三相异步电动机调速系统仿真
三相异步电动机变频调速系统设计及仿真
三相异步电动机变频调速系统设计及仿真引言随着科技的发展和电力系统的逐步完善,三相异步电动机在工业和民用领域中广泛应用。
为了满足不同负载条件下的调速需求,变频调速技术成为了最为常用的方案之一、本文基于三相异步电动机的特点,设计了一个简单的变频调速系统,并通过仿真验证了系统的性能。
一、系统结构设计根据三相异步电动机变频调速系统的基本结构,本文设计了以下几个部分:输入电源模块、变频器模块、电机驱动模块和反馈传感器模块。
1.输入电源模块输入电源模块通常由整流器和滤波器组成,用于将交流电转换为直流电,并通过滤波器减小输出的纹波电压。
本文采用了简化的输入电源模块结构,以简化设计和仿真过程。
2.变频器模块变频器模块是整个系统的核心部分,用于将直流电转换为固定频率或可调频率的交流电。
本文采用的是PWM(脉宽调制)变频器,控制器利用脉宽调制技术对直流电进行精细的调节,从而实现对输出频率的控制。
3.电机驱动模块电机驱动模块主要由电机和驱动器组成,用于将变频器输出的交流电转换为机械能,驱动电机工作。
本文使用了三相异步电动机作为驱动器,并采用了传统的电动机驱动方式。
4.反馈传感器模块反馈传感器模块用于获取电机的运行状态和工作参数,实时反馈给控制器,以实现对整个系统的闭环控制。
常用的反馈传感器有电流传感器、速度传感器和位置传感器等。
二、设计流程本文设计的变频调速系统采用闭环控制方式进行控制,设计流程如下:1.确定控制策略根据系统需求,选择适合的控制策略。
常用的控制策略有PI控制、模糊控制和神经网络控制等。
本文选择了基于PI控制的控制策略。
2.设计控制器根据控制策略设计控制器,主要包括比例环节和积分环节。
比例环节用于根据偏差信号产生控制量,积分环节用于消除系统的静态误差。
本文设计了基于PI控制器的控制器。
3.仿真系统建模根据系统的物理特性,建立仿真系统的数学模型。
本文仿真系统采用母线电压法,通过电机的等效电路进行建模和仿真。
三相异步电机新模型及其仿真与实验
三相异步电机新模型及其仿真与实验1 引言近年来,由于电机控制技术和控制装置的发展,异步电动机的应用范围越来越广泛。
变频调速技术的不断完善,使得异步电动机也能应用于过去只能使用直流电动机的领域,并有逐渐取代直流电动机的趋势。
异步电动机的变频调速控制技术要求对异步电动机实施反馈控制,异步电动机的模型对能否获得正确的控制策略有很大的影响。
至今为止,在三相异步电动机的控制和故障诊断研究[1-3]中,绝大多数采用的是著名的PARK模型。
然而,PARK模型要在电机三相参数是对称状态时才是正确的。
当电机内部发生故障时,这个条件一般不满足。
实践证明:变频调速控制系统在电机內部故障时会产生无效甚至有害的控制后果。
电机模型不合适是重要原因之一。
很多学者为建立模拟三相异步电机內部故障的模型做了大量工作[4-5],经典的是基于有限元计算得到的模型,这类模型可以对电机参数不对称的状态进行详细地模拟[4]。
但这类模型一般都很复杂,不适用于在线应用。
三相异步电动机还有另一种模型,即原始的相轴线模型(ABC坐标模型,方程式(1),(2))。
这种模型在电机三相参数不对称时仍然可以使用。
但是,这种模型的缺点是其部分参数随着电机定、转子间相对位置的变化而变化,是由一组线性变系数微分方程构成的模型。
从应用的角度来看,由于异步电机的转差,定、转子间的相对位置不断变化。
要在线检测定、转子间的相对位置并用到实时控制中去是困难的。
所以,在三相异步电动机的变频调速控制中没有采用这套模型。
针对这个问题,人们提出了很多方案[6-9]:如把不对称相等值成同其它绕组对称的绕组与一附加绕组之和的方法[6];采用参数辨识的方法[7]等等。
但由于这些方法的基础仍是采用PARK模型,只是对其修修补补,因而效果不好。
笔者在从事三相异步电动机的故障诊断研究中,也遇到了没有合适的电机模型的问题。
通过对三相电机运行的物理机理的分析和研究,构造了一个变换函数[10]。
使用该变换函数,得到了三相异步电机的新模型。
基于Matlab的三相异步电动机起动、调速和制动特性仿真
信息工程学院基于Matlab的三相异步电动机起动、调速和制动特性仿真摘要:异步电动机目前在日常生活中已得到广泛应用,其主要特点为结构简单、运行可靠、效率较高和成本较低。
为使其应用更加广泛且性能更加完善,有必要对其最基本的起动、制动和调速性能进行深入研究。
而随着电机研究的不断深入,仿真就成为对其进行研究的一个重要手段,其中Matlab软件以其方便、高效、直观的特点,广泛应用于异步电动机的仿真研究,方便快捷且节约资源,为解决一些复杂问题带来了极大的方便。
本文通过Matlab软件进行仿真,研究异步电动机起动、调速和制动的各种方法,以找到提高其性能的途径,并通过与理论相对比,验证了本文模型的有效性和正确性。
关键词:Matlab;仿真;异步电动机Simulation for Start-up ,Speed Control and Braking Character of Three-phase Asynchronous Motor Based onMatlabAbstract:Asynchronous motor has been widely used in our daily life at present, the main characteristics of simple structure, reliable operation, high efficiency and low cost. In order to make its application more widely and performance will be improved, it is necessary for the most basic starting, braking and speed regulating performance for further research. And with the research of motor, the simulation has become an important means to study, the Matlab software, with its convenient, efficient and intuitive features, are widely used in the simulation research of asynchronous motor is convenient and save resources, to solve some complex problems has brought great convenience.Based on the Matlab software simulation, the asynchronous motor starting, speed and braking methods, in order to find ways to improve its performance, and compared with the theory, proves the correctness and the effectiveness of the model. Key words:Matlab; simulation; asynchronous motor1 设计目的和意义1.1 概述在科学技术发展迅速的当今社会,电机已经成为生活中必不可少的一部分,为人们的生产生活提供了极大的方便。
