三、集合的基本运算

合集下载

第三节 集合的基本运算(必修1第一章)

第三节 集合的基本运算(必修1第一章)

第三节集合的基本运算知识清单1.并集一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A ,读作:“A 并B ”,即}{B x A x x B A ∈∈=,或 .2.交集一般地,由所有属于集合A 且属于集合B 的元素组成的集合,称为集合A 与B 的交集.记作:B A ,读作:“A 交B ”,即}{B x A x x B A ∈∈=,且 .3.补集一般的,如果一个集合含有我们所研究问题中涉及到的所有元素,那么就称这个集合为全集,通常记作U .对于一个集合A ,由全集U 中所有不属于A 的元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作A C U ,即}{A x U x x A C U ∉∈=,且.4.图示表达交集并集补集AC U }{B x A x x B A ∈∈=,且 }{B x A x x B A ∈∈=,或 }{A x U x x A C U ∉∈=,且5.一些常见结论(1)A B A = 或B B A = B A ⊆⇒(2)B B A = 或A B A = A B ⊆⇒(3)BA B A =BA =⇒(4)BC A C B A C U U U =)(BC A C B A C U U U =)(题型训练题型一集合的并集、交集运算1.已知集合}0)2({}11{≤-=<<-=x x x B x x A ,,则B A 等于()A .}21{≤<-x x B .}10{<≤x x C .}10{<<x x D .}20{≤≤x x 2.已知集合}311{,,-=A ,}23{N x x x B ∈≤<-=,,则集合B A 中元素的个数为()A .3B .4C .5D .63.已知集合}2){(=+=y x y x M ,,}2){(=-=y x y x N ,,则集合=N M ()A .}02{,B .)02(,C .)}02{(,D .}02{==y x ,4.已知集合}32012{,,,,--=A ,}1{2A x x y y B ∈-==,,则B A 中元素的个数是()A .2B .3C .4D .55.已知}054{}42{}621{2≤--===x x x C B A ,,,,,,则=C B A )(6.已知集合}1{-==x y x A ,}1{-==x y y B ,则=B A 题型二集合的补集、综合运算7.已知全集}32{<-∈=x z x U ,}32{2<-∈=*x x N x A ,则=A C U ()A .}21{,B .}43{,C .}210{,,D .}430{,,8.已知全集}10{R x x x U ∈≤=,,}33{≤≤-=a a M ,}5{-≤=b b N ,则=)(N M C U ()A .}10335{<<-<<-x x x 或B .}335{>-<<-x x x 或C .}10335{≤<-<<-x x x 或D .}10335{<<-≤≤-x x x 或9.已知全集}43210{,,,,=U ,集合}3210{,,,=A ,}432{,,=B ,则=B C A C U U 10.已知全集R U =,集合}04{2≤-=x x M ,则=M C U 11.设全集}42{}54321{,,,,,,===N C M N M U U ,则=N 12.已知全集R U =,集合}032{}43{2>--=≤≤-=x x x B x x A ,.(1)求B A ,B A ;(2)求B A C U )(,)(B A C U .题型三Venn 图的运用13.设全集I 是实数集R .}22{-<>=x x x M 或与}31{<<=x x N 都是I 的子集(如图所示),则阴影部分所表示的集合为()A .}2{<x xB .}12{<≤-x xC .}21{≤<x xD .}22{≤≤-x x 14.如图,U 是全集,S P M 、、是U 的3个子集,则阴影部分所表示的集合是()A .S P M )(B .SP M )(C .S C P M U )(D .SC P M U )(15.如图,I 为全集,S P M 、、是I 的三个子集,则阴影部分所表示的集合是()A .SP M )(B .S C P M I )(C .S C P M I )(D .SC P M I )(16.设P M ,是两个非空集合,定义M 与P 的差集为}{P x M x x P M ∉∈=-,且,则)(P M M --等于()A .PB .PM C .PM D .M17.经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,则两门都不喜欢的学生有名.18.某班50人在一次考试中对C B A ,,三道题的作答情况如下:答错A 者17人,答错B 者15人,答错C 者11人,答错B A ,者5人,答错C A ,者3人,答错C B ,者4人,C B A ,,都答错的有1人,则C B A ,,都答对的有人.题型四由集合运算求参数19.已知集合}1{}20{2a B a A ,,,,==,若}164210{,,,,=B A ,则=a 20.已知集合}91{}412{2,,,,,+=+=x x B x x A ,若}9{=B A ,则=B A 21.已知集合}42{≤≤-=x x A ,}{a x x B ≤=,若A B A = ,则a 的取值范围是,若A B A ≠ ,则a 的取值范围是22.已知集合}11{+<<-=a x a x A ,}045{2≥+-=x x x B ,若∅=B A ,则a 的取值范围是,若∅≠B A ,则a 的取值范围是23.已知集合}02{}31{2=+-==b ax x x B A ,,,若∅)(B A 且A B A = ,求b a ,.24.已知集合}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C ,若∅≠B A 且∅=C A ,求a 的值.25.已知集合}05)1(2{}023{222=-+++==+-=a x a x x B x x x A ,.(1)若}2{=B A ,求a 的值;(2)若A B A = ,求a 的取值范围.26.已知集合}121{},43{+≤≤-=≤≤-=m x m x B x x A .(1)若B B A = ,求m 的取值范围;(2)若∅=B A ,求m 的取值范围.综合训练1.已知全集Z U =,集合}102{Z x x x A ∈≤≤-=,,}82{N x x x B ∈≤≤-=,,则集合B C A U 中的元素个数为()A .7B .6C .5D .42.已知全集}4321{,,,=U ,集合}034|{2=+-=x x x M ,集合}065|{2=+-=x x x N ,则集合=)(N M C U ()A .}4{B .}21{,C .}421{,,D .}431{,,3.定义差集}{B x A x x B A ∉∈=-,且,现有三个集合C B A 、、分别用圆表示,则集合)(B A C --可表示下列图中阴影部分的为()A .B .C .D .4.设集合}20{}31{}24{≥≤=<≤-=<≤-=x x C x B x x A 或,,,则=B C A )(5.定义}2{B y A x y x z z B A ∈∈+==*,,,若}21{}321{,,,,==B A ,则=*B A 6.已知}15{的正奇数不大于=U ,集合}155{,=N M ,J 集合}133{)()(,=N C M C U U ,集合}71{)(,=N C M U ,则集合=M ,=N 7.设B A ,是非空集合,定义)}()({B A x B A x x B A ∉∈=⊗且.已知集合}20{<<=x x A ,}0{≥=y y B ,则=⊗B A 8.设集合}87654{}654321{,,,,,,,,,,==B A ,集合S 满足A S ⊆且∅≠B S ,则这样的集合S 的个数是9.已知集合}61{≤≤-=x x A ,集合}121{+≤≤-=m x m x B .(1)当2=m 时,求)(B C A B A R ,;(2)若A B A = ,求实数m 的取值范围,10.已知集合}52)({2++==x x y y x M ,,}1)({+==ax y y x N ,.(1)若N M 中有两个元素,求实数a 的取值范围;(2)若N M 中仅有一个元素,求实数a 的取值范围.11.已知集合}034|{2=+-=x x x A ,}01|{2=-+-=m mx x x B ,}0122|{2=+-=ax x x C ,且A C A B B A == ,,求实数m 的值及实数a 的取值范围.12.对于正整数集合)3(}{21≥∈⋅⋅⋅=n N n a a a A n ,,,,,如果去掉其中任意一个元素i a (=i 1,2,…,n )之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(1)判断集合}54321{,,,,是否是“和谐集”(不必写过程);(2)请写出一个只含有7个元素的“和谐集”,并证明此集合为“和谐集”;(3)当n =5时,集合}{54321a a a a a A ,,,,=,求证:集合A 不是“和谐集”.第三节集合的基本运算参考答案题型一集合的并集、交集运算1-4B ,C ,C ,B5.}421{,,6.}0{≥x x 题型二集合的补集、综合运算7-8D ,A9.}410{,,10.}22{><x x x ,或11.}531{,,12.(1)}4313{≤<-<≤-=x x x B A ,或 ,RB A = (2)}43{)(>-<=x x x B AC U ,或 ,}4313{)(>≤≤--<=x x x x B A C U ,或,或 题型三Venn 图的运用13-18C ,C ,C ,B17.418.18题型四由集合运算求参数19.4=a 20.}94235{,,,,---21.44<≥a a 、22.3232><≤≤a a a 或、23.11==b a ,或93==b a ,或32==b a ,24.2-=a 25.(1)31-=-=a a 或(2)3-≤a 26.(1)23≤m (2)52>-<m m 或综合训练1-3D ,C ,A4.}34{<≤-x x 5.}76543{,,,,6.}151195{}15751{,,,、,,,==N M 7.}20{≥=x x x 或8.569.(1)}51{≤≤=x x B A ,}6511{)(≤<<≤-=x x x B C A R ,或 (2)2502≤≤-<m m 或10.(1)62>-<a a 或(2)26-==a a 或11.42==m m 或,22<<-a 12.(1)不是(2)}131197531{,,,,,,(3)证明略。

