.2.标准差、方差的计算及应用甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?解(1)x甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],得s2甲=3,s2乙=1.2.(3)x甲=x乙,说明甲、乙两战士的平均水平相当.又s2甲>s2乙说明甲战士射击情况波动比乙大.因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.【教师小结】(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.三、课堂总结1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.【课堂检测】1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19B.20C.21.5D.23解析由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.下列关于平均数、中位数、众数的说法中正确的一个是()A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案D3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得的数据,则A,B两样本的下列数字特征对应相同的是() A.众数B.平均数C.中位数D.标准差答案D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关答案B解析由茎叶图知,a1=80+1+5+5+4+55=84,a2=80+4+4+6+4+75=85,故选B.5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.解析设样本数据x1,x2,…,x10的标准差为s,则s=8,可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.。

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案用样本估计总体教案一、教学目标1. 理解样本和总体的区别及样本统计量的意义。

2. 掌握点估计和区间估计的概念及计算方法。

3. 能够运用样本估计方法来进行总体参数的估计。

二、教学内容1. 样本与总体2. 点估计3. 区间估计4. 样本估计方法的应用三、教学过程1. 样本与总体总体是研究对象的全体,而样本是从总体中随机抽取的一部分个体。

研究者往往无法直接获得总体数据,因此需要通过对样本数据的研究来了解总体的性质。

样本统计量是通过对样本数据的测量和统计得到的,它可以用来估计总体参数。

常见的样本统计量包括样本均值、样本标准差、样本比例等。

2. 点估计点估计是根据样本数据来估计总体参数的一种方法。

它的基本思想是利用样本统计量来估计总体参数。

点估计的方法有很多种,其中最常用的是样本均值作为总体均值的估计值。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本的平均年龄,然后将样本平均年龄作为总体平均年龄的估计值。

点估计的优点是计算简单直观,但它忽略了估计误差的大小,因此在应用中需要注意。

如果样本容量较大,点估计的精度会更高。

3. 区间估计区间估计是根据样本数据来估计总体参数的一种方法,它相比于点估计更为准确和可靠。

区间估计的基本思想是利用样本统计量来对总体参数建立一个置信区间,从而给出总体参数的估计范围。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本平均年龄和样本标准差,根据置信水平和样本量计算出置信区间,从而得出总体平均年龄的估计范围。

区间估计的优点是考虑了估计误差的大小,能够给出总体参数的估计范围。

但它的计算比较复杂,需要考虑置信水平、样本量、样本标准差等因素。

4. 样本估计方法的应用样本估计方法广泛应用于社会科学、自然科学、医学等多个领域。

它可以用来估计总体平均值、标准差、比例、方差等参数。

在实际研究中,我们需要对样本的选取、样本量的确定、置信水平的选择等进行合理的设计,并结合对总体特征的了解来进行合理的样本估计。

用样本估计总体》课时教学设计

用样本估计总体》课时教学设计

用样本估计总体》课时教学设计本课主要介绍了用样本的频率分布来估计总体分布的方法。

首先通过讨论抽样方法和收集数据的目的来引出估计总体的两种手段:用样本的频率分布估计总体的分布和用样本的数字特征估计总体的数字特征。

然后介绍了频率分布直方图的作法,通过一个例子来说明如何采用抽样调查的方式得到本市的居民月均用水量,并用频率分布直方图来分析数据。

最后讨论了频率分布直方图的纵坐标为何取频率/组距的问题,得出结论:用矩形面积表示频率,总面积为1.本课的重点是会列频率分布表和画频率分布直方图,难点是能通过样本的频率分布估计总体的分布。

2.回顾:上节课我们研究了什么?样本数据分布的可视化方法有哪些?二、新知讲解:1.样本的数字特征1)众数:出现次数最多的数,可能有多个.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.2.样本数字特征的意义1)众数:反映数据的集中趋势,但容易受极端值影响.2)中位数:反映数据的集中趋势,不受极端值影响.3)平均数:反映数据的平均水平,但容易受极端值影响.3.样本数字特征对总体数字特征的估计1)众数:样本众数可以用来估计总体众数.2)中位数:样本中位数可以用来估计总体中位数.3)平均数:样本平均数可以用来估计总体平均数.4.样本数字特征的计算1)众数:出现次数最多的数.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.5.样本数字特征的比较1)众数、中位数、平均数的大小关系与数据的分布有关.2)当数据分布呈正态分布时,三者相等.3)当数据分布不对称时,三者大小关系为:众数<中位数<平均数.三、巩固练:1.练:计算以下数据的众数、中位数、平均数:12,15,18,20,20,25,28.2.作业:P72 3、4题,只计算数字特征.讨论:如何利用样本的频率分布直方图分析规律?下面给出一个图,试着分析。