基于PLC控制的三相异步电动机调速系统
基于PLC控制的三相异步电动机调速系统作者:康婧来源:《硅谷》2009年第16期[摘要]着重阐述由三菱公司生产的PLC、变频器和触摸屏组成的三相异步电动机调速系统的工作原理及实现方法。
此调速系统依靠PLC、变频器和触摸屏三者之间的通讯实现资料共享,从而达到实时控制的目的,同时具有较高的工作可靠性,速度实时调节的灵活性,操作的简易性,维护的方便性等特性。
[关键词]PLC控制技术变频器触摸屏中图分类号:TM3文献标识码:A文章编号:1671-7597(2009)0820018-01一、前言随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域。
以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
加上可视化的人机接口的发展,使对自动化生产过程的实时控制和实时监视成为了可能,本文以利用PLC、变频器与触摸屏等现代化控制器来实现传统的三相异步电动机速度控制为例,具体介绍PLC、变频器和触摸屏在此系统中的实际作用、工作方式及三者之间的通讯方法。
二、系统的工作原理该系统硬件的连接方式主要通过三菱FR-700变频器实现对三相异步电动机的速度调节,然后通过PLC与变频器的通讯实现数据共享,用户可以通过编制PLC程序,实现变频器参数的实时修改从而达到改变电动机速度的目的,参数修改的方式可以是外在设置的按钮组件,也可以通过触摸屏的触摸键对变频器的参数进行设定,同时触摸屏可以实时反映电动机的工作参数,如输出电压、输出功率等,从而可以满足集中控制的需求。
三、触摸屏设置与控制画面制作(一)触摸屏的通讯连接F940GTO触摸屏有两个通讯接口,分别是RS232和RS422接口,在此系统中,这RS232接口与计算机RS232接口连接,RS422接口与PLC的RS485接口连接。
(二)PLC程序设计1.正转程序介绍以上为正转指令部分,通过D11、D12对所通信的变频器站号进行设定,这里设定H30、H31表设定的站号为1号,此处设定必须与变频器自身设定一致,否则不能实现通信。
基于MATLAB的异步电机VVVF调速系统仿真
摘要:随着电力电子技术的发展,异步电机以其在变频调速方面的优点开始显现出来了,相对于直流电机有更加广泛的应用本论文主要介绍了异步电机的工作原理以及异步电机的调速方法。
通过改变频率、改变电源电压、改变极对数等方法来改变电机的转速,我是通过改变电机频率来达到改变电机转速的目的,本文还介绍了变频器的原理和PWM(pulse width modulation)变频器的工作原理。
同时通过运用Matlab/simulink系统对异步电机转速调节进行了开环闭环的仿真。
本论文对电机转矩转速观察为开环系统,但是在闭环系统中通过使用Matlab/simulink对系统闭环进行设计仿真,实现了调速,并观察到了电机转速、转矩改变的图像,并且分析了解了异步电机转速改变的原因和仿真过程中的条件等。
关键词Matlab 异步电机变频调速仿真Abstract:With the development of power electronics, the advantage of the variable frequency speed in asynchronous machine is compared with the DC motor , it is more widely used.The principle of asynchronous machine and its way of speed governing is main discussed in this paper. The speed of electrical motor is changed by changing frequency voltage, and numbers of pole-p[airs. This paper is based on changing frequency of the electrical motor, the principle of frequency converter and working theory about PWM(pulse width modulation)is also presented. The open-loop and closed-loop simulation of speed governing with asynchronous machine is achieved through the use of Matlab/simulink system.The observation to electrical motor speed and torque in this paper is the open-loop system, in a closed-loop system, Matlab/simulink is used to design and similated the closed-loop system speed changing is realized, the changing plot of speed and torque about the electrical motor and observed the changing image of torque and the speed about the electrical motor, is observed. the reason why asynchronous machine speed changes and