九年级数学上册-用频率估计概率教案
九年级数学《利用频率估计概率》教案
《利用频率估计概率》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级上册第25章第三小节利用频率估计概率第1课时。
2.知识背景分析本章隶属于“统计与概率”领域,相对于传统的代数、几何而言,概率论形成较晚,其定义方式新颖独特,具有不确定性,这是理解概率的难点所在.新教材在教学内容的编排上,采用了模块化、螺旋上升的方式.本节课就是在学习了“随机抽样”、“用样本估计总体”等统计知识的基础上展开对概率的研究的——利用频率估计概率,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率.本节课的学习,既是对前面知识的发展和应用,又是今后进一步研究相关知识的基础,在教材中起着承上启下的作用.3.学情背景分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,但他们不知道如何利用频率去估计概率,这是教学中的一大难点;另外,随机事件发生的随机性和规律性是如何辩证统一的,这是教学中的又一大难点.4.学习目标1、.知识与技能:学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.2.过程与方法:通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.3.情感态度与价值观:通过对实际问题的解答,体会知识的应用价值。
5.学习重、难点教学重点:用一件事件发生的频率来估计这一事件发生的概率.教学难点:理解大量重复试验的必要性。
6.教法设计与学法指导针对本节课的特点,在教法上,我采用以教师引导为主,学生合作探索、积极思考为辅的探究式教学方法;在教学过程中,我注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟。
7.学习环境与资源设计7.1学习环境:多媒体教室。
7.2学习资源:教材、教学课件(多媒体课件)。
8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
人教版数学九年级上册25.3《利用频率估计概率》教案
人教版数学九年级上册25.3《利用频率估计概率》教案一. 教材分析《人教版数学九年级上册》第25.3节“利用频率估计概率”是概率统计部分的一个重要内容。
本节课主要让学生掌握利用频率来估计概率的方法,理解频率与概率的关系,并能够运用这一方法解决一些简单的实际问题。
教材通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系,并运用这一方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,了解了随机事件和必然事件。
但是,对于利用频率来估计概率的方法,学生可能比较陌生,需要通过实例和练习来理解和掌握。
此外,学生可能对于如何将频率与概率的关系应用到实际问题中,还需要进一步的引导和培养。
三. 教学目标1.知识与技能目标:让学生掌握利用频率来估计概率的方法,理解频率与概率的关系。
2.过程与方法目标:通过实例和练习,培养学生运用频率估计概率解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 教学重难点1.重点:利用频率来估计概率的方法,频率与概率的关系。
2.难点:如何将频率与概率的关系应用到实际问题中。
五. 教学方法1.情境教学法:通过实例引入频率估计概率的概念,引导学生探究频率与概率的关系。
2.问题驱动法:通过设置问题,引导学生思考和探究,培养学生的解决问题的能力。
3.合作学习法:分组讨论和交流,培养学生的合作精神和团队意识。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题目。
2.练习题目:准备一些相关的练习题目,用于巩固和拓展学生的知识。
七. 教学过程导入(5分钟)教师通过一个简单的实例引入频率估计概率的概念。
例如,抛硬币实验,抛掷一枚硬币,记录正面朝上的频率,然后引导学生思考:这个频率与硬币正反面朝上的概率有什么关系?呈现(10分钟)教师通过PPT呈现一些实例,让学生观察和分析频率与概率的关系。
例如,掷骰子实验,掷骰子100次,记录各个数字出现的频率,然后引导学生思考:这个频率与骰子各个数字出现的概率有什么关系?操练(10分钟)教师让学生分组讨论,每组选择一个实例,进行频率估计概率的实验。
九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案
教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。