集合的三种基本运算

集合的三种基本运算

集合的三种基本运算集合的三种运算分别是有交集、并集、补集。

集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。

集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。

现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。

集合的基本运算:交集、并集、相对补集、绝对补集、子集。

(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。

(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。

(3)相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合:其元素属于B但不属于A,B - A= { x| x∈B且x∉A}。

(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。

(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。

符号语言:若∀a∈A,均有a∈B,则A⊆B。

基数:集合中元素的数目称为集合的基数,集合A的基数记作card(A)。

当其为有限大时,集合A称为有限集,反之则为无限集。

一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。

假设有实数x < y:①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;②(x,y):小括号是不包括边界,即表示大于x、小于y的数。

集合的基本运算

集合的基本运算

交集的运算性质:
(1) ∩ = ,即任何集合与其本身的交集等于这个集合本身;
(2) ∩ ∅ = ∅,即任何集合与空集的交集等于空集.
若A B,则A B A.
若A B A,则A B.
探究三:补集
思考3:求方程 ሺ − 2)ሺ 2 − 3) = 0 在有理数范围内的解集,在
2 ,,,,
3 4 5 6 ,A {1,,
2 3},B 5 ,,,
6 7 8 ,则
B
U
A 中元素的个数为( B )
A.4
B.5
解析:
为 5.故选 B.
U
A {4 ,,
5 6} ,B
C.6
U
A {4 ,,
5 6,
7,
8} ,所以 B
D.7
U
A 中元素的个数
4. 已知集合 A 1,
试用集合的运算表示 1 , 2 的位置关系.
解:平面内直线 1 , 2 可能有三种位置关系,即相交于一点、平
行或重合.
(1)直线 1 , 2 相交于一点 P 可表示为 1 ∩ 2 = { 点 ሽ;
(2)直线 1 , 2 平行可表示为 1 ∩ 2 = ∅;
(3)直线 1 , 2 重合可表示为 1 ∩ 2 = 1 = 2 .
2. 已知集合 M {x | x 2} ,N {x | 1 x 1 1} ,则( D )
A. M N
B. M
NN
C. M
N R
解析:由题知,集合 N x | 0 x 2 ,所以 M
D. M
NN
N {x | 0 x 2} .故选 D.
3. 已知集合 U 1,
(CU A) B {x | 3 x 4} .

3、集合的基本运算—并集与交集

3、集合的基本运算—并集与交集

∴a=5,b=-6 返回
18.设集合A={-4,2m-1,m2},B={9,m-5,1-m},
又A∩B={9},求实数m的值。 解:∵A∩B={9},A={-4,2m-1,m2},B={9,m-5,1-m} ∴ 2m-1=9 或 m2=9, 解得 m=5 或 m=3 或 m=-3。 若m=5,则A={-4,9,25},B={9,0,-4}与A∩B={9}矛盾; 若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾; 若m=-3,则A={-4,-7,9},B={9,-8,4}满足A∩B={9} 综上可知,m=-3。
返回
14.已知A={x|-2<x<a+1},B={x|x≤-a或x≥2-a},
A∪B=R,则实数a的取值范围是 求A∩B。

15.已知A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},
{( 1 , 2 ) }
16.已知集合A={(x,y)|ax+y-3=},B={(x,y)|x-y-b
由两个集合中的“公 共元素”组成(或两 个集合的公共部分)

A
A∩B
B
如:{1,2,3,6}∩{1,2,5,10}= {1,2} 又如:A={a,b,c,d,e},B={c,d,e,f}, 则A∩B= {c,d,e} 返回
例2 根据下面给出的两集合A、B,求A∩B。 (1)设A={x|x> -1},B={x|x< 1}, (2)设A={x|x是等腰三角形},B={x|x是直角三角形。 (3)设A={(x,y)|y=-4x+6},B={(x,y)| y=5x-3} 解:(1)A∩B={x|x >-1}∩{x|x <1}= {x|-1< x<1}
D
)
D.{-2,0,2}