parameters a selection of call the component during the simulation are analyzed.Understanding of the principle of the induction motor and speed control methods, there are three main methods Speed: (1) changing the frequency, (2) change to slip (3) changes the very few. This paper has taken to change the frequency of the ways to achieve the purpose of speed. At the same time also understand the principle of the inverter, and its scope of application.Key words Matlab asynchronous machine Frequency Control Simulation目录第一章绪论 (1)第一节电气传动技术的发展概况 (1)第二节普通交流异步电动机变频调速调速范围的问题 (2)第三节交流异步电动机的调速方式 (3)一、转子回路串电阻或阻抗调速 (3)二、定子调压调速 (3)三、串级调速 (4)四、变极调速 (4)五、变频调速 (4)第四节关于matlab仿真的相关内容 (5)第二章异步电机运行基本原理及其调速方法以及变量控制 (6)第一节异步电机运行基本原理 (6)第二节异步电机的电压方程和等效电路 (6)第三节异步电机的功率方程和转矩方程 (8)第四节异步电机的调速方法 (10)一、变极调速 (10)二、变频变压调速 (11)三、改变转差率来调速 (12)第三章逆变器工作原理和控制及其应用 (14)第一节变频器的工作原理 (14)第二节变频器控制方式 (14)一、正弦脉宽调制(SPWM)控制方式 (15)二、电压空间矢量(SVPWM)控制方式 (15)三、矢量控制(VC)方式 (16)四、直接转矩控制(DTC)方式 (16)五、矩阵式交—交控制方式 (16)第三节简单的三种变频器控制方式 (17)第四节变频器的实际应用 (18)第五节正弦波脉宽调制(SPWM)变频器 (19)一、 SPWM变频器的工作原理 (20)二、 SPWM变频器的同步调制和异步调制 (21)第四章 MATLAB基于VVVF对异步电机的调速仿真实现 (24)第一节关于Matlab软件的应用与操作 (25)一、 PWM模块的组成与仿真 (25)二、电机模块的仿真 (27)三、输出观察模块的仿真 (29)第二节开环调速系统仿真 (30)第三节闭环调速系统仿真 (35)一、闭环调速Matlab仿真主模块 (36)二、控制环节模块 (37)三、仿真结果 (41)总结和展望 (46)参考文献 (48)第一章绪论异步电机的工作原理?异步电机调速又是怎么样的呢?目前主要引用在那几个领域呢?以及异步电机的仿真又是什么呢?又是怎么去仿真的呢?对这些问题的初步说明将是这篇论文所要叙述的。
三相异步电动机变频调速系统设计及仿真
三相异步电动机变频调速系统设计及仿真引言:随着现代工业生产的不断发展,能源的需求也越来越大。
传统的电动机调速系统通常采用机械传动或者直接调节电压、频率等方式来实现调速,但是这些方法存在效率低、调速精度不高等问题。
为了解决这些问题,引入变频调速技术,可以通过改变电机供电频率来实现调速,不仅能够提高效率,还可以实现精确调速。
因此,本文设计了一种三相异步电动机变频调速系统,并进行了仿真验证。
一、系统框架设计本文设计的三相异步电动机变频调速系统主要包括三相异步电动机、变频器、控制器和传感器等几个主要组件。
其中,三相异步电动机作为执行部分,负责将电能转换成机械能,变频器作为调速部分,通过改变输入电压频率来控制电机转速。
控制器则负责监测和控制整个系统的工作状态,传感器则用来获取电机的实时状态信息,如电流、转速等。
二、电机模型建立为了进行仿真验证,需要建立电机的数学模型。
三相异步电动机可以通过电磁转矩方程来描述其动态特性。
根据电路分析和电磁场理论,可以得到如下电机转矩方程:T=(3*ρ*f*V^2*s)/(2*π*N_1)其中,T为电机转矩,ρ为极数,f为电机运行频率,V为电机定子端电压,N_1为电机定子匝数,s为滑差。
根据这个方程,可以通过调节频率和滑差来控制电机的转矩和转速。
三、变频器控制策略变频器是实现电机调速的关键设备,其工作原理是通过改变输入电压频率实现输出电压频率的调节。
常见的变频器控制策略有开环控制和闭环控制两种。
开环控制是根据电机的数学模型,通过计算期望转速和实际转速之间的误差,来调节输出电压频率;闭环控制则需要实时监测电机的转速,并将实际转速与期望转速进行比较,来调节输出电压频率。
四、系统仿真验证为了验证设计的变频调速系统的性能,需要进行仿真实验。
通过MATLAB/Simulink软件,可以搭建一个模拟的实验环境,获取电机的转速、电流等实时状态信息,并对比期望转速和实际转速之间的误差。
根据不同的控制策略,可以得到不同的调速结果,并通过比较分析来选择最优的控制策略。
基于plc实现三相异步电动机七段速调速实验
基于PLC实现的三相异步电动机七段速调速实验学院:专业:学号:姓名:引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
要合理的控制它。
这个系统的控制是采用PLC的编程语言--—-梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业,企业对自动化的需要。
进入20世纪80年代,由于计算机技术和微电子技术的迅猛发展,极大地推动了PLC的发展,使得PLC的功能日益增强,目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业,企业.由于PLC综合了计算机和自动化技术,所以它发展日新月异,大大超过其出现时的技术水平,它不但可以很容易的完成逻辑,顺序,定时,计数,数字运算,数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动化控制。
特别是超大规模集成电路的迅速发展以及信息,网络时代的到来,扩展了PLC的功能,使它具有很强的联网通讯能力,从而更广泛的运用于众多行业。
一、实验名称:基于PLC实现的三相异步电动机七段调速实验二、实验目的:1。
双闭环三相异步电动机调压调速系统的仿真设计