教学设计3:用样本估计总体

教学设计3:用样本估计总体

第2课时用样本估计总体1.了解分布的意义与作用,会列频率分布表、会画频率分布直方图、频率折线图,茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.【梳理自测】一、用样本的频率分布估计总体的分布1.一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137则样本数据落在(10,40]上的频率为()A.0.13B.0.39C.0.52 D.0.642.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为________.【答案】1.C 2.30◆以上题目主要考查了以下内容:(一)频率分布直方图(1)通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体的分布;另一种是用样本的数字特征估计总体的数字特征.(2)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差).②决定组距与组数.③将数据分组.④列频率分布表.⑤画频率分布直方图.(3)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积总和等于1.(二)频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.(三)茎叶图的优点用茎叶图表示数据有两个突出的优点:一是统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.二、用样本的数字特征估计总体的数字特征1.(教材改编)某工厂生产滚珠,从某批产品中随机抽取8粒,量得直径分别为(单位:mm):14.7,14.6,15.1,15.0,14.8,15.1,15.0,14.9,则估计该厂生产的滚珠直径的平均数为()A.14.8 mm B.14.9 mmC.15.0 mm D.15.1 mm2.(教材改编)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产的零件的中位数是()A.14 B.16C.15 D.171 |8 90 3 53.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.【答案】1.B 2.C 3.6.8◆以上题目主要考查了以下内容: (1)众数,中位数、平均数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ).在频率分布直方图中,中位数左边和右边的直方图的面积应该相等. (2)样本方差、标准差 标准差s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数,标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.【指点迷津】1.一种关系平均数、中位数、众数与频率分布直方图的关系(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标. 2.二个区别直方图与条形图的区别不要把直方图错以为条形图,两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,纵坐标刻度为频率/组距,这是密度,连续随机变量在某一点上是没有频率的.3.三种影响平均数、中位数、众数的影响(1)由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.(2)众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.众数可以有多个.(3)某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当中间是两个数时,中位数为这两个数的平均值,当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.考向一 频率分布直方图的绘制及应用某糖厂为了解一条自动生产线上生产袋装白糖的重量,从1 000袋白糖中,随机抽取100袋并称出每袋白糖的重量(单位:g ),得到如下频率分布表:分组 频数 频率 [485.5,490.5) 10 [490.5,495.5) 20 [495.5,500.5) 50 [500.5,505.5)20 合计100(1)请补充完成频率分布表,并在下图中画出频率分布直方图;(2)根据上述数据估计从这批白糖中随机抽取一袋,其重量在[495.5,505.5]上的概率. 【审题视点】 分别计算各组频率及长方形的高度绘图. 【典例精讲】 (1)第一组P 1=10100=0.1,高度为0.15=0.02,第二组P 2=20100=0.2,高度为0.25=0.04,第三组P 3=50100=0.5,高度为0.55=0.1,第四组P 4=20100=0.2,高度为0.04.频率总和为1. 频率分布直方图如下:(2)依题意知所求的概率为0.5+0.2=0.7.【类题通法】 (1)绘制频率分布直方图时需注意:①制作好频率分布表后可以利用各组的频率之和是否为1来检验该表是否正确;②频率分布直方图的纵坐标是频率组距,而不是频率.(2)由频率分布直方图进行相关计算时,需掌握下列关系式:频率组距×组距=频率.1.(2014·烟台四校联考)据悉山东省高考要将体育成绩作为参考,为此,济南市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0 m (精确到0.1 m )以上的为合格.把所得数据进行整理后,分成6组,并画出频率分布直方图的一部分如图所示.已知从左到右前5个小组对应矩形的高分别为0.04,0.10,0.14,0.28,0.30,且第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出该中位数在第几组内,并说明理由. 解析:(1)由题易知,第6小组的频率为 1-(0.04+0.10+0.14+0.28+0.30)×1=0.14, ∴此次测试的总人数为70.14=50.∴这次铅球测试成绩合格的人数为 (0.28×1+0.30×1+0.14×1)×50=36.(2)直方图中中位数两侧的矩形面积和相等,即频率和相等,前三组的频率和为0.28,前四组的频率和为0.56, ∴中位数位于第4组内.考向二 茎叶图的应用(1)(2012·高考陕西卷)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )1 2 5 2 0 2 3 3 3 1 2 4 4 8 9 4 5 5 5 7 7 8 8 9 5 0 0 1 1 4 7 9 61 7 8A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)(2014·湖南省十校联考)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为________.甲 乙 8 9 7 6 5 x 0 8 1 1 y 6 291 1 6【审题视点】 根据茎叶图中的数及中位数、众数、平均数、极差的概念求解. 【典例精讲】 (1)由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.(2)依题意,甲班学生的平均分85=78+79+85+80+x +80+92+967,故x =5,乙班学生成绩的中位数为83,故其成绩为76,81,81,83,91,91,96,所以y =3,x +y =8.【答案】 (1)A (2)8【类题通法】 (1)众数、中位数与平均数众数、中位数与平均数都是描述一组数据集中趋势的量,其中平均数与每一个样本数据都有关,任何一个数据的改变都会引起平均数的变化.(2)标准差与方差标准差与方差描述了一组数据与平均数的离散程度,反映了一组数据相对于平均数的波动情况,标准差与方差越大,说明这组数据的波动性越大.2.(2014·郑州质检)甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.(填“甲”或“乙”)甲 乙 2 9 1 9 9 1 8 3 6 8 9 8 8 3 27 2 5 8 869解析:由茎叶图可以看出,x 甲=19×(92+81+89×2+72+73+78×2+68)=80,x 乙=19×(91+83+86+88+89+72+75+78+69)≈81.2,x 乙>x 甲,故乙的平均分大于甲的平均分.【答案】乙考向三 统计与概率的综合应用某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(1)求全班的学生人数及分数在[70,80)之间的频数;(2)老师按分层抽样从位于[20,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选2人进行交流,求成绩位于[70,80)分数段中恰2人的概率.【审题视点】 根据茎叶图在[50,60]的频数及频率求总数,进而求[70,80]的频数,根据分层抽样确定[70,80],[80,90],[90,80]的人数比利用古典概型求概率,写分布列.【典例精讲】 (1)由茎叶图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,故全班的学生人数为40.08=50.分数在[70,80)之间的频数等于50-(4+14+8+4)=20.(2)[70,80),[80,90)和[90,100]分数段人数之比为5∶2∶1,故在[70,80)之间有5人,[80,90)间有2人,在[90,100]间有1人.设[70,80)间的5人为a ,b ,c ,d ,e ,其它3人为A ,B ,C ,任取2人,共有28个基本事件:ab ,ac ,ad ,ae ,aA ,aB ,aC ,bc ,bd ,be ,bA ,bB ,bC ,cd ,ce ,cA ,cB ,cC ,de ,dA ,dB ,dC ,eA ,eB ,eC ,AB ,AC ,BC ,其中2人都在[70,80)间的有10个,由古典概型得P =1028=514.【类题通法】 (1)从统计图表中准确获取相关信息是解题关键.(2)明确频率与概率的关系,频率可近似代替概率.(3)此类问题中的概率模型多是古典概型,在求解时,要明确基本事件的构成.3.(2014·郑州市调研)某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;(2)面试时,每位同学抽取两个问题,若两个问题全答错,则不能取得该校的自主招生资格;若两个问题均回答正确且笔试成绩在270分以上,则获A 类资格;其他情况下获B 类资格.现已知某中学有两人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为12,求恰有一名同学获得该高校B 类资格的概率.解析:(1)设第i(i =1,2,…,8)组的频率为f i ,则由频率分布直方图知f 7=1-(0.004+0.01+0.01+0.02+0.02+0.016+0.008)×10=0.12.所以成绩在260分以上的同学的概率 P≈f 72+f 8=0.14, 故这2 000名同学中,取得面试资格的约为280人.(2)不妨设两名同学分别为M 、N ,且M 的笔试成绩在270分以上,则对于M ,答题的可能有M 11,M 10,M 01,M 00,对于N ,答题的可能有N 11,N 10,N 01,N 00,其中角标中的1表示正确,0表示错误,如N 10表示N 同学第一题正确,第二题错误.将两名同学的答题情况列表如下:M 11 M 10 M 01 M 00 N 11 AB BB BB CB N 10 AB BB BB CB N 01 AB BB BB CB N 00ACBCBCCC表中AB 表示M 获A 类资格,N 获B 类资格;BC 表示M 获B 类资格,N 没有获得资格.所以恰有一名同学获得该高校B 类资格的概率为816=12.统计与概率问题的综合解答(2012·高考陕西卷)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率. 【解题指南】 样本容量n =100,每个小长方形的高度代表频数,可根据频率求概率. 【思维流程】从甲品牌统计图中统计小于200的频数20+5. 求其频率作为概率.从两个图中分别统计大于200的频数分别为75和70. 求甲品牌大于200的频率. 计算频率即概率.【解答过程】 (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品共有75+70=145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.【规范建议】 (1)注意本题中的图是频数分布图不是频率分布直方图.(2)指清楚寿命小于200小时,大于200小时的频数便于求频率.1.(2013·高考陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45解析:选D .由图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.2.(2013·高考安徽卷)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数解析:选C .根据分层抽样和系统抽样定义判断A ,B ,求出五名男生和五名女生成绩的方差判断C .A ,不是分层抽样,因为抽样比不同.B ,不是系统抽样,因为随机询问,抽样间隔未知.C ,五名男生成绩的平均数是x -=86+94+88+92+905=90, 五名女生成绩的平均数是y -=88+93+93+88+935=91, 五名男生成绩的方差为s 21=15(16+16+4+4+0)=8, 五名女生成绩的方差为s 22=15(9+4+4+9+4)=6, 显然,五名男生成绩的方差大于五名女生成绩的方差.D ,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.3.(2013·高考湖北卷)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则:(1)平均命中环数为________;(2)命中环数的标准差为________.解析:利用平均值和标准差公式求解.(1)x -=7+8+7+9+5+4+9+10+7+410=7. (2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.【答案】(1)7 (2)24.(2013·高考辽宁卷)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.解析:设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x -7|=3可得x =10或x =4.由|x -7|=1可得x =8或x =6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.【答案】10。