对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率。
为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。
2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。
三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计
3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。
人教版九年级数学上册25.3用频率估计概率优秀教学案例
1.教师可以布置相关的作业,让学生巩固所学的内容,并提高学生的应用能力。例如,教师可以让学生设计一个实验,用频率来估计某个事件的概率,并将实验结果写成报告。
2.教师可以鼓励学生在课后进行自主学习,进一步深入研究频率与概率的相关知识。例如,教师可以推荐一些相关的数学文章和书籍,让学生进行阅读和思考。
(四)反思与评价
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
4.培养情感态度与价值观:教师在教学过程中关注学生的情感态度与价值观,引导学生积极参与课堂活动,体验数学学习的乐趣,培养学生的自信心和坚持、勤奋的优良品质。
5.反馈与评价:教师在教学过程中注重学生的反馈与评价,通过课堂评价、自我反思等方式,对学生的学习情况进行及时反馈,鼓励学生的优点,并提出改进的建议,有助于学生的持续发展。
(四)总结归纳
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
(三)小组合作
1.教师可以将学生分成小组,让学生在小组内进行合作实验,共同探究频率与概率之间的关系。例如,教师可以让学生小组合作设计实验,收集数据,分析频率与概率之间的关系。
人教版九年级上册25.3用频率估计概率教学设计
人教版九年级上册25.3用频率估计概率教学设计一、教学目标1.了解频率的概念和计算方法;2.掌握用频率估计概率的方法;3.能够运用所学知识解决实际问题。
二、教学重点和难点1.频率的概念和计算方法;2.用频率估计概率的方法。
三、教学过程1. 导入新知教师可以通过提问引导学生回忆频率分布直方图,让学生回答“频率是什么?怎么计算出来?”等问题,调动学生积极性和思维参与度,从而引出“频率估计概率”这一新的主题。
2. 讲授主要内容(1)频率的概念和计算方法教师通过讲解实例,向学生阐述频率的概念和计算方法。
然后,举例讲解如何利用频率计算样本空间和事件的概率。
比如:假设在班级里有60人,其中30人喜欢阅读,那么事件“A喜欢阅读”发生的概率就是30/60=0.5。
接着,教师通过指导分组统计数据,引导学生计算频率,让学生使统计数据更直观和具体。
(2)用频率估计概率的方法教师通过讲解实例,向学生介绍用频率估计概率的方法,即把事件在抽样调查中的频率近似看作其真实概率。
然后,教师和学生们共同思考一些实际问题,如何利用频率估计概率,以及如何判断这种估计的准确性。
3. 拓展应用让学生通过讨论实际问题和展示分组统计数据等方式,掌握如何灵活应用所学知识解决实际问题。
比如:小明老师想问问班上同学的阅读偏好,她把每个同学最喜欢的书籍的题材进行了记录,如何利用这些记录估计班里所有同学喜欢的书籍类型?4. 总结归纳通过总结归纳,帮助学生深入理解并掌握所学内容,同时也对本节课的知识点做一个回顾与概括。
四、教学手段1.课件展示;2.实物演示;3.小组合作;4.课堂讨论。
五、教学评价1.考查学生对于概念的理解;2.考查学生运用所学知识解决实际问题的能力;3.评价学生的课堂参与度和互动交流能力。
六、反思改进在教学过程中,要根据学生的实际情况,选择不同的教学方法来提高效果。
同时,关注学生的情绪变化和主动互动情况,及时调整教学步骤和方式。
在学生自主学习过程中,需建立良好的沟通机制,充分发挥学生的主动性和创造性,创造良好的教育氛围。
人教版九年级数学上册253用频率估计概率(教案)
5.通过实例,让学生感受概率在生活中的重要性,培养学生的数据分析能力。
二、核心素养目标
1.数据分析:培养学生通过收集、整理、描述和分析数据,发现数据背后的规律,运用频率估计概率,提高解决实际问题的能力;
2.逻辑推理:引导学生运用数学语言和符号,进行逻辑推理,理解频率与概率之间的关系,培养严谨的逻辑思维能力;
c.在培养数据分析能力时,可以让学生分组进行试验,收集数据,然后讨论如何整理和分析这些数据,得出合理的结论。
直接输出:
四、教学流程
1.导入新课:通过提问方式引导学生回顾之前学过的概率知识,为新课学习做好铺垫。
-提问:“我们之前学过如何表示事件发生的可能性?它与今天我们要学习的频率估计概率有什么联系?”