吉林建筑大学城建学院课程设计报告题目名称双闭环三相异步电动机调压调速系统的仿真院(系)电气信息工程系课程名称电力拖动自动控制系统班级电气11-1学号*********学生姓名李林指导教师柏逢明起止日期2015.3.2-2015.3.13目录摘要 (I)ABSTRACT (II)第1章双闭环三相异步电动机调压调速系统 (1)1.1设计原理 (1)1.2工作原理 (2)1.2.1 控制电路 (2)1.2.2 移相触发电路 (2)第2章设计方案 (3)2.1 主电路设计 (3)2.1.1 调压电路 (3)2.1.2 开环调压调速 (3)2.1.3闭环调压调速 (4)2.2 控制回路设计 (5)2.2.1转速检测环节和电流检测环节的设计 (5)2.2.2调速系统的静态参数分析 (9)2.3 触发电路设计 (11)第3章仿真设计 (12)3.1 调压电路 (12)3.1.1 调压电器的仿真模型 (12)3.1.2 参数的设定 (13)3.1.3电阻负载的仿真图形 (14)3.2 异步电动机带风机泵类负载开环调压调速模块 (15)3.2.1 参数设定 (15)3.2.2闭环调压 (18)结论 (21)致谢 (22)参考文献 (23)摘要调压调速是变转差率调速的一种。
由电机原理可知当转差率s基本保持不变时,电动机的电磁转矩与定子电压的平方成正比,因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。
改变加在定子上的电压是通过交流调压器实现的。
目前广泛采用的交流调压器由晶闸管等器件组成。
它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间,通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。
晶闸管三相交流调压电路的连结方式很多,各有其特点。
双闭环调压调速特性以前用饱和电抗器,现在广泛采用晶闸管调压电路。
在前面所述的开环系统的调速中,其机械特性软,调速范围较窄。
加转速负反馈系统环节后成了调压调速的闭环控制系统。
双闭环三相异步电动机调压调速的系统设计与仿真课程设计
第1章绪论1.1 双闭环三相异步电动机调压调速系统的原理和组成调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。
理论依据来自异步电动机的机械特性方程式:其中,p为电机的极对数;为定子电源角速度;w1U为定子电源相电压;1’为折算到定子侧的每相转子电阻;R2R为每相定子电阻;1为每相定子漏感;L11L为折算到定子侧的每相转子漏感;12S为转差率。
图1-1异步电动机在不同电压的机械特性由电机原理可知,当转差率s基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。
因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的1.2 双闭环三相异步电动机调压调速系统的工作原理系统主电路采用3个双向晶闸管,具有体积小。
控制极接线简单等优点。
A.B.C 为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。
为了保护晶闸管,在晶闸管两端接有阻容器吸收装置和压敏电阻。
1.2.1 控制电路速度给定指令电位器BP1所给出的电压,经运算放大器N组成的速度调节器送入移相触发电路。
同时,N还可以得到来自测速发电机的速度负反馈信号或来自电动机端电压的电压反馈信号,以构成闭环系统,提高调速系统的性能。
1.2.2 移相触发电路双向晶闸管有4种触发方式。
本系统采用负脉冲触发,即不论电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。
负脉冲触发所需要的门极电压和电流较小,故容易保证足够大的触发功率,且触发电路简单。
TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够的移相范围,TS采用DY11型接法。
移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器的一次侧第2章 双闭环三相异步电动机调压调速系统的设计方案2.1 主电路设计2.1.1 调压电路改变加在定子上的电压是通过交流调压器实现的。
目前广泛采用的交流调压器由晶闸管等器件组成。
MATLAB中的三相异步电动机仿真
目录前言 (1)1 异步电动机动态数学模型 (2)1.1电压方程 (2)1.2磁链方程 (3)1.3转矩方程 (5)1.4运动方程 (6)2 坐标变化和变换矩阵 (8)2.1三相--两相变换(3/2变换) (8)3 异步电动机仿真 (9)3.1异步电机仿真框图及参数 (9)3.2异步电动机的仿真模型 (11)4 仿真结果 (15)5 结论 (16)参考文献 (17)前言随着电力电子技术与交流电动机的调速和控制理论的迅速发展,使得异步电动机越来越广泛地应用于各个领域的工业生产。
异步电动机的仿真运行状况和用计算机来解决异步电动机控制直接转矩和电机故障分析具有重要意义。
它能显示理论上的变化,当异步电动机正在运行时,提供了直接理论基础的电机直接转矩控制(DTC),并且准确的分析了电气故障。
在过去,通过研究的异步电动机的电机模型建立了三相静止不动的框架。
研究了电压、转矩方程在该模型的功能,同相轴之间的定子、转子的线圈的角度。
θ是时间函数、电压、转矩方程是时变方程这些变量都在这个运动模型中。
这使得很难建立在αβ两相异步电动机的固定框架相关的数学模型。
但是通过坐标变换,建立在αβ两相感应电动机模型框架可以使得固定电压、转矩方程,使数学模型变得简单。
在本篇论文中,我们建立的异步电机仿真模型在固定框架αβ两相同步旋转坐标系下,并给出了仿真结果,表明该模型更加准确地反映了运行中的电动机的实际情况。
1 异步电动机动态数学模型在研究三相异步电动机数学模型时,通常做如下假设 1) 三相绕组对称,磁势沿气隙圆周正弦分布;2) 忽略磁路饱和影响,各绕组的自感和互感都是线性的; 3) 忽略铁芯损耗4) 不考虑温度和频率对电阻的影响异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
1.1 电压方程三相定子绕组的电压平衡方程为(1-1)与此相应,三相转子绕组折算到定子侧后的电压方程为(1-2)式中 A u , B u , C u , a u , b u ,c u —定子和转子相电压的瞬时值;A i ,B i ,C i , a i , b i ,c i —定子和转子相电流的瞬时值;A ψ,B ψ,C ψ, a ψ, b ψ,c ψ—各相绕组的全磁链; Rs, Rr —定子和转子绕组电阻上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。