用样本估计总体教学设计

用样本估计总体教学设计

用样本估计总体教学设计教学设计:用样本估计总体一、教学目标1.了解样本和总体的概念以及样本估计总体的原理;2.学会计算样本估计总体的均值和比例;3.掌握样本估计总体的置信区间的计算方法;4.能够应用样本估计总体解决实际问题。

二、教学准备1.教材:教科书《统计学导论》或相关教材;2.工具:电子白板、投影仪等;3.教具:样本数据、计算器;4.多媒体资源:样本估计总体演示视频。

三、教学过程步骤一:导入(10分钟)1.利用多媒体展示样本估计总体的演示视频,引起学生的兴趣;2.通过提问的方式,复习和巩固样本和总体的概念。

步骤二:概念解释(10分钟)1.解释样本估计总体的概念和原理,重点强调样本的随机性和代表性;2.通过例子说明样本估计总体的应用场景,如调查、实验等。

步骤三:样本均值的估计(20分钟)1.介绍样本均值的计算方法和公式;2.给出一个例子,让学生自己计算样本均值;3.引导学生讨论样本均值与总体均值的关系,以及样本均值的抽样分布特点。

步骤四:样本比例的估计(20分钟)1.介绍样本比例的计算方法和公式;2.给出一个例子,让学生自己计算样本比例;3.引导学生讨论样本比例与总体比例的关系,以及样本比例的抽样分布特点。

步骤五:样本估计总体的置信区间(30分钟)1.解释置信区间的概念和意义;2.介绍样本估计总体的置信区间的计算方法和公式;3.分别以样本均值和样本比例为例,给出计算置信区间的步骤;4.给出一个例子,让学生自己计算样本估计总体的置信区间。

步骤六:应用实例(20分钟)1.给出一个实际问题,如班级的学生平均身高的估计;2.让学生通过收集样本数据、计算样本均值和样本估计总体的置信区间来解决问题;3.引导学生讨论置信区间宽度与样本量的关系。

步骤七:总结和拓展(10分钟)1.总结样本估计总体的内容和方法;2.引导学生思考其他样本估计总体的应用场景,并展开讨论。

四、教学方法1.讲授法:通过讲解、示例和演示视频等方式,将抽象的概念解释清楚;2.实践法:让学生通过实际问题的解决来巩固所学知识;3.互动法:通过提问、讨论和小组合作等方式,激发学生积极参与。

初中数学初三数学下册《用样本估计总体》教案、教学设计

初中数学初三数学下册《用样本估计总体》教案、教学设计
4.能够运用所学知识解决实际问题,例如根据调查样本数据估计整个年级学生的平均身高、成绩分布等。
(二)过程与方法
在教学过程中,将采取以下方法来实现教学目标:
1.采用情境导入法,通过具体的生活实例引出总体和样本的概念,激发学生的兴趣和探究欲望。
2.利用小组合作学习,让学生在讨论与分享中理解统计量的计算方法和应用,培养合作意识和团队精神。
3.情境创设:利用多媒体和信息技术,模拟数据收集和处理的过程,让学生在具体的情境中感受数据分析的必要性和实用性。
4.探究学习:鼓励学生通过小组合作的方式,探究如何从样本数据中得出总体的估计值,并讨论不同样本容量和抽样方法对估计结果的影响。
-设计实验:组织学生进行简单的抽样调查,如测量班级学生的身高、体重等,通过实际操作,让学生体验样本估计总体的过程。
具体作业如下:
1.完成课后练习题第1-10题,重点关注统计量的计算和应用。
2.调查本班同学的阅读时间,计算平均阅读时间、中位数和众数,并尝试用样本数据估计全年级同学的阅读时间分布。
3.探讨样本容量对估计结果的影响,结合具体实例进行分析,并撰写分析报告。
4.小组合作项目:以小组为单位,选择一个感兴趣的主题(如全年级学生的运动时间、消费习惯等),进行调查、数据收集和分析,最后撰写一份关于样本估计总体的调查报告。
五、作业布置
为了巩固学生对“用样本估计总体”知识点的理解和应用,我设计了以下几项作业:
1.基础知识巩固题:布置一些关于样本估计总体的基础知识题目,如填空题、选择题和简答题,要求学生熟练掌握总体、样本、统计量等基本概念。
2.实践应用题:设计一些实际情境题目,让学生运用所学知识解决实际问题。例如,让学生调查本班同学的身高、体重数据,计算相关统计量,并据此估计全年级的身高、体重分布情况。