数学教案 人教a版必修第一册 同步备课第3小节集合的基本运算

数学教案 人教a版必修第一册 同步备课第3小节集合的基本运算

1.3 集合的基本运算最新课程标准:(1)理解两个集合的并集与交集的含义,能求两个集合的并集与交集.(2)在具体情境中,了解全集的含义.(3)理解在给定集合中一个子集的补集的含义,能求给定子集的补集.(4)能使用Venn 图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用.第1课时并集与交集知识点一并集自然语言一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集符号语言A∪B={x|x∈A或x∈B}(读作“A并B”)图形语言知识点二交集自然语言一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集符号语言A∩B={x|x∈A且x∈B}(读作“A交B”)图形语言状元随笔 1.两个集合的并集、交集还是一个集合.2.对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合,因为A与B可能有公共元素,每一个公共元素只能算一个元素.3.A∩B是由A与B的所有公共元素组成,而非部分元素组成.[教材解难]1.教材P10观察类比实数的加法运算,集合有类似的并集运算.(1)(2)中集合C都是由所有属于集合A和所有属于集合B的元素组成的,即集合A的所有元素和集合B的所有元素共同组成了集合C.2.教材P11思考两个关系式成立.3.教材P11思考(1)(2)中集合C由所有属于集合A又属于集合B的元素组成.4.教材P12思考两个关系式成立.[基础自测]1.已知集合M={-1,0,1},N={0,1,2},则M∪N=( )A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}解析:M∪N表示属于M或属于N的元素组成的集合,故M∪N={-1,0,1,2}.答案:B2.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}解析:本题主要考查集合的基本运算.∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.答案:A3.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1 B.3C.4 D.8解析:因为A={1,2},A∪B={1,2,3}.所以B={3}或{1,3}或{2,3}或{1,2,3},故选C.答案:C4.设集合A={x|2≤x<5},B={x|3x-7≥8-2x},则A∩B=________.解析:∵A={x|2≤x<5},B={x|3x-7≥8-2x}={x|x≥3},∴A∩B={x|3≤x<5}.答案:{x|3≤x<5}题型一并集的运算[教材P10例1、2]例1 (1)设A={4,5,6,8},B={3,5,7,8},求A∪B.(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求A∪B.【解析】(1)A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.(2)A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.如图还可以利用数轴直观表示(2)中求并集A∪B的过程.状元随笔(1)由并集定义A∪B是由A、B中所有元素组成的.(2)利用数轴求并集更直观.教材反思(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次,如元素5,8.(2)此类题目首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.跟踪训练 1 (1)已知集合A={1,3,4,7},B={x|x=2k+1,k∈A},则集合A∪B中元素的个数为________.(2)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( )A.{x|-1<x<2} B.{x|0<x<1}C.{x|-1<x<0} D.{x|1<x<2}解析:(1)∵A={1,3,4,7},B={x|x=2k+1,k∈A},∴B={3,7,9,15},∴A∪B={1,3,4,7,9,15}.∴集合A∪B中元素的个数为6.(2)因为P={x|-1<x<1},Q={x|0<x<2},画数轴如图,所以P∪Q={x|-1<x<2}.答案:(1)6 (2)A状元随笔(1)找出集合A,B中出现的所有元素,写出A∪B,求元素个数.(2)画数轴,根据条件确定P∪Q.题型二交集的运算[经典例题]例2 (1)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}(2)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1}C.{1,2} D.{0,1,2}【解析】(1)本题主要考查集合的运算.由题意得A∩B={3,5},故选C.找出A、B的公共元素求A∩B.(2)本题考查集合的运算.∵A={x|x-1≥0}={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.先求A,再求A∩B.【答案】(1)C (2)C方法归纳求交集的基本思路首先要识别所给集合,其次要化简集合,使集合中的元素明朗化,最后再依据交集的定义写出结果,有时要借助于Venn图或数轴写出交集.借助于数轴时要注意数轴上方“双线”(即公共部分)下面的实数组成了交集.跟踪训练2 (1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}(2)若集合A={x|-5≤x≤5},B={x|x≤-2或x>3},则A∩B=________.解析:(1)本题主要考查集合的运算.化简A={x|-2<x<2},∴A∩B={0,1},故选A.先求A再求A∩B.(2)在数轴上表示出集合A与B,如下图.由交集的定义可得A∩B={x|-5≤x≤-2或3<x≤5}.利用数轴求A∩B.答案:(1)A (2){x|-5≤x≤-2或3<x≤5}题型三交集、并集性质的运用[经典例题]例3 已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅(A∩B),且A∩C=∅,求a的值.【解析】A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.因为∅(A∩B),且A∩C=∅,那么3∈A,故9-3a+a2-19=0.即a2-3a-10=0.所以a=-2或a=5.当a=-2时A={x|x2+2x-15=0}={3,-5},符合题意.当a=5时A={x|x2-5x+6=0}={2,3},不符合A∩C=∅.综上知,a=-2.状元随笔审结论(明解题方向)审条件(挖解题信息)求a的值,需建立关于a的方程(1)集合A,B,C是由相应方程的解构成的,先要解方程求B,C.(2)由∅(A∩B),知A∩B≠∅,结合A∩C=∅,可确定集合A中的元素,建立关于a的方程.建关系——找解题突破口∅(A∩B),A∩C=∅→确定集合A中的元素→建立关于a的方程→检验集合中元素的互异性.方法归纳(1)连续数集求交、并集借助数轴采用数形结合法.(2)利用A∩B=A⇔A⊆B,A∪B=A⇔B⊆A可实现交、并运算与集合间关系的转化.注意事项:(1)借助数轴求交、并集时注意端点的实虚.(2)关注Venn图在解决复杂集合关系中的作用.跟踪训练3 已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若A∩B=B,求实数a的取值范围.解析:①当B =∅时,只需2a>a +3,即a>3; ②当B≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧a +3≥2a,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a,2a>4,解得a<-4或2<a≤3.综上可得,实数a 的取值范围为(-∞,-4)∪(2,+∞). 由A∩B=B 得B ⊆A ,B 分2类,B =∅,B≠∅,再利用数轴求.课时作业 3一、选择题1.已知集合M ={x|-3<x<1},N ={-3,-2,-1,0,1},则M∩N=( ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 解析:运用集合的运算求解. M∩N={-2,-1,0},故选C. 答案:C2.已知集合A ={x|x≥-3},B ={x|-5≤x≤2},则A∪B=( ) A .{x|x≥-5} B .{x|x≤2} C .{x|-3<x≤2} D.{x|-5≤x≤2} 解析:结合数轴(图略)得A∪B={x|x≥-5}. 答案A3.设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x∈R|-1≤x<2},则(A∪B)∩C=( ) A .{-1,1} B .{0,1} C .{-1,0,1} D .{2,3,4} 解析:本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.答案:C4.设集合A ={x|-1≤x<2},B ={x|x<a},若A∩B≠∅,则a 的取值范围是( ) A .a<2 B .a>-2 C .a>-1 D .-1<a≤2解析:在数轴上表示出集合A ,B 即可得a 的取值范围为a>-1.答案:C 二、填空题5.定义A -B ={x|x∈A,且x ∉B},若M ={1,2,3,4,5},N ={2,3,6},则N -M =________. 解析:关键是理解A -B 运算的法则,N -M ={x|x∈N,且x ∉M},所以N -M ={6}. 答案:{6}6.设集合A ={1,2,a},B ={1,a 2},若A∩B=B ,则实数a 允许取的值有________个.解析:由题意A∩B=B 知B ⊆A ,所以a 2=2,a =±2, 或a 2=a ,a =0或a =1(舍去),所以a =±2,0,共3个.答案:37.已知集合A ={x|x≤1},B ={x|x≥a},且A∪B=R ,则实数a 的取值范围为________. 解析:由A∪B=R ,得A 与B 的所有元素应覆盖整个数轴.如图所示:所以a 必须在1的左侧,或与1重合,故a≤1. 答案:(-∞,1] 三、解答题8.设A ={x|-1<x<2},B ={x|1<x<3},求A ∪B,A∩B. 解析:如图所示:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}. A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.9.已知A ={x|a<x≤a+8},B ={x|x<-1,或x>5}.若A∪B=R ,求a 的取值范围. 解析:在数轴上标出集合A ,B ,如图.要使A∪B=R ,则⎩⎪⎨⎪⎧a +8≥5,a<-1,解得-3≤a<-1.综上可知,a 的取值范围为-3≤a<-1. [尖子生题库]10.集合A ={x|-1≤x<3},B ={x|2x -4≥x-2}.第2课时补集及综合应用知识点补集1.全集如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.2.补集状元随笔全集并不是一个含有任何元素的集合,仅包含所研究问题涉及的所有元素.∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A ⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.[教材解难]理解补集应关注三点(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是相互依存、不可分割的两个概念.(2)∁U A包含三层意思:①A⊆U;②∁U A是一个集合,且∁U A⊆U;③∁U A是由U中所有不属于A的元素构成的集合.(3)若x∈U,则x∈A或x∈∁U A,二者必居其一.[基础自测]1.