基于PLC实现的三相异步电动机变频调速控制
基于Plc控制电机调速实验报告电控学院电气0904班李文涛0906060427—、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。
要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。
三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:COM01030002040CH光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。
变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。
对于对动态性能要求较高的应用,可以采用矢量控制方式。
矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。
实验二 三相交流异步电动机变频调速实验
实验二三相交流异步电动机变频调速实验一、实验目的1.学习和掌握变频器的操作及控制方法;2.深入了解三相异步电动机变频调速性能;3.进一步学习PLC控制系统硬件电路设计和程序设计、调试。
二、实验原理1.三相交流异步电动机变频调速原理通过改变三相异步电动机定子绕组电压的频率,可以改变转子的旋转速度,当改变频率的同时改变电压的大小,使电压与频率的比值等于常数,则可保证电动机的输出转矩不变。
变频器就是专用于三相异步电动机调频调速的控制装置。
它的输入为单相交流电压(控制750W及以下的小功率电动机)或三相交流电压(控制750W以上的大功率电动机),而输出为幅值和频率均可调的三相交流电压供给三相异步电动机。
变频器的生产厂家很多,产品也很多,但基本原理相同。
本实验中采用的是松下小型变频器VFO 200W,有如下几种操作模式。
(1)运行/停止、正转/反转的操作模式:对于电动机的启动/停止以及正反转的控制有外部操作和面板操作两种模式,通过专用参数的设定来实现。
面板操作模式:通过变频器自带面板上的操作键实现运行/停止、正转/反转控制;外部操作模式:通过接在变频器专用输入端开关信号的接通、断开实现运行/停止、正转/反转。
(2)频率设定模式:频率的设定分为面板设定、外部设定两种,通过专用参数的设定来实现。
面板设定模式是根据面板上的电位器或专用键来设定频率的大小。
外部设定模式可以通过变频器上专用输入端上的电位器、电压信号、电流信号、开关编码信号以及PWM信号来实现频率的设定。
2.实验电路图本次实验的主要内容为“外部控制和外部电位器频率设定”。
实验电路图如图17.1所示。
图17.1 三相交流异步电动机变频调速实验电路图由图17.1可知,运行时,PLC程序要使Y4为1,停止时要使Y4为0,频率大小通过改变1、2、3端连接的电位器位置来调节。
3.电路接线表本实验的电路接线表如下表17.1(注:图17.1中方框内的接线已经在内部接好,不需再接线)表17.1 三相交流异步电动机变频调速实验电路接线图三、实验步骤1.按表17.1接线(为了安全起见,接线时请务必断开QF4);2.征得老师同意后,合上断路器QF2和QF4,接通操作面板上的电源开关;3.运行PC机上的PLC工具软件FXGP_WIN-C,输入课前编好的PLC程序(或直接打开已经编制好的,路径为:HJD-DJ1 \程序\实验17\变频调速.PMW),确认程序无误后,将其写入到PLC并运行。
异步电动机调速系统的仿真
1 绪论1.1 引言电动机是我们日常生活中必不可少的机械装置,本身不是一种能源,它实现的功能是电能和机械能之间的相互转换。
电动机根据不同的结构和性能,可以有许多分类的方法,平常通用的有两种分类方法有:按照功能分类与按照结构特点及电源种类分类。
按电源分类有直流和交流两种电机,交流电机又有同步和异步两种之分,共同点在于运行方式,但工作原理有很大的差别。
同步电动机主要作发电用而异步电动机主要做电动机用。
因为有着结构简单、运行可靠而被人们所欢迎。
随着今后工业的不断发展,人们必然加深对交流异步电动机的研究,将其优异的性能更加充分的发挥出来。
因此,交流异步电动机成为工业生产中不可或缺的一部分。
Simulink本身的作用就是一个仿真平台,这个平台我们既可在MATLAB环境下运行,又可以独立的使用,有很好的兼容性。
一般情况下,我们会在MATLAB环境下运行,因为可以借助其强大的计算功能,实现动态系统建模、仿真和综合分析。
Simulink的适用范围广泛、结构和流程也较为清楚、仿真接近实际、操作灵活简单。
在交流异步电机调速仿真系统中,利用Simulink环境下电力系统模块库中的元件模块仿真,通过仿真,可以深入了解和研究交流异步电动机调速系统的原理和性能。
通过这款仿真软件帮助,不但提高了工作效率,而且为我们节省了更多的时间和精力来用于科研项目。
1.2 本课题选题背景和意义电动机是我们生活中不可或缺的一部分,越来越多的地方会使用到电动机,电动机扮演的角色也越来越重要。
只有在额定负载的情况下电动机的运行效率才能最大化的发挥出来。
但是想要将其功能最大发挥,必须对其充分了解。
由于现实中必须考虑各种不确定因素,电动机不能理想运行,往往处于低效率的运行状态。
对于这种不理想的状态,最好的解决办法是通过调速系统的控制来解决。
所以,电动机的调速控制一直被国内外所重视。
因此在不同的运行环境下,电动机都有其相对于适合本环境的调速控制系统对其进行控制,这样才能发挥其应有的最大工作效率。
三相的异步电动机变频调速系统设计的及仿真
三相的异步电动机变频调速系统设计的及仿真引言:在现代工业生产中,电动机作为一种重要的动力设备,广泛应用于各种机器和设备中。
为了满足不同工艺和运行要求,需要调节电动机的运行速度。
传统的方法是通过改变电源的频率来达到调速的目的。
然而,这种方法存在一定的局限性,无法实现精确的调速效果。
因此,引入变频调速系统成为了提高电机调速性能的有效手段。
本文将对三相异步电动机变频调速系统的设计及仿真进行详细介绍。
一、系统设计:1.变频器设计:变频器是变频调速系统的核心部分,用于将输入电源的频率和电压变换成适合电动机工作的频率和电压。
变频器由整流器、滤波器和逆变器组成。
整流器将输入的交流电变换成直流电,滤波器用于平滑输出电压,逆变器将直流电转换成可控的交流电输出。