教学设计3:11.2 用样本估计总体

教学设计3:11.2 用样本估计总体

11.2 用样本估计总体1.频率分布直方图(1)作频率分布直方图的步骤:①求极差(即一组数据中最大值与最小值的差); ②决定组距与组数; ③将数据分组; ④列频率分布表; ⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线:①频率分布折线图:连结频率分布直方图中各小长方形上端的中点,就得频率分布折线图. ②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线. 2.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考点一频率分布直方图1.(2014·滨州模拟)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________.【解析】中间一个占总面积的15,即15=x160,∴x =32. 【答案】322.(2013·辽宁高考改编)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.【解析】成绩在[20,40)和[40,60)的频率分别是0.1,0.2,则低于60分的频率是0.3.设该班学生总人数为m ,则15m =0.3,m =50.【答案】503.(2013·湖北高考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.【解析】(1)根据频率和为1,得(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,解得x =0.004 4;(2)(0.003 6+0.006 0+0.004 4)×50×100=70. 【答案】(1)0.004 4 (2)70[备课札记] [类题通法]在频率分布直方图中,小矩形的高等于每一组的频率/组距,每个小矩形的面积等于这一组的频率,所有小矩形的面积之和为1.考点二茎叶图[典例] (2013·重庆高考改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.甲组乙组909x215y87424[解析]由于甲组的中位数是15,可得x=5,由于乙组数据的平均数为16.8,得y=8. [答案]5,8[备课札记]在本例条件下:(1)求乙组数据的中位数、众数;(2)求乙组数据的方差.【解】(1)由茎叶图知,乙组中五名学生的成绩为09,15,18,18,24.故中位数为18,众数为18.(2)s2=15[(9-16.8)2+(15-16.8)2+(18-16.8)2×2+(24-16.8)2]=23.76.[类题通法]茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐.[针对训练](2013·合肥模拟)一次数学测验后,从甲、乙两班各抽取9名同学的成绩进行统计分析,绘成茎叶图如图所示.据此估计两个班成绩的中位数的差的绝对值为________.甲乙86372577281393295687109【解析】甲、乙两班成绩按大小顺序排列,处在最中间的数分别为87、89,故它们之差的绝对值是2.【答案】2考点三样本数字特征[典例] (2013·江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员 第一次 第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.[解析] 对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4;对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定. [答案] 2[备课札记] [类题通法]1.用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差)分析稳定情况. 2.若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性大小比较方差(标准差)的大小. [针对训练](2014·济南模拟)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x 甲、x 乙和中位数y 甲、y 乙进行比较,则x -甲________x -乙,y 甲________y 乙(填“>”,“<”)甲 乙 9 1 0 9 5 3 1 0 2 6 7 3 2 3 0 0 4 7144667【解析】从茎叶图看出乙地树苗高度的平均数大于甲地树苗高度的平均数,乙地树苗高度的中位数是35.5,甲地树苗高度的中位数是27. 【答案】< <对应学生用书P140[课堂练通考点]1.(2013·福建高考改编)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.【解析】由频率分布直方图可得,该模块测试成绩不少于60分的学生人数为600-(0.005+0.015)×10×600=480. 【答案】4802.(2014·黄冈模拟)一组数据中的每一个数据都乘以2,再都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是________. 【解析】记原数据依次为x 1,x 2,x 3,…x n ,则新数据依次为2x 1-80,2x 2-80,2x 3-80,…,2x n -80,且2x 1+x 2+…+x n -80n n =1.2,因此有x 1+x 2+…+x n n =1.2+802=40.6.【答案】40.6,1.13.下图是根据《山东统计年鉴2014》中的资料做成的2004年至2013年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2004年至2013年我省城镇居民百户家庭人口的平均数为________.2 9 1 1 5 83 0 2 6 31247【解析】由茎叶图可知,这一组数据的平均数 x =290×4+300×2+310×4+15+8+1310=303.6.【答案】303.64.(2014·徐州模拟)学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n 的值为________.【解析】支出在[50,60)元的频率为1-0.36-0.24-0.1=0.3,因此30n =0.3,故n =100.【答案】1005.(2014·宁波模拟)甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数; (2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些. 【解】(1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7,x 乙=110(6+7+7+8+6+7+8+7+9+5)=7.(2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0,s 2乙=1.2. (3)由x 甲=x 乙,说明甲、乙两战士的平均水平相当;又∵s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.[课下提升考能]第Ⅰ组:全员必做题1.(2013·海淀期末)某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图,则这300辆汽车中车速低于限速的汽车有________辆.【解析】由图可知组距为10,则车速在[40,50),[50,60)的频率分别是0.25,0.35,因此车速低于限速的汽车共有(0.25+0.35)×300=180(辆). 【答案】1802.(2014·湖北八校联考)某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为________. 【解析】由题意知,a =1-0.02+0.03+0.04×102×10=0.005.【答案】0.0053.(2014·惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为________.甲 乙 6 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 014【解析】由茎叶图可知,甲的中位数为19,乙的中位数为13. 【答案】19,134.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________. 【解析】由x +y +10+11+95=10,得x +y =20,由15[(x -10)2+(y -10)2+0+1+1]=2, 得(x -10)2+(y -10)2=8.故⎩⎪⎨⎪⎧ x =12,y =8或⎩⎪⎨⎪⎧x =8,y =12.故|x -y |=4. 【答案】45.(2014·深圳调研)容量为60的样本的频率分布直方图共有n (n >1)个小矩形,若其中一个小矩形的面积等于其余n -1个小矩形面积和的15,则这个小矩形对应的频数是________.【解析】设所求小矩形的面积为x ,则x +5x =1,得x =16,即所求小矩形对应的频率为16,∴所求小矩形对应的频数为60×16=10.【答案】106.甲、乙两个体能康复训练小组各有10名组员,经过一段时间训练后,某项体能测试结果的茎叶图如图所示,则这两个小组中体能测试平均成绩较高的是________组.甲 乙 5 8 6 5 3 6 8 9 9 7 7 1 7 4 5 8 9 4 1 8 0 2291【解析】由茎叶图所给数据依次确定两组体能测试的平均成绩分别为x 甲=63+65+66+71+77+77+79+81+84+9210=75.5,x 乙=58+68+69+74+75+78+79+80+82+9110=75.4,故平均成绩较高的是甲组.【答案】甲7.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并采用茎叶图表示本次测试30人的跳高成绩(单位:cm),跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,跳高成绩在175 cm 以下(不包括175 cm)定义为“不合格”.(1)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5人,则5人中“合格”与“不合格”的人数各为多少?(2)若从甲队178 cm(包括178 cm)以上的6人中抽取2人,则至少有一人在186 cm 以上(包括186 cm)的概率为多少?【解】(1)根据茎叶图可知,30人中有12人“合格”,有18人“不合格”.用分层抽样的方法,则5人中“合格”与“不合格”的人数分别为2人、3人.(2)甲队178 cm(包括178 cm)以上的6人中抽取2人的基本事件为(178,181),(178,182),(178,184),(178,186),(178,191),(181,182),(181,184),(181,186),(181,191),(182,184),(182,186),(182,191),(184,186),(184,191),(186,191),共15个.其中都不在186 cm 以上的基本事件为(178,181),(178,182),(178,184),(181,182),(181,184),(182,184),共6个.所以都不在186 cm 以上的概率P =615=25,由对立事件的概率公式得,至少有一人在186 cm以上(包括186 cm)的概率为1-P =1-25=35.8.为了增强学生的环保意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,并将本次竞赛的成绩(得分均为整数,满分100分)整理,制成下表:成绩 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 频数 231415124(1)作出被抽查学生成绩的频率分布直方图;(2)若从成绩在[40,50)中选一名学生,从成绩在[90,100]中选2名学生,共3名学生召开座谈会,求[40,50)组中学生A 1和[90,100]组中学生B 1同时被选中的概率.【解】(1)由题意可知,各组频率分别为0.04,0.06,0.28,0.30,0.24,0.08,所以图中各组的纵坐标分别为:0.004,0.006,0.028,0.030,0.024,0.008,则被抽查学生成绩的频率分布直方图如图所示:(2)记[40,50)组中的学生为A1,A2,[90,100]组中的学生为B1,B2,B3,B4,A1和B1同时被选中记为事件M.由题意可得,全部的基本事件为:A1B1B2,A1B1B3,A1B1B4,A1B2B3,A1B2B4,A1B3B4,A2B1B2,A2B1B3,A2B1B4,A2B2B3,A2B2B4,A2B3B4,共12个,事件M包含的基本事件为:A1B1B2,A1B1B3,A1B1B4,共3个,所以学生A1和B1同时被选中的概率P(M)=312=14.第Ⅱ组:重点选做题(2013·惠州调研)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【解】(1)因为图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(3)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A1,A2,在[90,100]分数段内的同学为B1,B2,B3,B4.若从这6名学生中随机抽取2人,则总的取法共有15种.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P=715.。