人教版九年级数学上册253用频率估计概率(教案)
一、教学内容
人教版九年级数学上册253节“用频率估计概率”:本节课主要内容包括:
1.理解频率和概率的关系,通过大量重复试验,观察频率的稳定值来估计概率;
2.掌握利用频率估计概率的方法,并能运用该方法解决实际问题;
3.分析频率与概率之间的关系,探讨频率随试验次数增加的变化规律;
6.总结回顾:强调频率估计概率的重要性,巩固学生对本节知识点的掌握。
-总结:“通过今天的学习,我们知道了频率可以用来估计概率,这对于解决实际问题具有重要意义。”
7.作业布置:布置与频率估计概率相关的作业,强化学生对知识点的应用。
-布置:“请同学们课后思考,生活中还有哪些情况可以用频பைடு நூலகம்来估计概率?并尝试举例说明。”
三、教学难点与重点
1.教学重点
-理解频率与概率的关系:强调通过大量重复试验,观察频率的稳定值来估计概率,使学生掌握这一核心概念。
2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率
25.3 利用频率估计概率一、教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度与价值观】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.五、课前准备课件等.六、教学过程(一)导入新课教师问:抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?(出示课件2)学生答:出现“正面朝上”和“反面朝上”两种情况.教师问:它们的概率是多少呢?学生答:都是1.2教师问:在实际掷硬币时,会出现什么情况呢?(出示课件3)在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?用列举法可以求一些事件的概率.实际上,我们还可以利用多次重复试验,通过统计试验结果估计概率.(板书课题)(二)探索新知探究一用频率估计概率出示课件5-9:抛硬币实验(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.学生尝试画图:的直线,你发现了什么?(3)在上图中,用红笔画出表示频率为12的直线,并观察思考.学生画出表示频率为12教师强调:试验次数越多频率越接近0. 5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?学生答:支持.教师问:抛掷硬币试验有什么特点?学生答:1.可能出现的结果数有限;2.每种可能结果的可能性相等.教师问:如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?学生独立思考,交流.出示课件10-13:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表画出统计图表示“顶帽着地”的频率.学生尝试画图:(3)这个试验说明了什么问题?学生答:在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.出示课件14:教师归纳:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.出示课件15:知识拓展:人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.出示课件16:教师强调:一般地,在大量重复试验中,随机事件A发生的(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发频率mn生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即P(A)=P.练一练:判断正误(出示课件17)⑴连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1.(2)小明掷硬币10000次,则正面向上的频率在0.5附近.(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.学生思考后口答:⑴错误;⑵正确;⑶错误.出示课件18:例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);学生计算后并填表:(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?学生独立思考后口答:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.巩固练习:(出示课件19)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是4学生自主思考后口答:D.出示课件20,21:例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1)计算上表中合格品率的各频率(精确到0.001);(2)估计这种瓷砖的合格品率(精确到0.01);(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.学生计算思考后,师生共同解答.(出示课件22)解:(1)逐项计算,填表如下:稳定在0.962⑵观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率mn的附近,所以我们可取P=0.96作为该型号瓷砖的合格品率的估计.(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.出示课件23:教师归纳总结:频率与概率的关系在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与试验无关.巩固练习:(出示课件24)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1)学生自主思考后独立解答:⑴计算如下:⑵稳定在0.8附近;⑶0.8.(三)课堂练习(出示课件25-34)1.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.填表:由上表可知:柑橘损坏率是,完好率是.6.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?7.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案:1.D解析:由图知试验结果在0.33附近波动,因此概率约等于0.33.取到红球概率为0.6,故A错;骰子向上的面点数是偶数的概率为0.5,故B错;两次都出现反面的概率为0.25,故C错,骰子两次向上的面点数之和是7或超过9的概率≈0.33,故D正确.为132.310;2703.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.⑴0.6;⑵0.6.5.解:填表如下:由上表可知:柑橘损坏率是0.10,完好率是0.90.6.分析:根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.22(90009⨯≈元/千克),设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.7.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000×95%=240350(千克).(四)课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?七、课后作业配套练习册内容八、板书设计:九、教学反思:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.。
《25.3 用频率估计概率》教案、教学设计、导学案、同步练习
《25.3 用频率估计概率》教案【教学目标】1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16 .探究点二:用频率估计概率【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B、C、D不一定正确,选项A正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计【教学反思】教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.《25.3 用频率估计概率》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
北师大九年级上册 3.2 用频率估计概率 教学设计
3.2用频率估计概率教学设计任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,可以发现实验次数越多,频率越接近概率.(m>n),那么一定有一个抽屉中放进了至少2个物品”.300个同学中,一定有两个同学的生日相同吗?不一定.但有2个同学的生日相同的可能性较大.“我认为咱们班50个同学中很可能就有2个同学的生日相同.”,你同意这种说法吗?同意。
【议一议】为了证明上述的说法是否正确,我们可以通过大量重复试验,用“50个人中有2个人的生日相同”的频率来估计这一事件的概率.请你设计试验方案.(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选择50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在表格中.“50人中有2人生日相同”的频率=“50人中有2人生日相同”的频数总调查次数(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.“n个人中至少有2人相同”的概率统计如下:【归纳】(1)用频率估计概率:当试验次数足够大时,随机事件出现的频率稳定于相应的理论概率附近;(2)用频率估计概率的条件:试验的次数必须足够大.(3)计算方法:一般地,在大量重复试验中,如果事稳定于某个常数p,那么估计事件A 件A发生的频率mn发生的概率P(A)=p.【想一想】(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?(1)每次随机摸出一个球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.(2)每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将越稳定于理论概率.【思考】频率与概率有什么区别与联系?所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变,而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关..例、六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球有多少个.方法指导:(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)∵1000040000=14,∴参加一次这种游戏活动得到福娃玩具的频率为14 (2)∵试验次数很大时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是14.设袋中白球有x 个.1.不透明的袋子里放有4个黑球和若干个白球(这些球除颜色外都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的频率稳定在0.2附近,则袋子中白球的个数是 ( )A.1 B.2 C.3 D.4 2.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是 ( ) A.掷一枚正六面体的骰子,出现1点的概率B.任意写一个整数,它能被2整除的概率C.抛一枚质地均匀的硬币,出现正面朝上的概率D.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率3.下表记录了某种幼树在一定条件下移植成活的情况:由此估计这种幼树在此条件下移植成活的概率是_____(精确到0.1).4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.。
九年级数学上册《用频率作为概率的估计值》教案、教学设计
3.通过数学知识在实际生活中的应用,让学生认识到数学的价值,提高学生的数学素养。
教学过程:
一、导入新课
1.复习概率的基本概念,为新课的学习做好铺垫。
2.提问:我们已经学习了如何计算事件的概率,那么在实际问题中,如何估计事件的概率呢?