变频器还包括控制模块,用于实现调速功能。
2.控制系统设计:控制系统包括速度传感器、PID控制器和功率放大器。
速度传感器用于实时测量电机转速,PID控制器根据设定转速和实际转速之间的差异,调节变频器的输出频率和电压,以实现电机的准确调速。
二、系统仿真:为了验证设计的可行性和调速性能,可以使用MATLAB/Simulink进行系统仿真。
具体的仿真流程如下:1. 搭建电机模型:根据电机的参数和等效电路,搭建电机的MATLAB/Simulink模型,包括电机的输入端口、输出端口和机械负载。
2. 设计控制系统:在Simulink中添加速度传感器、PID控制器和功率放大器,并与电机模型连接起来。
3.设定仿真参数:设置电机的参数、控制系统的参数和仿真时间等参数。
4.进行仿真实验:根据实际需求,设置不同的转速设定值,观察电机的响应情况,如稳态误差和调速时间等。
5.优化系统性能:根据仿真结果,调整参数和控制策略,优化系统的调速性能,如减小稳态误差和调速时间。
三、结论:三相异步电动机变频调速系统是一种能够实现精确调速的调速方案。
通过合理设计和仿真验证,可以得到一个性能稳定、调速精度高的变频调速系统。
异步电机的变压调速matlab仿真
综合性设计型实验报告实验名称:三相异步电动机调压调速姓名:学号:专业:所在院系:指导教师:实验时间:综合性设计型实验报告系别:班级:2011 —2012学年第 1 学期学号姓名指导教师课程名称综合设计型实验课程编号062030227实验名称三相异步电动机调压调速实验类型综合设计型实验地点实验时间2011年12月13—24日实验内容:(简述)一、三相异步电动机转速电流双闭环调压调速系统仿真实验1.绕线形异步电动机转子串电阻时的人为机械特性仿真。
2异步电机开环调压调速系统特性仿真。
3.异步电机双闭环调压调速系统的特性仿真。
4.三相异步电动机的制动特性仿真实验目的与要求一、实验目的:了解三相异步电动机调压调速原理,熟悉三相异步电动机调压调速系统组成,运用Matlab仿真软件进行三相异步电动机调压调速系统开环、转速单闭环和转速、电流双闭环的仿真实验。
二、实验要求:1、了解并熟悉双闭环三相异步电机调压调速系统的原理及组成2、了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。
3、通过三相异步电动机的仿真,进一步理解交流调压调速系统。
设计思路:(设计原理、设计方案及设计流程)一、设计原理1.三相异步电动机调速原理对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。
所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。
三相异步电动机运行性能好,并可节省各种材料。
交流异步电动机机械特性的参数表达式如下:变压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速下,电磁转矩e T 与定子电压S U 的平方成正比,因此,改变定子外加电压就可以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。
2. 三相异步电动机的能耗制动原理将运行着的异步电动机的定子绕组从三相交流电源上断开后,立即接到直流电源上。
基于matlab对电机的模拟三相异步电机调速性能分析模拟
摘要现代交流调速技术被誉为20世纪后期人类社会重大技术进步之一,在电机电气传动领域产生了巨大的社会效益.进入21世纪,交流调速技术继续作为电气传动系统的主要研究课题之一。
MATLAB是新一代的科学与工程计算软件,已经成为全球应用最广泛最流行的软件之一。
现在的MATLAB已经不仅仅是一个矩阵实验室,它已经成为了一种具有广泛应用前景的全新的计算机高级编程语言,它在高校和研究部门扮演着重要的角色。
MATLAB不仅具有传统的交互编程功能,而且提供了丰富可靠的矩阵运算、图形绘制、数据处理、信号与图象处理等工具,其功能也越来越强大。
本文运用MATLAB模拟三相异步电机调速特性,使繁琐的数学处理工作的效率大大加快。
计算确定电机的磁路、参数、运行性能和起动性能的计算。
并做出相对应的实验,验证所得参数的正确性。
通过电磁计算所得的电机性能指标必须符合国家标准或设计任务书的要求,否则应进行调整。
在电磁计算过程中一般选择若干个不同的方案同时进行,然后通过分析比较选择最佳方案。
说明MATLAB非常适合电气设计的仿真实验。
关键词:MATLAB;仿真Simulink;交流调速AbstractThe modern AC variable speed technology known as the late 20th century, human society is one of major technological advances in the field of electric drive motors produce enormous social benefits. Into the 21st century, AC variable speed electric drive system to continue as a major research topic one. MATLAB is a new generation of scientific and engineering computing software, has become the world's most widely used as one of the most popular software. MATLAB now has more than just a matrix laboratory, it has become a broad prospect of new high-level computer programming language, its universities and research play an important role. MATLAB not only traditional interactive programming capabilities, and provides a rich and reliable matrix operations, graphics rendering, data processing, signal and image processing tools, and its function more and more