设全集U=R,集合P={x|-2≤x<3},则∁U P等于( )A.{x|x<-2或x≥3} B.{x|x<-2或x>3}C.{x|x≤-2或x>3} D.{x|x≤-2且x≥3}解析:由P={x|-2≤x<3}得∁U P={x|x<-2或x≥3}.答案:A2.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( )A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析:∵∁U B={1,5,6},∴A∩(∁U B)={1,2}∩{1,5,6}={1}.答案:B3.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.故选D.答案:D4.已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析:先计算∁U A,再计算(∁U A)∩B.∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}题型一补集的运算[教材P13例5]例1 设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.【解析】根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.列举法,先求出全集,再利用补集的定义求∁U A,∁U B.教材反思求补集的原则和方法(1)一个基本原则.求给定集合A的补集,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.(2)两种求解方法:①若所给的集合是有关不等式的集合,则常借助于数轴,把已知集合及全集分别表示在数轴上,然后再根据补集的定义求解,注意端点值的取舍.②若所给的集合是用列举法表示,则用Venn图求解.跟踪训练1 (1)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}(2)设全集为R ,集合A ={x|0<x<2},B ={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B .{x|0<x<1}C .{x|1≤x<2}D .{x|0<x<2}解析:(1)本小题考查集合的运算.∵U={1,2,3,4,5},A ={1,3},∴∁U A ={2,4,5}.利用补集定义直接求.(2)本题主要考查集合的基本运算.由B ={x|x≥1},得∁R B ={x|x<1},借助于数轴,可得A∩(∁R B)={x|0<x<1},故选B.利用数轴表示集合A 、B ,结合数轴求出结果.答案:(1)C (2)B题型二 集合交、并、补的综合运算[经典例题]例2 (1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A∩(∁U B)=( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x|-4≤x<2},B ={x|-1<x≤3},P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x≤0或x ≥52,求A∩B,(∁U B)∪P,(A∩B)∩(∁U P).【解析】 (1)因为U ={1,2,3,4,5,6,7,8},B ={1,3,4,6,7},所以∁U B ={2,5,8}.又A ={2,3,5,6}, 所以A∩(∁U B)={2,5}.先求∁U B ,再求A∩∁U B.(2)将集合A ,B ,P 分别表示在数轴上,如图所示.因为A ={x|-4≤x<2},B ={x|-1<x ≤3},所以A∩B={x|-1<x<2},∁U B ={x|x≤-1或x>3}.又P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x≤0或x ≥52, 所以(∁U B)∪P=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x≤0或x ≥52. 又∁U P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x<52,所以(A∩B)∩(∁U P)={x|-1<x<2}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x<52={x|0<x<2}. 根据集合的交集、补集、并集运算,画数轴,即可求解.【答案】 (1)A (2)见解析方法归纳求集合交、并、补运算的方法跟踪训练2 已知全集U ={x|x≤4},集合A ={x|-2<x<3},B ={x|-3<x≤3}.求∁U A ,A∩B,∁U (A∩B),(∁U A)∩B.解析:把全集U 和集合A ,B 在数轴上表示如下:由图可知,∁U A ={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁U (A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-3<x≤-2或x =3}.借助数轴求出∁U A ,∁U B 再运算.题型三 补集思想的应用[经典例题]例3 已知集合A ={x|x 2-4x +2m +6=0},B ={x|x<0},若A∩B≠∅,求实数m 的取值范围.【解析】 先求A∩B=∅时m 的取值范围.(1)当A =∅时,①方程x 2-4x +2m +6=0无实根,所以Δ=(-4)2-4(2m +6)<0,解得m >-1.(2)当A≠∅,A∩B=∅时,方程x 2-4x +2m +6=0的根为非负实根.②设方程x 2-4x +2m +6=0的两根为x 1,x 2,则⎩⎪⎨⎪⎧ Δ=(-4)2-4(2m +6)≥0,x 1+x 2=4≥0,x 1x 2=2m +6≥0,③ 即⎩⎪⎨⎪⎧ m≤-1,m≥-3,解得-3≤m≤-1,综上,当A∩B=∅时,m 的取值范围是{m|m≥-3}.又因为U =R ,④所以当A∩B≠∅时,m 的取值范围是∁R {m|m≥-3}={m|m<-3}.所以,A∩B≠∅时,m 的取值范围是{m|m<-3}.状元随笔 ①A∩B=∅,对于集合A 而言,分A =∅与A≠∅两种情况. A =∅表示方程无实根. ②B={x|x<0},而A∩B=∅,故A {x|x≥0},即已知方程的根为非负实根.③Δ≥0保证了A≠∅,即原方程有实根;x 1+x 2≥0与x 1x 2≥0保证了原方程两根非负. 如果两根都大于1,则等价形式为⎩⎪⎨⎪⎧ (x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,而不是⎩⎪⎨⎪⎧ x 1+x 2>2,x 1x 2>1.④由于A∩B≠∅,故方程x 2-4x +2m +6=0一定有解,故我们还可以设全集U ={m|Δ≥0}={m|m≤-1}.此时,{m|-3≤m≤-1}关于U 的补集也是{m|m<-3},结果相同.方法归纳(1)运用补集思想求参数范围的方法:①否定已知条件,考虑反面问题;②求解反面问题对应的参数范围;③将反面问题对应参数的范围取补集.(2)补集思想适用的情况:从正面考虑,情况较多,问题较复杂的时候,往往考虑运用补集思想.跟踪训练3 设全集U ={3,6,m 2-m -1},A ={|3-2m|,6},∁U A ={5},求实数m.解析:因为∁U A={5},所以5∈U但5∉A,所以m2-m-1=5,解得m=3或m=-2.当m=3时,|3-2m|=3≠5,此时U={3,5,6},A={3,6},满足∁U A={5};当m=-2时,|3-2m|=7≠5,此时U={3,5,6},A={6,7},不符合题意舍去.综上,可知m=3.根据补集的定义,得到关于m的方程m2-m-1=5,解得m的值后还需检验.课时作业 4一、选择题1.已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:本题主要考查集合的基本运算及一元二次不等式的解法.化简A={x|x<-1或x>2},∴∁R A={x|-1≤x≤2}.故选B.答案:B2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=( ) A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}解析:因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁U B,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理1∉A,7∉A,故A={3,9}.答案:D3.设全集U=R,M={x|x<-2或x>2},N={x|1<x<3},则图中阴影部分所表示的集合是( )A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}解析:阴影部分所表示集合是N∩(∁U M),又∵∁U M={x|-2≤x≤2},∴N∩(∁U M)={x|1<x≤2}.答案:C4.设集合M={x|-1≤x<2},N={x|x-k≤0},若(∁R M)⊇(∁R N),则k的取值范围是( ) A.k≤2 B.k≥-1C.k>-1 D.k≥2解析:由(∁R M)⊇(∁R N)可知M⊆N,则k的取值范围为k≥2.答案:D二、填空题5.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.解析:∵全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B,∴B={5,6,7,8,9}.答案:{5,6,7,8,9}6.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.解析:∵U=R,∁U N={x|0<x<2},∴N={x|x≤0或x≥2},∴M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.答案:{x|x<1或x≥2}7.已知U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则ab=________.解析:因为A∪(∁U A)=R,A∩(∁U A)=∅,所以a=3,b=4,所以ab=12.答案:12三、解答题8.已知全集U=R,集合A={x|-1<x<2},B={x|0<x≤3}.求:(1)A∩B;(2)∁U(A∪B);(3)A∩(∁U B).解析:(1)因为A={x|-1<x<2},B={x|0<x≤3},所以A∩B={x|-1<x<2}∩{x|0<x≤3}={x|0<x<2}.(2)A∪B={x|-1<x<2}∪{x|0<x≤3}={x|-1<x≤3},∁U(A∪B)={x|x≤-1或x>3}.(3)A∩(∁U B)={x|-1<x<2}∩{x|x>3或x≤0}={x|-1<x≤0}.9.已知全集U ={不大于20的素数},M ,N 为U 的两个子集,且满足M∩(∁U N)={3,5},(∁U M)∩N={7,19},(∁U M)∩(∁U N)={2,17},求M ,N.解析:方法一 U ={2,3,5,7,11,13,17,19},如图,∴M={3,5,11,13},N ={7,11,13,19}.方法二 ∵M∩(∁U N)={3,5},∴3∈M,5∈M 且3∉N,5∉N.又∵(∁U M)∩N={7,19},∴7∈N,19∈N 且7∉M,19∉M.又∵(∁U M)∩(∁U N)={2,17},∴∁U (M∪N)={2,17},∴M={3,5,11,13},N ={7,11,13,19}. [尖子生题库]10.已知A ={x|-1<x≤3},B ={x|m≤x<1+3m}.(1)当m =1时,求A∪B;(2)若B ⊆(∁R A),求实数m 的取值范围.解析:(1)m =1时,B ={x|1≤x<4},A∪B={x|-1<x<4}.(2)∁R A ={x|x≤-1或x>3}.当B =∅,即m≥1+3m 时,得m≤-12,满足B ⊆(∁R A), 当B≠∅时,要使B ⊆(∁R A)成立,则⎩⎪⎨⎪⎧ m<1+3m ,1+3m≤-1或⎩⎪⎨⎪⎧ m<1+3m ,m>3,解之得m>3.综上可知,实数m 的取值范围是m>3或m≤-12.。