二、自主探究
3.激发学生对数学的兴趣,培养他们的探究精神和:以生活实例引入频率与概率的概念,让学生感受到数学的实用性和趣味性。
2.自主探究,合作交流:鼓励学生自主探索频率与概率之间的关系,通过小组合作、讨论交流,共同解决问题。
3.精讲精练,突破难点:针对教学难点,教师进行详细的讲解和示范,让学生在理解的基础上,通过适量的练习题进行巩固。
设计实际问题,让学生运用频率估计概率,解决生活中的问题,提高数据分析与处理的能力。
第六步:总结反思,提升素养
1.让学生回顾所学内容,总结频率与概率之间的关系。
2.教师对学生进行情感态度与价值观的教育,强调数学在实际生活中的价值。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示一个有趣的魔术,引起学生的好奇心。魔术内容为:教师准备一个不透明的袋子,里面装有5个红球和5个蓝球,让学生从中随机抽取一个球,然后放回袋子。重复这个过程多次,最后预测学生抽到红球的概率。
九年级数学上册《用频率作为概率的估计值》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解频率和概率的关系,掌握用频率估计概率的方法。
2.培养学生运用数学知识解决实际问题的能力,提高数据分析与处理的能力。
3.使学生能够运用频率估计概率,解决一些简单的实际问题,如抛硬币、掷骰子等。
人教版数学九年级上册25.3《利用频率估计概率》教学设计
人教版数学九年级上册25.3《利用频率估计概率》教学设计一. 教材分析人教版数学九年级上册25.3《利用频率估计概率》是学生在学习了概率的基本概念和计算方法后,进一步学习利用频率来估计概率的一节内容。
通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的基本概念和计算方法已经有了一定的了解。
但是,学生在利用频率估计概率方面可能还存在一些困难,如对频率与概率之间的关系理解不深,以及对实际问题解决方法的掌握不够熟练。
三. 教学目标1.让学生理解频率与概率之间的关系,能够利用频率来估计概率。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.频率与概率之间的关系。
2.利用频率估计概率的方法。
3.实际问题中如何运用频率估计概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究问题来理解频率与概率之间的关系。
2.利用多媒体演示和实例分析,帮助学生直观地理解频率估计概率的方法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.结合课后练习和实际问题,巩固学生对频率估计概率的理解和应用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与概率相关的日常生活实例,引导学生回顾概率的基本概念和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)展示教材中关于利用频率估计概率的内容,引导学生理解频率与概率之间的关系。
通过实例分析,让学生直观地感受利用频率估计概率的方法。
3.操练(10分钟)学生进行小组讨论,探讨如何利用频率来估计概率。
然后,让学生进行课堂练习,巩固对频率估计概率的理解。
4.巩固(10分钟)针对学生在练习中遇到的问题,进行讲解和解答。
教版九年级上册25.3用频率估计概率教学设计docx
在此基础上,我会结合实例,讲解如何利用频率估计概率。例如,通过掷骰子的实验,让学生观察每个数字出现的频率,并推测其概率。
(三)学生小组讨论,500字
在学生小组讨论环节,我会组织学生进行小组合作,共同探讨以下问题:
接着,我会简要回顾一下已学的概率知识,如随机事件、概率的定义等。然后引出本节课的主题:“用频率估计概率”。这样既巩固了学生已有的知识,又激发了他们对新知识的兴趣。
(二)讲授新知,500字
在讲授新知环节,我会详细讲解频率与概率的概念,阐述它们之间的关系。
首先,解释频率的概念:频率是指在一定次数的实验中,某个事件发生的次数与实验总次数的比值。然后,解释概率的概念:概率是指某个事件在所有可能事件中发生的可能性。