powerful. In this paper, MATLAB simulation of three-phase induction motor drive characteristics, so that the complicated mathematical treatment efficiency greatly accelerated. Determine the motor's magnetic circuit calculation, parameters, performance and starting performance calculation. And make corresponding experiments to verify the correctness of derived parameters. Calculated by electromagnetic motor performance indicators must comply with national standards or requirements of the design plan, or should be adjusted. Electromagnetic calculation generally select a number of different programs simultaneously, and then choose the best option analysis and comparison. Description MATLAB is designed for electrical simulation.Keywords: MATLAB; simulation Simulink; AC variable speed目录摘要 (I)Abstract ......................................................................................................................... I I 第1章引言. (1)1.1引言 (1)1.2异步电机概述 (2)1.3系统仿真技术概述 (2)1.4仿真软件的发展状况与应用 (3)1.5MATLAB概述 (3)1.6Simulink概述 (5)1.7小结 (6)第2章三相异步电机原理 (7)2.1旋转磁场 (7)2.2同步转速 (8)2.3三相异步电动机的工作原理 (9)2.4三相异步电动机调速特性 (10)2.4.1变极调速 (10)2.4.2变频调速 (12)2.4.3调节转差能耗调速 (13)第3章仿真系统设计 (16)3.1系统对象 (16)3.2系统分块 (16)3.3系统仿真图 (18)3.3.1变频调速仿真图 (18)3.3.2转子绕组串电阻调速仿真图 (21)3.3.3调压调速仿真图 (24)第4章异步电动机转子绕组串电阻调速实验 (28)第5章结论 (31)参考文献 (32)致谢 (33)附录 (34)第1章引言1.1引言世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。
实验五 三相异步电机变频调速系统实验
实验五 三相异步电机变频调速系统实验一、实验目的(1)掌握SPWM 的调速基本原理和实现方法。
(2)掌握马鞍波变频的调速基本原理和实现方法。
(3)掌握SVPWM 的调速基本原理和实现方法。
二、实验原理异步电机转速基本公式为:60(1)f n s p =- 其中n 为电机转速,f 为电源频率,p 为电机极对数,s 为电机的转差率。
当转差率固定在最佳值时,改变f 即可改变转速n 。
为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。
这就是所谓的VVVF (变压变频)控制。
工频50Hz 的交流电源经整流后可以得到一个直流电压源。
对直流电压进行PWM 逆变控制,使变频器输出PWM 波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。
因此,这个PWM 的调制方法是其中的关键技术。
目前常用的变频器调制方法有SPWM ,马鞍波PWM ,和空间电压矢量PWM 等方式。
(1)SPWM 变频调速方式:正弦波脉宽调制法(SPWM )是最常用的一种调制方法,SPWM 信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。
当改变正弦参考信号的频率时,输出电压的频率即随之改变。
在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF (变压变频)控制。
SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。
在实际运用中对于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。
如图4-1所示。
图5-1 正弦波脉宽调制法(2)马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。
三相异步电动机变频调速系统设计及仿真.
天津职业技术师范大学课程设计说明书题目:三相异步电动机变频调速系统设计及仿真指导老师:班级:机检1112班组员天津工程师范学院课程设计任务书机械工程学院机检1112 班学生课程设计课题:三相异步电动机变频调速系统设计及仿真一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日二、同组学生:三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资料等):1、目的和意义交流调速是一门重要的专业必修课,它具有很强的实践性。
为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。
2、具体内容写出设计说明书,内容包括:(1)各主要环节的工作原理;(2)整个系统的工作原理(包括启动、制动以及逻辑切换过程);(3)调节器参数的计算过程。
2.画出一张详细的电气原理图;3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节器参数进行校正,验证设计结果的正确性。
将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。