集合的基本运算

集合的基本运算

教材内容全解要点一:要点二:要点三:要点四:要点五:要点六:※考点分类讲解:考点一:数集的交、并、补运算例1 已知全集{}A=xxB且,∈x|<=不大于10的非负偶数U,{}6,4,2,0=A,{}4求C U A及A∩(C U B),A∪(C U B).例2 {}{}4Bx=xxxRAU,求A∪B,A∩B,A∩(C U B),B∩(C U A)<1|,3=,≤2|≤=<例3 设S={}{}{},xx|A|=x=|B,x是平行四边形是菱形,x是平行四边形或梯形x {}=,求A∩B,B∩C,C A B,C S A.C|是矩形xx考点二:根据集合的基本运算结果求集合例4 设集合{}A x N x U ,10|*≤∈= B,B U,且{}5,4=⋂B A ,(CU B)∩A={}3,2,1,(C U A)∩(C U B)={}8,7,6,求集合A 和B.考点三:已知集合的运算结果求参数值例5 已知集合A={}{}R B C A x x B a x x A R =⋃<<=<=)(,21|,|且,则实数a 的取值范围是( )A. a ≤1B.a<1C. a ≥2D. a>2例6 若集合{}{}{}x B A x B x A ,3,1,,1,,3,12=⋃== ,则满足条件的实数x 有( )A. 1个B. 2个C. 3个D. 4个考点四:集合的运算与关系的转换例7 设{}(){}0112|,04|222=-+++==+=a x a x x B x x x A(1)若A ∩B=B,求a 的值;(2)若A ∪B=B ,求a 的值.考点五:用Venn 图求集合中元素的个数例8 某班有50人,参加学校举行的甲、乙、丙三科竞赛,选甲的有38人,选乙的有35人,选丙的有31人,兼选甲乙两门的有29人,兼选甲丙的有28人,兼选乙丙的有26人,甲乙丙三门均选的有24人,问此班三门均未选的人有多少?例9 某班共30人,其中15人喜爱篮球运动,10人喜欢乒乓球运动,8人对着两项运动都不喜欢,则喜爱篮球运动但不喜欢乒乓球运动的人数为________.考点六:补集思想的应用例10 已知三条抛物线22,12,344222+++=+--=+-+=a x x y a x x y a x x y 中至少有一条与x 轴相交,试求a 的取值范围.考点七:创新应用题已知集合A 、B 与集合A*B 的对应关系如下表 A{1, 2, 3, 4, 5} {-1, 0, 1} {-4, 8} B{2, 4 ,6 ,8} {-2, -1, 0 ,1} {-4, -2, 0 ,2} A*B {1, 3, 6, 5, 8 } {-2} {-2, 0, 2, 8} 若A={-20011, 0 ,2012},B={-2012,0,2012},试根据表中规律写出 A*B。

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

3集合的基本运算

3集合的基本运算
§3.集合的基本 运算
3.1 交集与并集 3.2 全集与补集
AA∪用BBVenAn∪A图∩BB表B示两A个AA=∪∩集(BBB合) 的AAA关∪∩BB系

由属于A且 属于B的元素 组成的集合, 叫A与B的交 集.记 作:
由属于A或 属于B的元 素组成集 合,A与B的 并集.记 作:
设UU是全集A U.由U
⑴(A∩B)∩C与A∩(B∩C) ⑵(A∪B)∪C与A∪(B∪C) ⑶(A∩B)∪(A∩C)与A∪(B∩C) ⑷(A∪B)∩(A∪C)与A∩(B∪C) ⑸A(A∪B)与A∪(A∩B)
答案:是相等 请把这些相等的式子写在笔记本中
这些等式依次为(归纳):
(A∩B)∩C=A∩(B∩C)=A∩B∩C
(A∪B)∪C=A∪(B∪C)=
中所有不 属于A的元
素C组u成A的集合A叫U中
子集A的补集.记 作:
A∩ B =
{x|x∈A且x∈B}
CuA=
{x|x∈ U且∈A}
很显然
A B A A B; A B B A B
若A B A则A B;若A B A则B A.反之亦真。
填写两张表
第一张
第二张
∩ φ Α Β Cu ∪ φ Α Β Cu
A∪B∪C
(结合律)
A∩(A∪B)=A∪(A∩B)=A(吸收律)
应用二:p13例4题略.解略.
归纳 (反演律、狄·摩根定理De Morgan)

图形验证






可以用维恩图验证其他定律(课外完成)
应用三 P16B组2 题略
文字语言 图形语言 符号语言

A A∩B B
15 15 11

3 集合的基本运算--全集与补集

3 集合的基本运算--全集与补集
R
B
补充练习
1.分别用集合A,B,C表示下图的阴影部分 1.分别用集合A,B,C表示下图的阴影部分 分别用集合A,B,C
ð 2.已知全集Ⅰ={2,3,a +2a-3},若A={b,2}, 2.已知全集Ⅰ={2,3, 2+2 -3},若A={ ,2}, IA = {5} 已知全集Ⅰ={2,3, 求实数a, 求实数 ,b
交集
A∩ B = B∩ A A∩ B ⊆ A A∩ B ⊆ B A∩ A = A A∩∅ = ∅
A∩B=A
并集
A⊆ B
B ⊆ A∪ B
A∪ B
= B∪ A
A∪B=B ∪
A ⊆ A∪ B A∪ A = A A∪∅ = A
A⊆ B
补集
A ∪ ðUA = U
A ∩ ð UA = ∅
ð R ( A ∩ B ) = (痧A) ∪ ( RB ) R ðR ( A ∪ B ) = (痧A) ∩ ( RB ) R
练习
如果知道全集U和它的子集A 2、如果知道全集U和它的子集A,又知道 ðUA = {5} 那么元素5与集合U 的关系如何呢? 那么元素5与集合U,A的关系如何呢? 5 ∈ U ,5 ∉ A 已知全集S={ 12的正约数 的正约数},A={ 3、已知全集S={x|x是12的正约数},A={x|x是4与6的 最大正公约数或最小公倍数}. }.求 最大正公约数或最小公倍数}.求 ðSA. {1,2,4,6} 已知全集为U={1,2,3,4,5,6}, ,则集 4、已知全集为U={1,2,3,4,5,6}, UA = {5, 6},则集 ð {1,2,3,4} 合A=___________. 设全集为R ≤3},则 R 5、设全集为R,A={x|x<5},B={x|x≤3},则痧A与 ðRA ðRB 的关系是________. 的关系是________.