用样本估计总体 教学设计

用样本估计总体 教学设计

用样本估计总体【教学目标】1.知识与技能(1)学会用科学的随机抽样的方法,选取合适的样本进行抽样调查;(2)会用样本的平均数、方差等特性估计总体的相应特性;(3)体会用样本估计总体的统计思想,知道不同的样本对总体的估计不同。

2.过程与方法体会随机抽样是了解总体情况的一种重要数学方法,经历抽样不同所得到的结果不同的过程,体会抽样的关键作用。

3.情感、态度与价值观会运用样本的某种特性估计总体的相应特性的统计思想解决有关实际问题。

【教学重难点】用样本估计总体。

【教学方法】分组讨论、引导式。

【教学准备】幻灯片、实验器材。

【课时安排】1课时【教学过程】一、复习导入师:我们学过对数据的初步整理,其中涉及到不少统计的概念,同学们回忆一下。

生:我们学过平均数、众数、中位数、方差。

师:回答的很好;那你们还记得它们的含义吗?学生回答,教师板书。

平均数:一般地,如果有n个数,那么叫做这n个数的平均数。

123n x x x x 、、、、12n 1x=x x x n +++ ()众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数的平均数)叫做这组数据的中位数。

方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。

二、新课讲授我们来观看两个实例:(幻灯片投映)1.某市场调查员就“你家的电视机是什么品牌的”这个问题在大街上随机调查了5人,结果有3人回答说:我家的彩电是H牌的。

如果由此就说H牌电视机的市场占有率为60%,你觉得可信吗?2.一份报告称:在美国和西班牙战争期间,美国海军的死亡率为9‰,而同期纽约市民的死亡率为16‰。

结论是参加海军比较安全。

请说说为什么会得到这样毫无意义的结论。

同学们思考,相互讨论。

师:也许很多同学对用抽样的方法推断总体的情况保持怀疑的态度。

当样本容量太小或缺乏代表性时,这种怀疑是有道理的。

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案一、课程名称:(适用大部分课程教案)二、授课对象初中二年级学生三、授课时间每课时45分钟四、授课教师张某某五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本概念和方法;(2)能够运用样本数据对总体进行估计,并计算估计的误差;(3)能够运用统计学软件进行样本估计总体的操作。

2、过程与方法目标(1)通过小组合作探究,培养学生运用统计学方法解决问题的能力;(2)通过实际案例的分析,培养学生将理论知识与实际应用相结合的能力;(3)通过课堂讲解和练习,培养学生自主学习、思考总结的能力。

3、情感态度价值观目标(1)培养学生对统计学产生兴趣,认识到统计学在生活中的重要性;(2)培养学生具备客观、严谨的科学态度;(3)培养学生团结协作、共同探究的精神。

六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法和步骤;(2)样本估计总体的误差分析;(3)统计学软件在样本估计总体中的应用。

2、教学难点(1)样本估计总体误差的计算;(2)统计学软件的操作使用;(3)将理论知识与实际案例相结合,解决实际问题。

七、教学过程1、导入新课(5分钟)授课教师通过展示与学生生活密切相关的总体数据问题,例如:“假设我们要了解全校学生的平均身高,我们是否需要测量每一个学生?有没有更高效的方法?”引发学生对用样本估计总体概念的思考,从而导入新课。

2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念,包括总体、样本、参数、统计量等;(2)讲解如何从样本数据推断总体数据,包括点估计和区间估计;(3)详细解释样本估计的误差来源及如何计算误差;(4)展示统计学软件(如SPSS、Excel等)在样本估计总体中的应用实例。

3、合作探究(15分钟)将学生分成小组,每组给予一个实际案例,如调查班级学生的平均成绩,要求小组讨论并设计出合理的样本调查方案,包括样本的大小、选择方法等,并尝试使用统计学软件进行数据处理和分析。

用样本估计总体教学设计

用样本估计总体教学设计

用样本估计总体 教学设计一、课程名称:(适用大部分课程教案)二、授课对象高中二年级学生,具备基础的统计学知识和一定的数据分析能力。

三、授课时间2课时,每课时45分钟。

四、授课教师张XX,高中数学教师,具备多年统计学教学经验。

五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本原理和方法;(2)能够运用不同的估计方法对总体参数进行估计;(3)学会分析估计结果的可靠性和准确性。

2、过程与方法目标(1)通过实例分析,培养学生运用统计学方法解决实际问题的能力;(2)培养学生合作探究、交流讨论的学习习惯;(3)提高学生运用计算工具进行数据分析的能力。

3、情感态度价值观目标(1)培养学生对统计学的好奇心和兴趣,激发学生学习积极性;(2)使学生认识到统计学在现实生活中的重要作用,增强学生的应用意识;(3)培养学生严谨、客观的科学态度,提高学生的数据分析素养。

六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法;(2)估计结果的可靠性和准确性的分析;(3)实际问题的解决方法。

2、教学难点(1)样本估计总体原理的理解;(2)不同估计方法的适用条件和优缺点;(3)估计结果的分析和评价。

七、教学过程1、导入新课(5分钟)授课开始时,通过向学生展示一个与日常生活密切相关的统计数据问题,例如:“根据班级学生的身高数据,估计全年级学生的平均身高”,引发学生对用样本估计总体问题的思考。

通过这个实例,引导学生回顾已学的统计学知识,为新课的学习做好铺垫。

2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念和原理,如:样本均值、样本方差、置信区间等;(2)讲解不同估计方法,如:点估计、区间估计,并分析各自的优缺点;(3)通过具体例题,展示如何运用这些方法进行总体参数的估计;(4)强调估计结果的可靠性和准确性的判断标准,以及如何在实际问题中进行应用。

3、合作探究(15分钟)将学生分成小组,每组针对一个实际问题进行探究,如:“根据某地区部分家庭的年收入数据,估计该地区所有家庭的平均年收入”。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。

通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。

为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。

一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。

二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。

b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。

用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。

c. 引导学生讨论点估计的优点和缺点。

3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。

b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。

c. 引导学生讨论区间估计的优点和缺点。

4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。

要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。

b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。

c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。

5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。

b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。

三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。

九年级数学上册《用样本估计总体》教案、教学设计

九年级数学上册《用样本估计总体》教案、教学设计
1.举例说明生活中哪些情况需要用到样本估计总体。
2.讨论如何选择合适的样本进行数据收集和分析。
3.分享各自小组在实践操作中遇到的问题及解决方法。
我会采取以下步骤组织讨论:
1.将学生分成若干小组,确保每个小组成员都能积极参与。
2.提供讨论题目,引导学生在小组内进行深入交流。
3.鼓励小组成员发表见解,培养合作意识和表达能力。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们对于数据的收集、整理和分析已有初步的认识。在此基础上,学生对本章节的“用样本估计总体”的学习,既存在一定的认知基础,也面临一些挑战。一方面,学生需要将已学的统计知识运用到实际问题中,这需要他们具备较强的知识迁移能力;另一方面,本章节涉及的概念和方法较为抽象,学生可能会在理解和应用上遇到困难。
2.基本概念:讲解样本估计总体的基本原理,引导学生理解样本与总体的关系,掌握样本频率分布、样本均值、样本方差等概念。
3.方法探究:组织学生进行小组合作,探讨如何用样本数据估计总体数据,引导学生发现并总结出用样本估计总体的方法。
4.实践应用:布置实际案例,让学生运用所学方法,进行数据收集、整理、描述和分析,培养学生的实际操作能力。
-鼓励学生通过预习,培养自主学习能力和良好的学习习惯。
教学设想:
1.针对重点内容的教授,采用直观生动的案例导入,让学生在具体情境中感受样本估计总体的必要性,从而激发学习兴趣。
-设计一系列与学生生活密切相关的实际问题,如调查班级同学的身高分布、学习成绩等,让学生通过实际操作,体会样本数据对总体估计的作用。
2.对于难点的突破,采用循序渐进的教学策略,将复杂问题分解为若干小步骤,引导学生逐步深入理解和掌握。
-定期组织课堂展示,让学生分享各自小组的探究成果,促进相互学习和交流。