4、考核方式1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。
其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容);2.每天上午8:30--11:30在综合楼226房间答疑。
五、参考文献1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003指导教师签字:教研室主任签字:目录第一章绪论 (2)第二章系统总体设计方案 (4)2.1 概述 (4)2.2系统组成结构及工作原理 (4)2.2.1恒压频比控制下的机械特性 (4)2.2.2变频器 (6)2.2.3变频器主电路工作原理 (6)2.2.4整流电路 (7)2.2.5逆变电路 (7)2.2.6调节器 (9)2.2.7启动制动 (10)第三章硬件设计及选型 (11)3.1主电路的设计 (11)3.2整流电路设计 (11)3.3逆变电路的设计 (12)第四章simulink仿真 (13)4.1建立模型 (13)4.2 未变频时仿真结果 (14)4.3变频时仿真结果(基频以下调速) (15)4.4变频时仿真结果(基频以上调速) (17)关于变频调速的总结 (18)附电气图 (19)参考文献 (19)第一章绪论在交流调速中,交流电动机的调速方法有三种:变极调速、改变转差率调速和变频调速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数字调速
实验项目:三相异步电机恒压频比调速系统仿真专业班级:自动化1303班
姓名:任永健学号:********* 实验室号:实验组号:
实验时间:批阅时间:
指导教师:*绩:
沈阳工业大学实验报告
(适用计算机程序设计类)
专业班级:自动化1303班学号:130302307 姓名:任永健
实验名称:三相异步电机恒压频比调速系统仿真
1.实验目的:
熟悉SIMULINK环境。
建立三相异步电机恒压频比调速系统模型并仿真分析。
2.实验内容:
设计并在simulinnk下搭建三相异步电机恒压频比环调速系统
3. 实验方案(程序设计说明)
异步电机的调速有多种方法,转速开环恒压频比控制是交流电动机变频调速最基本的一种控制转速方式,在一般的变频调速装置里面都嵌入有这项功能,工作方式为恒压频比的调速方式能满足大多数场合交流电动机调速控制的要求,使用起来也相对方便,是通用变频器的基本模式。
但在低压时候需要一定的补偿电压,采用恒压频比控制,在基频以下的调速过程中的转差率会保持不变,电动机的所以会机械特性会相对较硬,电动机有较好的调速性能。
正选脉冲宽度调制三相逆变电路,是一种以三角波做载波的应用冲量等效原理而获得理想交流电源的电路装置,在调制比与载波比一定的条件下,通过调节外加直流电源的大小就可以获得在额定频率下产生额定电压的正选电压波,通过调节正弦波的频率就可以得到理想的电压频率波,而且调节输入正弦波的频率能得到线性的输出电压幅值。
MATLAB在电气领域中的运用随处可见,在这里可以运用MATLAB里的Simulink仿真出具体的模型,通过示波器来观察具体的波形,从而进行进一步的分析。
4. 实验原理(系统的实现方案分析)
首先采用三相双极性SPWM逆变电路产生三相交流电源,全控型器件可以选用IGBT,这样通过调节外加直流电源的大小便可获的理想的输出交流电压源幅值,然后通过改变给定的频率信号来改变异步电机的转速,基本模型如下图所示
图 1 模型图
恒压频比变频调速系统基本原理结构如图2.7所示,系统由升降速时间设定环节,U—F曲线,SPWM调制和驱动等环节组成。
其中升降速时间设定环节G1用来限制电动机的升频速度,避免频率上升过快而造成电流和转矩的冲击,起到软启动控制的作用。
U—F曲线用于根据频率确定相应的电压,该曲线不经过原点,以保持U/F不变,并在低频时进行适当的电压补偿。
SPWM和驱动环节将根据频率和电压要求产生按正弦脉宽调制的驱动信号,控制控制逆变器以实现电动机的变压变频调速。
基本的仿真模块图如下所示
图 2 MA TLAB仿真图
5.系统仿真结果的输出及结果分析
图3 out输出波形
该图为Out示波器的仿真波形,有图形可以看出,当输入频率选择为50HZ时,前5s的时间里输出波形从0到50线性变化,有仿真模块可以计算出由于饱和上
线为10,后面存在积分环节,输入信号为50 ,
01050
t
dt=
⎰,可知t=5s。
图4 V示波器图像
该图为V示波器的仿真结果,由于取整函数的存在以及V-F的函数关系可以得知仿真结果与分析结果一致。
图5 sinA波形
以上图是sinA的仿真结果,仿真结果与分析结果一致。
图6 转速波形
上图为异步电机转速仿真图形,有图形可以看出,转速的上升曲线可以近似为一条直线,5s时的稳定速度为1500左右。
图7 电磁转矩波形
该图为电磁转矩的仿真图,由于异步电机没有负载的存在所以电磁转矩近似为0
图8 Uab 波形
该图为Uab的有效值波形,由该图可知,随着时间的增加,频率的上升,Uab 有效值也随之上升,这样才能保证U/F的值保持恒定,仿真结果与分析结果相同。
图9 Uab实际输出波形
该图为Uab实际输出波形,符合双极性SPWM输出波形的规律。
当输入频率为40HZ时,转速输出波形为下图所示
图10 40HZ转速波形
当输入频率为30HZ时,转速输出波形为下图所示:
图11 30HZ转速波形
当输入频率为20HZ时的转速波形如下图所示:
图12 20HZ转速波形
:
6.实验总结
从上图仿真的波形可以看的出,实际波形非常接近于理论分析的波形,根据三相调制信号,PWM 发生器产生逆变器驱动脉冲,经逆变器得到频率跟幅值可调的三相电压,使交流电动机按给定的要求起动和运行。
在给定频率为50Hz ,起动时间为5s 的情况下,仿真结果如以上各图所示,由波形可以得到,在频率变化的边界上,正玄调制的信号和转速波形都发生了不同程度的畸变,这是因为频率变化的时刻不一定发生在一个调制信号的周期末尾,在周期信号还未结束的时候,频率就已经发生了跳变,就可能使得下一个信号的前半个周期变得宽或者窄,是相应的一周期频率变小或者变大,观察图形可知系统比较稳定,并且可以通过电压频率协调控制调节转速,符合设计要求。
交流变频调速系统是恒转矩调速,但交流变频调速调速范围比较大,调速性能比较好,效率也更高。
交流调频调速属于转差不变型调速系统,无论转速高低,转差功率的消耗基本不变。
所以变频调速应用更广,可以构成高动态性能的交流调速系统,取代直流。
附件A 沈阳工业大学实验报告
(适用计算机程序设计类)
专业班级:自动化1303班学号:130302307 姓名:任永健实验步骤或程序:。