三、集合的基本运算

三、集合的基本运算

三、集合的基本运算(一)概念1、并集:一般地,由所有属于集合A或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作B A (读作“A 并B ”)即B x A x x B A 或,2、交集:一般地,由属于集合A且属于集合B 的元素组成的集合,称为集合A 与B 的交集,记作B A (读作“A 交B ”)即B x A x x B A 且,3、全集与补集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U ;对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作A C U ,即A x U x x A C U 且,(二)性质1、 A A ; A ;B A A B ; A B A ;2、 A A ; A ;B A A B ; A B A ;3、B A A B A ;B A B B A ;4、 U C U ; U C ; A C C U U ;B C A C B A C B C A C B A C R R R R R R ;(三)资料连接1、观察下列各组集合,你能说出集合C 与集合A ,B 之间的关系吗?(1)A ={1,3,5},B ={2,4,6},C ={1,2,3,4,5,6}(2) 是实数是无理数,是有理数x x C x x B x x A , 2、(1)设集合A ={4,5,6,8},集合B ={3,5,7,8,9},求A ∪B.(2)设集合A ={x |-1<x <2},集合B ={x | 1<x <3},求A ∪B .3、已知集合A ={x |-2≤x ≤5},集合B ={x | m +1≤x ≤2m -1},若A ∪B =A ,求m 的取值范围.4、观察下列各组集合,你能说出集合C 与集合A ,B 之间的关系吗?(1) A ={4,3,5};B ={2,4,6};C ={4}.(2)学月在校的高一年级女同年是咸祥中学月在校的高一年级同学年是咸祥中学,月在校的女同学年是咸祥中学92008,9200892008x x C x x B x x A5、⑴ A ={2,4,6,8,10}, B ={3,5,8,12}, C ={6,8},求①A ∩B ②A ∩(B ∩C ) ; ⑵ A ={x |x 是某班参加百米赛的同学}, B ={x |x 是某班参加跳高的同学},求A ∩B .6、设集合A ={y |y =x 2,x ∈R}, B ={(x , y )|y =x +2,x ∈R},则A ∩B =( )A.{(-1, 1),(2, 4)}B. {(-1, 1)} C {(2, 4)} D.7、(1)设A ={x |x 2+4x =0}, B ={x 2+(2a +1)x +a 2-1=0},若A ∩B =B ,求a 的值.(2)已知集合01,0652 ax x B x x x A ,如果A ∩B =B ,求实数a 的值。

3集合的基本运算

3集合的基本运算

辅导讲义教师科目数学上课日期总共学时学生年级高一上课时间第几学时课题类别基础#提高培优集合的基本运算知识点一并集[导入新知]1文字语言一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)符号语言A∪B={x|x∈A,或x∈B}图形语言2(1)A∪B=B∪A,即两个集合的并集满足交换律.(2)A∪A=A,即任何集合与其本身的并集等于这个集合本身.(3)A∪φ=φ∪A=A,即任何集合与空集的并集等于这个集合本身.(4)A∪(A∪B),B∪(A∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A∪B,则A∪B=B,反之也成立,即任何集合同它的子集的并集,等于这个集合本身.[化解疑难]理解并集应关注三点(1)A∪B仍是一个集合,由所有属于A或属于B的元素组成.(2)“或”的数学内涵的形象图示如下:(3)若集合A和B中有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次.知识点二交集[导入新知]1文字语言一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)符号语言A∩B={x|x∈A,且x∈B}图形语言2(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩φ=φ∩A=φ,即任何集合与空集的交集等于空集.(4)A∩B∪A,A∩B∪B,即两个集合的交集是其中任一集合的子集.(5)若A∪B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.[化解疑难]理解交集的概念应关注四点(1)概念中“且”即“同时”的意思,两个集合交集中的元素必须同时是两个集合的元素.(2)概念中的“所有”两字不能省,否则将会漏掉一些元素,一定要将相同元素全部找出.(3)当集合A和集合B无公共元素时,不能说集合A,B没有交集,而是A∩B=φ.(4)定义中“x∈A,且x∈B”与“x∈(A∩B)”是等价的,即由既属于A,又属于B的元素组成的集合为A∩B.而只属于集合A或只属于集合B的元素,不属于A∩B.题型一并集的运算[例1](1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8}C.{3,5,7,8} D.{4,5,6,8}(2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}[类题通法]并集的运算技巧(1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的互异性.(2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但要注意是否去掉端点值.[活学活用]若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个。

3.集合的运算

3.集合的运算

练习1
1.若集合A {0,1, 2,3}, B {1, 2, 4} 则A B A.{0,1, 2,3, 4} C.{1, 2} ( ) B.{1, 2,3, 4} D.{0}
练习2
2.若集合A {x | 2 x 1}, B {x | 0 x 2},则A B ( ) A.{x | 1 x 1} B.{x | 2 x 1} C.{x | 2 x 2} D.{x | 0 x 1}
k 1 【变式】已知集合M={x|x= + ,k Z}, 2 4 k 1 N={x|x= + ,k Z},则M与N的关系是 4 2
6、集合{x | ( x 1)( x 2)( x 3) 0} 的子集个数为 ( ) A.3 B.6 C.8 D.9
7、设S、T 是非空集合,且S T , T S , S T , 设X S T , 则S X A.S B.T C. D. X ( )
巧用文氏图
,N=
13、在某一班级的学生中,有36人的数学成 绩不低于80分,有20人的物理成绩不低于80 分,且有15人的数学、物理成绩都不低于80 分,那么有_______人在这两科成绩中至少 有一科不低于80分?
巧用文氏图
Goodbye!
练习8
设全集U={x|x -3},A={x|-3<x 4}, 则CU A
练习9
设全集U={1,3,5,7,9},A={1,|a-5|,9}, CU A {5, 7}, 则a 的值为
练习10
设全集U=R,A={x|x>0},B={x|x>1}, 则A (CU B)
练习11
设全集U=M N={1,2,3,4,5},M (CU N)={2,4}, 则N=

高中数学必修一:1.1.3《集合的基本运算》(新人教版A)

高中数学必修一:1.1.3《集合的基本运算》(新人教版A)

ð U A={x | x 蜗 , 且x U
A}
补集Venn图
U
A
例5
• 设U ={x|x是小于10的自然数},A={1,3,5,7},
B={3,4,5,6},求ð U A, ð U B. 解:根据题意可知,U ={0,1,2,3,4,5,6,7,8,9},
ð U A={0,2,4,6,8,9},
加法运算,集合是否也可以“相加”呢? • 考察下列各个集合,你能说出集合C与集合 A,B之间的关系吗? (1)A={1,3,5},B={2,4,6},C={1, 2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}。
并集
• 一般地,由所有属于集合A或属于集合B的
• P14 • 习题1.1 A组
T 9; 10 习题1.1 B组 T 3; 4
轻松一笑
• 上课睡觉 某生上课时睡觉,被老师发现。
老师:你为什么在上课时睡觉? 某生:我没睡觉哇! 老师:那你为什么闭上眼睛? 某生:我在闭目沉思! 老师:那你为什么直点头? 某生:您刚才讲得很有道理! 老师:那你为什么直流口水? 某生:老师您说得津津有味啊!
l p
两直线重合
就是说直线l的所有点都在直线p上,直线p的 所有点也在直线l上,可以知道L包含P,P也包 含L,那么我们知道L=P,也就是L∩P=L
p
l
思考3
• 下列关系式成立吗?
(1)A∩A=A; (2)A∩ =A. 适度加强题 例:集合A={1,3,5,6,8},集合B={x|1<x<7}, 集合C={x|5<x<10且x∈Z},求(A∩B)∪C. 解: (A∩B)∪C={1,3,5,6,7,8,9}