冀教版数学九年级上册23.4《用样本估计总体》教学设计

冀教版数学九年级上册23.4《用样本估计总体》教学设计

冀教版数学九年级上册23.4《用样本估计总体》教学设计一. 教材分析冀教版数学九年级上册23.4《用样本估计总体》是统计学的一个基本概念。

本节内容是在学生已经掌握了样本、总体、平均数、方差等统计学基本概念的基础上进行讲解的。

通过本节课的学习,学生能够了解如何通过样本来估计总体,掌握用样本估计总体的方法,提高他们的数据分析能力。

二. 学情分析九年级的学生已经具备了一定的统计学基础,对样本、总体等概念有一定的了解。

但是,他们对用样本估计总体的方法还不太熟悉,需要通过实例来进一步理解和掌握。

此外,学生的思维方式可能还停留在简单的公式计算阶段,需要引导他们从直观的实例中抽象出用样本估计总体的方法。

三. 教学目标1.知识与技能:使学生了解用样本估计总体的方法,能够运用样本数据来估计总体数据。

2.过程与方法:通过实例分析,让学生掌握用样本估计总体的步骤,提高他们的数据分析能力。

3.情感态度与价值观:培养学生对数据的敏感性,使他们能够从生活中发现数学问题,培养他们的数学思维。

四. 教学重难点1.重点:用样本估计总体的方法。

2.难点:如何从实例中抽象出用样本估计总体的方法。

五. 教学方法1.情境教学法:通过生活实例,让学生了解用样本估计总体的实际意义。

2.启发式教学法:引导学生从实例中发现问题,自主探索用样本估计总体的方法。

3.小组合作学习:让学生在小组讨论中,共同解决问题,提高他们的合作能力。

六. 教学准备1.教学课件:制作冀教版数学九年级上册23.4《用样本估计总体》的教学课件。

2.实例数据:准备一些生活中的实例数据,用于讲解用样本估计总体的方法。

3.练习题:准备一些有关用样本估计总体的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如某校九年级学生的身高情况,引入用样本估计总体的概念。

2.呈现(10分钟)呈现实例数据,让学生直观地了解用样本估计总体的过程。

引导学生分析样本数据,从中估计总体数据。

28.2用样本估计总体-华东师大版九年级数学下册教案

28.2用样本估计总体-华东师大版九年级数学下册教案

28.2 用样本估计总体-华东师大版九年级数学下册教案一、教学目标1.了解样本和总体的概念。

2.学会用样本估计总体。

3.掌握估计总体平均数、总体比例和总体容量的方法。

二、教学重点1.样本估计总体平均数的方法。

2.样本估计总体比例的方法。

3.样本估计总体容量的方法。

三、教学难点1.难点:如何根据样本数据估计总体的特征值。

2.突破方法:通过例题让学生进行实际计算,从而掌握方法。

四、教学内容及过程1. 引入•引导学生思考:如果要了解一个城市的平均薪资,应该怎么做?•引入样本和总体的概念:总体是我们要研究的对象,而从总体中抽取的样本是我们用来了解总体的有限个体。

•通过一个栗子示范上述概念:假设在一个学校里,有1000名学生,我们关心的是这1000名学生的身高水平,但是我们不能调查每一位学生的身高,那么我们就可以从这1000名学生中随机选取一部分作为样本,来了解这1000名学生的身高水平。

2. 样本估计总体平均数•示范样本估计总体平均数的方法:我们可以先利用样本求出样本平均数,然后再假设样本平均数等于总体平均数,从而求出总体平均数。

•给出一个计算总体平均数的例题并讲解。

•练习:让学生通过样本计算总体平均数。

3. 样本估计总体比例•示范样本估计总体比例的方法:我们可以先利用样本计算出样本比例,然后再假设样本比例等于总体比例,从而求出总体比例。

•给出一个计算总体比例的例题并讲解。

•练习:让学生通过样本计算总体比例。

4. 样本估计总体容量•示范样本估计总体容量的方法:我们可以利用样本计算出样本容量,然后再假设样本容量等于总体容量,从而求出总体容量。

•给出一个计算总体容量的例题并讲解。

•练习:让学生通过样本计算总体容量。

5. 拓展练习•给学生一组数据,让他们从中抽取样本,计算该数据集的总体特征值。

•让学生思考:样本的大小对于估计总体的特征值是否有影响?举例说明。

五、课堂小结本节课程主要让学生了解了样本和总体的概念,并掌握了如何用样本来估计总体的平均数、总体比例和总体容量的方法。

初中数学用样本估计总体优秀教案

初中数学用样本估计总体优秀教案

初中数学用样本估计总体优秀教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、发言致辞、自我鉴定、合同协议、条据文书、规章制度、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work plans, work summaries, speeches, self-evaluation, contract agreements, documents, rules and regulations, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!初中数学用样本估计总体优秀教案初中数学用样本估计总体优秀教案(通用5篇)在教学工作者开展教学活动前,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。

用样本估计总体教学设计

用样本估计总体教学设计

用样本估计总体教学设计一、课程名称:(适用大部分课程教案)二、授课对象九年级学生三、授课时间45分钟四、授课教师张老师五、教学目标1、知识与技能目标学生能够理解并掌握用样本估计总体的基本概念和原理;能够运用适当的统计方法对样本数据进行分析,从而对总体进行合理估计。

2、过程与方法目标通过小组合作、实际操作、数据分析等教学活动,培养学生动手实践能力、团队协作能力和问题解决能力。

3、情感态度价值观目标培养学生对数据的敏感性和严谨的科学态度,激发学生对统计学在现实生活中的应用产生兴趣。

六、教学重占和难点1、教学重点用样本估计总体的基本原理和方法;对样本数据进行分析和处理。

2、教学难点理解并运用适当的统计方法进行样本估计;在实际问题中,如何选取合适的样本并进行有效的数据分析。

七、教学过程1、导入新课(5分钟)- 教师通过展示日常生活中的一个统计问题,例如“根据班级部分学生的身高数据来估计全年级学生的平均身高”,来引发学生对用样本估计总体概念的思考。