离散数学第三章集合的基本概念和运算

离散数学第三章集合的基本概念和运算
第3章 集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理

第三讲 集合的基本运算

第三讲  集合的基本运算

第三讲集合的基本运算【学习目标】1.理解交集的概念,会用符号、维恩图表示交集,并会求简单集合的交集。

2.掌握交集与并集的相关性质,并会应用。

3.理解并集的概念,会用符号、维恩图表示并集,并会求简单集合的并集。

4.了解全集、补集的意义,正确理解符号∁U A的含义,会求已知全集条件下集合A的补集。

5.会求解集合的交、并、补的集合问题。

6.能正确利用补集的意义求解一些具体问题。

【基础知识】一、交集1.概念:一般地,给定两个集合A、B,由既属于集合A又属于集合B的所有元素(即A和B的公共元素)组成的集合,称为A与B的交集。

2.符号语言:A∩B={x|x∈A且x∈B}(读作“A交B”)3.图形表示:4.注意事项:(1)运算结果:A∩B是一个集合,由A与B的所有公共元素组成,而非部分元素组成;(2)关键词“所有”:概念中的“所有”两字的含义是,不仅“A∩B中的任意元素都是A与B 的公共元素”,同时“A与B的公共元素都属于A∩B”;(3)∅情形:当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.二、并集1.概念:一般地,给定两个集合A、B,由这两个集合的所有元素组成的集合,称为集合A与B的并集。

2.符号语言:A∪B={x|x∈A,或x∈B}(读作“A并B”)3.图形表示:4.注意事项:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成的,而非部分元素组成.5.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪AA∩B=B∩A A∪A=A A∩A=AA∪∅=A A∩∅=∅A⊆B⇔A∪B=BA⊆B⇔A∩B =A三、全集1.概念:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.2.记法:全集通常记作U.3.全集并不是一个含有任何元素的集合,仅包含所研究问题中涉及的所有元素.四、补集1.概念:如果集合A是全集U的一个子集,则由U中不属于A的所有元素组成的集合,称为A在U中的补集,记作∁U A。

离散数学---集合的基本运算

离散数学---集合的基本运算

E
A
B
广义的并集
集合的并(union):集合A和B的并AB定义 为:AB = {x | xA或者xB},集合的并可 推广到多个集合,设A1, A2, …, An都是集合, 它们的并定义为:
A1A2∪…An = {x | 存在某个i,使得xAi}
广义的交集
集合的交(intersection):集合A和B的并AB定义 为:AB = {x | xA而且xB},集合的交也可推广 到多个集合,设A1, A2, …, An都是集合,它们的交 定义为:
集合的化简
化简((ABC)(AB))-((A(B-C))A) 证明:原集合=(AB)-A(吸收律)
=(AB)A =(AA)(BA)(分配律)
=(BA) =BA
(互补律) (同一律)
集合包含的性质
• AE •如果ABC,则AC •ABAA∪B •AB A∪B=B AB=A ~B ~A
利用集合等式证明
求证:A-(B∪C)=(A-B)∩(A-C)
(A-B)∩(A-C)=A∩~B∩A∩~C =A∩~B∩~C =A∩~(B∪C) =A-(B∪C)
证明吸收律A(AB)=A
证明:A(AB) =(A)(AB) =A(B) =A =A
已知AB=AC,AB=AC,求证B=C
6、零一律 A∩=,A∪E=E
(A∩B)=A∪B
7、补余律 A∩A=,A∪A=E
10、双重否定律(A)=A
8、吸收律 A∪(A∩B)=A
注:A-B=A∩B
A∩(A∪B)=A
集合相等的证明的方法
一、利用集合的定义证明; 二、利用集合等式证明;(常用) 三、利用谓词公式证明; 四、用集合成员表。(略)
即AB={xxA且x BxB且x A}

集合间的基本运算

集合间的基本运算

集合间的基本运算一、知识概述1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即=.性质:.全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S,U表示4、运算性质:(1);(2);(3);(4);(5);(6);.二、例题讲解例1、设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m的值.解:∵A B={9},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A B={9}.∴m=-3.例2、设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8,由方程x2-8x+15=0解得x=3或x=5.∴B={3,5}.由A(A B)={3,5}知,3∈A,5A(否则5∈A∩B,与A∩B={3}矛盾).故必有A={3},∴方程x2+ax+b=0有两相同的根3.由韦达定理得3+3=-a,33=b,即a=-6,b=9,c=-8.例3、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.解:A={x|-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1. ②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2.例4、已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}.若A∩B,且A∩C=,求a的值.解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵A∩B,∴A∩B≠.又∵A∩C=,∴可知-4A,2A,3∈A.∴由9-3a+a2-19=0,解得a=5或a=-2.①当a=5时,A={2,3},此时A∩C={2}≠,矛盾,∴a≠5;②当a=-2时,A={-5,3},此时A∩C=,A∩B={3}≠,符合条件.综上①②知a=-2.例5、已知全集U={不大于20的质数},M,N是U的两个子集,且满足M∩()={3,5},()∩N={7,19},()∩()={2,17},求M、N.解:用图示法表示集合U,M,N(如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3,5,11,13},N={7,11,13,19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①—;②—;③—;④—.一、选择题1、下列命题中,正确的是()A.若U=R,A U,;B.若U为全集,Φ表示空集,则Φ=Φ;C.若A={1,Φ,{2}},则{2}A;D.若A={1,2,3},B={x|x A},则A∈B.2、设数集且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是()A. B.C. D.3、设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于()A.N B.M∩NC.M∪N D.M4、已知全集,集合M和的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个C.1个 D.无穷个1、Φ=U,{2}∈A,{2}单独看是一个集合,但它又是A中的一个元素.2、集合M的“长度”为,集合N的“长度”为,而集合{x|0≤x≤1}的“长度”为1,故M∩N的“长度”最小值为3、M-N={x|x∈M且x N}是指图(1)中的阴影部分.同样M-(M-N)是指图(2)中的阴影部分.4、∵图形中的阴影部分表示的是集合,由解得集合,而N是正奇数的集合,∴,故选B.二、填空题5、已知集合A={x|x2-3x+2=0},集合B={x|ax-2=0}(其中a为实数),且A ∪B=A,则集合C={a|a使得A∪B=A}=_____________.5、{0,1,2}解析:A={1,2},由A∪B=A,得B A.∵1∈A,即得a=2;或2∈A,即得a=1;或B=Φ,此时a=0.∴C={0,1,2}.6、非空集合S{1,2,3,4,5},且若a∈S,则6-a∈S,这样的S共有___________个.6、6解析:S={1,5}或{2,4}或{3},或{1,3,5},或{2,4,3},或{1,5,2,4}.三、解答题7、设集合.(1)若,求实数a的值.(2)若,求实数a的值.7、解:(1)∵9,∴9 A.则a2=9或.解得a=±3或5.当时,(舍);当时,(符合);当时,(符合).综上知或.(2)由(1)知.8、已知全集U=R,<0,<或x>,若,求实数的取值范围8、解:依题设可知全集且≥0≤≤5,≤≤,由题设可知.分类如下:①若,则m+1>2m-1m<2.②若,则m+1≤2m-1,且,解得2≤m≤3.由①②可得:m≤3.∴实数m的取值范围为{m|m≤3}.9、已知全集U={|a-1|,(a-2)(a-1),4,6}.(1)若求实数a的值;(2)若求实数a的值.9、解:(1)∵且B U,∴|a-1|=0,且(a-2)(a-1)=1,或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不成立,在第二种情况中由|a-1|=1得a=0或a=2,∴a=2.(2)依题意知|a-1|=3,或(a-2)(a-1)=3,若|a-1|=3,则a=4,或a=-2;若(a-2)(a-1)=3,则经检验知a=4时,(4-2)(4-1)=6,与元素的互异性矛盾.∴a=-2或.10、设集合A ={|},B ={|,},若A B=B,求实数的值.10、解:先化简集合A=. 由A B=B,则B A,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.11、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠,求实数m 的取值范围.11、解:设全集.若方程x2-4mx+2m+6=0的两根x1,x2均非负,则解得.∵{m|}关于U的补集是{m|m≤-1},∴实数m的取值范围是{m|m≤-1}.1、(全国I,1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合中的元素共有()A.3个B.4个C.5个D.6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2-2x>0},则等于()A.{x|0≤x≤2} B.{x|0<x<2}C.{x|x<0或x>2} D.{x|x≤0或x≥2}答案:A解析:∵x2-2x>0,∴x(x-2)>0,得x<0或x>2,∴A={x|x<0或x>2},.3、(山东,1)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4答案:D解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.集合中的交、并、补等运算,可以借助图形进行思考。