- 提问学生对“样本”和“总体”的理解,以及他们是否有过类似的经验。

- 通过简短讨论,引出本节课的核心问题:如何通过有限的样本数据来估计一个更大的群体(总体)的特征。

2、新知讲授(20分钟)- 教师介绍用样本估计总体的基本原理,包括随机抽样、样本大小、估计的准确性等概念。

- 使用图表、示例和公式来解释不同类型的估计方法,如点估计、区间估计等。

- 结合具体实例,如通过调查问卷收集的数据,展示如何进行样本估计的计算步骤。

3、合作探究(15分钟)- 将学生分成小组,每组分配一个实际的问题和数据集,要求他们通过小组合作,选择合适的统计方法进行样本估计。

- 教师巡回指导,帮助学生解决在估计过程中遇到的问题,提供必要的数学和统计支持。

4、巩固练习(10分钟)- 教师提供一些练习题,让学生独立完成,以加深对样本估计方法的理解和应用。

- 选择几道题目进行全班讨论,让学生分享解题思路和答案,确保学生对关键概念的理解。

2024秋季人教A版高中数学必修第二册第九章统计《用样本估计总体:总体百分位数的估计》

2024秋季人教A版高中数学必修第二册第九章统计《用样本估计总体:总体百分位数的估计》

教学设计:2024秋季人教A版高中数学必修第二册第九章统计《用样本估计总体:总体百分位数的估计》一、教学目标(核心素养)1.数据分析:学生能够理解总体百分位数的概念,掌握通过样本数据估计总体百分位数的方法,具备处理和分析统计数据的能力。

2.数学建模:能够将实际问题中的总体百分位数估计问题转化为数学模型,选择合适的统计方法进行求解。

3.逻辑推理:在样本百分位数与总体百分位数之间的关系推导中,培养学生的逻辑推理能力。

4.实践应用:能够将所学统计知识应用于实际问题解决中,增强学生的实践能力和应用能力。

二、教学重点•总体百分位数的概念及其重要性。

•通过样本数据估计总体百分位数的具体方法,包括排序、定位等步骤。

三、教学难点•理解样本百分位数与总体百分位数之间的近似关系及其误差控制。

•在实际问题中灵活运用统计方法估计总体百分位数。

四、教学资源•教材《人教A版高中数学必修第二册》第九章相关内容。

•多媒体课件,包含总体百分位数概念解释、样本估计方法的动画演示等。

•实际案例数据,用于课堂演示和学生练习。

•统计软件(如Excel、SPSS等)简介,帮助学生掌握数据处理工具。

五、教学方法•讲授法:结合多媒体课件,系统讲解总体百分位数的概念和估计方法。

•演示法:通过实际案例数据,演示如何利用样本数据估计总体百分位数的过程。

•讨论法:组织学生分组讨论,分享各自的理解和困惑,促进思维碰撞。

•练习法:布置相关练习题,让学生在实践中巩固所学知识。

六、教学过程1. 导入新课•情境引入:展示一个与总体百分位数相关的实际情境(如某公司员工的工资水平分析),引导学生思考如何通过有限的信息(样本数据)了解整体情况(总体百分位数)。

•提出问题:引导学生明确本节课的学习目标——掌握用样本估计总体百分位数的方法。

2. 新课教学•概念讲解:•定义总体百分位数:介绍总体百分位数的概念,强调其在数据分析中的重要性。

•引出样本百分位数:说明由于总体数据往往难以全面获取,因此常通过样本数据来估计总体百分位数。

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案教案标题:用样本估计总体教学目标:1. 理解样本和总体的概念,并能够解释样本估计总体的原理。

2. 掌握样本估计总体的方法和计算步骤。

3. 能够应用样本估计总体解决实际问题。

教学资源:1. 教材:包含有关样本估计总体的理论知识和实例的教材。

2. 计算器或电脑:用于进行样本估计总体的计算。

教学步骤:引入(5分钟):1. 向学生介绍样本和总体的概念,并解释它们在统计学中的重要性。

2. 引出样本估计总体的概念,解释为什么我们需要使用样本来估计总体参数。

讲解理论(15分钟):1. 解释样本估计总体的原理:样本是从总体中抽取出来的一部分数据,通过对样本数据进行分析和计算,可以推断出总体的特征。

2. 介绍样本估计总体的方法:a. 点估计:使用样本数据计算出一个具体的数值作为总体参数的估计值。

b. 区间估计:使用样本数据计算出一个区间,该区间内的数值作为总体参数的估计范围。

3. 解释如何选择合适的样本大小和抽样方法,以确保样本能够代表总体。

示例演练(20分钟):1. 给出一个实际问题,例如:某市场调查公司想要估计某产品在全国范围内的平均销售额。

请设计一个样本估计总体的方案,并计算出估计值和置信区间。

2. 引导学生根据问题的要求,选择合适的样本大小和抽样方法。

3. 指导学生使用样本数据计算出估计值和置信区间,并解释结果的意义。

讨论和总结(10分钟):1. 学生讨论他们设计的样本估计总体方案和计算结果。

2. 引导学生思考样本估计总体的优缺点,以及在实际应用中可能遇到的问题。

3. 总结样本估计总体的关键概念和方法。

作业(5分钟):布置作业,要求学生根据给定的问题,设计样本估计总体的方案,并计算出估计值和置信区间。

要求学生在作业中解释他们的思路和计算过程。

扩展活动:1. 提供更多的实际问题,让学生继续练习样本估计总体的设计和计算。

2. 鼓励学生使用统计软件或编程语言进行样本估计总体的计算,以提高计算效率和准确性。

9.2 用样本估计总体(教学设计)-高中数学人教A版新教材2019必修第二册小单元教学+专家指导(视

9.2 用样本估计总体(教学设计)-高中数学人教A版新教材2019必修第二册小单元教学+专家指导(视

9.2 用样本估计总体(教学设计)-高中数学人教A版新教材2019必修第二册小单元教学+专家指导(视频+课件+教案)一、【教学目标】1、了解总体、样本的概念,理解抽样的意义;2、通过样本估计总体,了解统计量的意义和性质,会计算样本均值、样本标准差等统计量;3、掌握常见抽样方法,包括简单随机抽样、分层抽样、整群抽样等;4、通过实例学习如何估计不同总体特征值的方法,如总体均值、总体比例、总体方差。

二、【教学重难点】1、掌握样本的重要性及样本具有代表性的条件;2、掌握如何选取样本,并使用不同的抽样方法进行估计;3、使用样本数据对总体特征进行估计,理解与比较样本估计值的不确定性、可靠程度。

三、【教学过程】1、导入(5分钟)教师可以以课堂调查、举例或视频等形式引出本节课的主题,并让学生了解本节课的教学目标和重难点。

2、概念讲解(10分钟)分别解释总体和样本的概念,说明抽样的意义和方法,让学生理解为什么要用样本估计总体,以及如何选择和采集样本。

3、样本统计量(15分钟)介绍样本均值、样本标准差、样本方差等统计量的概念和计算方法,让学生理解样本统计量是对总体特征的估计,具有一定的代表性和误差。

4、抽样方法(20分钟)讲解常见的抽样方法,如简单随机抽样、分层抽样、整群抽样等,并用实例说明每种方法的应用范围和注意事项。

5、估计总体特征(30分钟)以样本估计总体均值、总体比例、总体方差为例,分别演示如何计算估计值和置信区间,并让学生进行计算练习。

6、巩固复习(10分钟)回顾本节课的重点内容,让学生自己总结和归纳,加深学生对内容的了解和记忆。

四、【教学设计说明】1、本节课重点是让学生了解样本的重要性和样本估计总体的方法,所以在教学过程中应注重实例分析,让学生通过实际问题来理解相关概念和方法;2、在引导学生进行计算练习时,应设置较难的计算题目和综合应用题目,以提高学生的综合运用能力;3、本节课的难点是如何应用统计学知识从样本中估计总体的特征值,因此在教学过程中应让学生多思考、多讨论,以提高学生的分析和判断能力。

10.4《用样本估计总体》教学设计

10.4《用样本估计总体》教学设计

【课题】10.4 用样本估计总体【教学目标】知识目标:(1)理解用样本的频率分布估计总体.(2)理解用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:(1)会作出样本的频率分布表及频率分布直方图,并且用样本的频率分布估计总体;(2)会计算样本均值、方差和标准差,并估计总体的均值、方差和标准差;(3)通过相关问题的解决,培养学生的计算工具使用技能、数据处理技能.情感目标:(1)尝试应用计算软件或计算器进行概率与统计的计算,感受计算工具带来的便捷.(2)关注生活中的数学模型,体会数学知识的应用.(3)经历合作学习的过程,尝试探究与讨论,树立团队合作意识.【教学重点】计算样本均值、样本方差及样本标准差.【教学难点】列频率分布表,绘频率分布直方图.【教学设计】均值、方差和标准差是用来反映随机变量的统计规律的某些层面的数字指标即数字特征.用样本的数字特征去估计总体的数字特征是统计的重要思想方法.在教学中要向学生指出为什么要从总体中抽取样本.通过例题的教学,让学生体会用样本估计总体的思想.在教学中应向学生指出用样本估计总体的具体方法是:通过随机抽样,计算样本频率;利用样本频率估计总体概率.样本的容量越大,对总体的估计也就越精确.在制作一组数据的频率分布表时,决定组距与组数是关键,在一般情况下,数据越多,分组的组数也就越多.频率分布表和频率分布直方图是频率分布的两种不同的表示形式,前者准确,后者直观,两者放在一起,使我们对一组数据的频率分布情况了解得更清晰.均值反映了样本和总体的平均水平,方差和标准差则反映了样本和总体的波动大小程度.方差和标准差在比较两组数据波动大小时,这两个量是等价的.标准差的优点是其度量单位与原数据的度量单位一致,有时比较方便.例2从选拔射击选手出发,巩固了均值的概念,使学生容易掌握均值的计算方法和明白均值的实际意义.特别应向学生强调说明均值的作用.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间分 组 频 数 累 计 频 数 340.5~343.5 ┬ 2 343.5~346.5 正 正 10 346.5~349.5 正 5 349.5~352.5 正  ̄ 6 352.5~355.5 ┬ 2 355.5~358.5 正 5 合 计303010*动脑思考 探索新知【新知识】各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率. 计算上面频数分布表中各组的频率,得到频率分布表如表10-8所示.表10-8根据频率分布表,可以画出频率分布直方图(如图10-4).图10-4频率分布直方图的横轴表示数据分组情况,以组距为单位;纵轴表示频率与组距之比.因此,某一组距的频率数值上等于对应矩形的面积.【想一想】各小矩形的面积之和应该等于1.为什么呢?【新知识】分 组 频 数 频 率340.5~343.5 2 0.067343.5~346.5 10 0.333346.5~349.5 5 0.167 349.5~352.5 6 0.2 352.5~355.5 2 0.067 355.5~358.5 5 0.166 合 计 30 1.000 讲解 说明引领 分析 观察 理解带领 学生 分析过 程行为 行为 意图 间图10-4显示,日产量为344~346件的天数最多,其频率等于该矩形的面积,即31333.03111.0≈=⨯. 根据样本的数据,可以推测,去年的生产这种零件情况:去年约有31的天数日产量为344~346件. 频率分布直方图可以直观地反映样本数据的分布情况.由此可以推断和估计总体中某事件发生的概率.样本选择得恰当,这种估计是比较可信的.如上所述,用样本的频率分布估计总体的步骤为:(1) 选择恰当的抽样方法得到样本数据;(2) 计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表;(3) 绘制频率分布直方图;(4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率. 【软件链接】 利用与教材配套的软件(也可以使用其他软件),可以方便的绘制样本数据的频率分布直方图,如图10-5所示.图10−5仔细分析 关键 语句记忆25*运用知识 强化练习过程行为行为意图间图10-6(2)如图10-7所示,求样本均值时,在数据空白单元格(如C6)内输入“样本均值”,在“样本均值”右侧空单元格(如D6)内输入“=A VERAGE(A1:A10)”,按回车键;求样本方差时,在数据空白单元格(如C7)内输入“样本方差”,在“样本方差”右侧空单元格(如D7)内输入“=V AR(A1:A10)”,按回车键;求样本标准差时,在数据空白单元格(如C8)内输入“样本标准差”,在“样本标准差”右侧空单元格(如D8)内输入“=SQRT (D7)”,按回车键.图10-7 讲解说明动手操作80*运用知识强化练习从一块小麦地里随机抽取10株小麦,测得各株高为(单位:cm):提问思考及时了解【教师教学后记】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本估计总体
知识与技能
理解样本数据标准差的意义和作用,会计算数据标准差,对样本数据中提取基本的数字作合理的解释
过程与方法会用样本的基本数字特征估计总体的基本数字特征。

教学目标
情感态度与价值观
培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义。

教学重点
根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测
教学难点
根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测
教学方法多媒体常规教学、讲练结合法教具准备课件
教学内容及过程
问题提出
1.对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些?
频率分布直方图、频率分布表、频率分布折线图、茎叶图
2.美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:
甲运动员得分:12,15,20,25,31,30,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,39.
如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征。

知识探究(一):众数、中位数和平均数
思考1:以上两组样本数据如何求它们的众数、中位数和平均数?
思考8:
(1)一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会成为缺点,你能举例说明吗?
如:样本数据收集有个别差错不影响中位数;大学毕业生凭工资中位数找单位可能收入较低。

(2)样本数据的平均数大于(或小于)中位数说明什么问题?
平均数大于(或小于)中位数,说明样本数据中存在许多较大(或较小)的极端值。

(3)你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?
这句话具有模糊性甚至蒙骗性,其中收入水平是员工工资的某个中心点,它可以是众数、中位数或平均数样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息。

平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大。

当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度。

小结
1.用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据。

2.平均数对数据有“取齐”的作用,代表一组数据的平均水平。

3.标准差描述一组数据围绕平均数波动的幅度。

在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题做出决策。

教学反思
在教学处理中层层设疑,步步推进的设置问题。

引导学生探索知识的形成过程比较成功,给学生搭建了比较广阔的思维平台。

在推导方差公式时,将问题具体化,设置的几个关键问题使学生的思维活动得到了充分的展示。

另外利用媒体解决大量的计算问题,为推导公式,解决重点赢得了时间,感觉效果也不错。

相关文档
最新文档