3集合的基本运算

3集合的基本运算

集合的基本运算一、基本知识:1.并集的定义:(1)并集定义的三种语言(右表):(2)深刻领会“或”的内涵:并集的符号语言中的“或”与生活用语中的“或”的含义是不同的,生活用语中的“或”是只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x ∈A 或x ∈B ”包含三种情形:①x ∈A ,且x ∈B ;②x ∈B ,且x ∈A ;③x ∈A ,且x ∈B .2.交集的定义:(1)交集定义的三种语言(右表):(2)关于定义的理解:对于“A ∩B ={},x x A x B ∈∈且”,不能仅认为A ∩B 中的任一元素都是A 与B 的公共元素,同时还有A 与B 的公共元素都属于A ∩B 的含义,这就是文字定义中“所有”二字的含义,而不是“部分”公共元素.还有并不是任何两个集合总有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A ∩B =∅。

3.交集与并集的运算性质:(1),,,(2),(3),(4),(5)()(),()()(6),A B A A B B A B A A B BA A A A A AA A AA B B A A B B A A B C A B C A B C A B C A B A A B A B A B A⋂⊆⋂⊆⋃⊇⋃⊇⋂=⋃=⋂∅=∅⋃∅=⋂=⋂⋃=⋃⋂⋂=⋂⋂⋃⋃=⋃⋃⋂=⇔⊆⋃=⇔⊆以上性质我们都可用韦恩图加以验证,以性质6为例,如图1-1-3-1所示,这里所画图形为A B 或B A ,其实A =B 时同样成立.4.全集与补集:(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U(2)补集的定义的三种语言(右表):二、方法与运用:5.子集与交集、并集的运算:交集、并集的运算要注意数轴的应用,特别是有关不等式的题目。

集合间的关系与集合的运算的重要性质在解题时经常用到,一要理解,二要记牢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、集合的基本运算
(一)概念
1、并集:一般地,由所有属于集合A或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作B A (读作“A 并B ”)即
{}B x A x x B A ∈∈=或,
2、交集:一般地,由属于集合A且属于集合B 的元素组成的集合,称为集合A 与B 的交集,记作B A (读作“A 交B ”)即
{}B x A x x B A ∈∈=且,
3、全集与补集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U ;
对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作A C U ,即
{}A x U x x A C U ∉∈=且,
(二)性质
1、 =A A ;=φ A ;B A A B ;⇒=A B A ;
2、 =A A ;=φ A ;B A A B ;⇒=A B A ;
3、B A A B A ;B A B B A ;
4、=U C U ;=φU C ;()=A C C U U ;
()()()()()()B C A C B A C B C A C B A C R R R R R R == ;
(三)资料连接
1、观察下列各组集合,你能说出集合C 与集合A ,B 之间的关系吗?
(1)A ={1,3,5},B ={2,4,6},C ={1,2,3,4,5,6}
(2){}{}{}是实数是无理数
,是有理数x x C x x B x x A ===, 2、(1)设集合A ={4,5,6,8},集合B ={3,5,7,8,9},求A ∪B.
(2)设集合A ={x |-1<x <2},集合B ={x | 1<x <3},求A ∪B .
3、已知集合A ={x |-2≤x ≤5},集合B ={x | m +1≤x ≤2m -1},若A ∪B =A ,求m 的取值范围.
4、观察下列各组集合,你能说出集合C 与集合A ,B 之间的关系吗?
(1) A ={4,3,5};B ={2,4,6};C ={4}.
(2){}{}{}学月在校的高一年级女同年是咸祥中学月在校的高一年级同学
年是咸祥中学,月在校的女同学
年是咸祥中学92008,9200892008x x C x x B x x A ===
5、⑴ A ={2,4,6,8,10}, B ={3,5,8,12}, C ={6,8},求①A ∩B ②A ∩(B ∩C ) ; ⑵ A ={x |x 是某班参加百米赛的同学}, B ={x |x 是某班参加跳高的同学},求A ∩B .
6、设集合A ={y |y =x 2,x ∈R}, B ={(x , y )|y =x +2,x ∈R},则A ∩B =( )
A.{(-1, 1),(2, 4)}
B. {(-1, 1)} C {(2, 4)} D. ∅
7、(1)设A ={x |x 2+4x =0}, B ={x 2+(2a +1)x +a 2-1=0},若A ∩B =B ,求a 的值.
(2)已知集合{}{}01,0652=+==+-=ax x B x x x A ,如果A ∩B =B ,求实数a 的值。

(3)集合{}{}1,,3,1,12,322+-=+--=x x B x x x A ,若{}3=B A ,求实数x 的值。

8、已知集合{}{}a x x B x x A >=≤≤-=,42
(1)若φ=B A ,求实数a 的取值范围;
(2)若A B A = ,求实数a 的取值范围;
(3)φ≠B A 且A B A ≠ ,求实数a 的取值范围。

9、集合{}{}
{}{}3,4,3,,0,01222-=-=≠=++==--=B A B A B A r qx x x B px x x A ,求实数r q p ,,的值。

10、集合A 有10个元素,集合B 有9个元素,集合B A 中有17个元素,问集合B A 有多少个元素?
11、观察下列两个集合,思考有什么区别? ()(){}()(){}032 03222=--∈==--∈=x x R x B x x Q x A
12、已知集合{}{},102,73<<=<≤=x x B x x A
求()()()()()()()()B C A B A C B C A C B C A C B A C B A C R R R R R R R R ,,,,,。

13、学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。

两次运动会中,这个班共有多少名同学参赛?。

相关文档
最新文档