3.教学评价:
a)过程性评价:关注学生在课堂上的表现,包括参与度、思考问题、交流互动等方面。
b)终结性评价:通过课后作业、阶段测试等形式,评价学生对本章节知识的掌握程度。
c)个体差异评价:关注学生的个体差异,对学困生给予个别辅导,提高他们的学习效果。
4.教学策略:
a)针对学生的认知水平,适当调整教学难度,使学生在最近发展区内得到充分发展。
4.针对本节课的知识点,设计一道关于频率估计概率的题目,并给出解题步骤。学生可以通过此题目的设计,加深对频率与概率关系的理解。
5.家长参与作业:请学生与家长一起探讨生活中遇到的概率问题,如购物抽奖、彩票等,并记录讨论过程。此举旨在增强学生的实际应用能力,同时增进亲子关系。
6.写一篇关于本节课学习心得的数学日记,要求学生从知识掌握、学习方法、情感态度等方面进行反思,以提高自我认知。
人教版九年级上册25.3用频率估计概率(教案)
5.本章内容主要包括:频率与概率的关系、频率的稳定值、如何进行实验和数据处理、频率估计概率的应用实例。
二、核心素养目标
1.数据分析:培养学生通过实验收集数据、分析数据的能力,学会运用频率估计概率,提高数据处理与概括能力;
2.逻辑推理:引导学生理解频率与概率之间的关系,通过逻辑推理,掌握频率估计概率的方法;
-实际问题中的应用:学生可能难以将频率估计概率的方法应用于解决复杂问题;
-难点解析:通过案例教学,如掷骰子游戏、抽奖活动等,让学生学会将实际问题转化为数学问题,运用频率估计概率进行解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用频率估计概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估计某个事件发生概率的情况?”(如抛硬币出现正面)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索用频率估计概率的奥秘。
-举例:抛硬币实验,让学生明白频率如何稳定在概率附近。
-实验数据收集与处理:指导学生如何进行实验,收集数据,计算频率;
-举例:掷骰子实验,教授如何记录数据,计算各面出现的频率。
-频率估计概率的方法:教授学生如何运用频率估计概率,解决实际问题;
-举例:通过篮球投篮实验,让学生学会利用频率估计投篮命中率。
1.加强对学生数学建模能力的培养,提高他们解决实际问题的能力;
2.引导学生围绕教学主题进行讨论,避免讨论偏离目标;
3.运用更多形象、生动的教学手段,帮助学生更好地理解抽象的数学概念。
最后,我要继续关注学生的学习情况,及时发现和解决他们在学习过程中遇到的问题,努力提高他们的数学素养,为他们的未来发展奠定坚实的基础。
《用频率估计概率》教案
《用频率估计概率》教案一、教学目标:1. 让学生理解频率与概率之间的关系,掌握用频率来估计概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 增强学生对统计学的基本概念的理解,为后续学习打下基础。
二、教学内容:1. 频率与概率的关系2. 利用大量实验来估计事件的概率3. 用频率估计概率的步骤与方法4. 实例分析与应用三、教学重点与难点:1. 教学重点:频率与概率的关系,用频率估计概率的方法及步骤。
2. 教学难点:如何运用概率知识解决实际问题,对实例进行分析。
四、教学方法:1. 讲授法:讲解频率与概率的关系,阐述用频率估计概率的方法及步骤。
2. 案例分析法:分析实例,让学生学会运用概率知识解决实际问题。
3. 互动教学法:引导学生积极参与讨论,提高课堂氛围。
4. 实践操作法:让学生进行实验操作,加深对用频率估计概率方法的理解。
五、教学过程:1. 导入新课:通过抛硬币实验,引导学生思考频率与概率的关系。
2. 讲解频率与概率的概念,阐述它们之间的关系。
3. 讲解用频率估计概率的方法及步骤。
4. 分析实例,让学生学会运用概率知识解决实际问题。
5. 课堂练习:让学生运用所学的知识解决一些实际问题。
6. 总结本节课的主要内容,布置课后作业。
7. 课后反思:对本节课的教学进行总结,思考如何改进教学方法,提高学生的学习效果。
六、教学评估:1. 课堂提问:通过提问了解学生对频率与概率关系的理解程度,以及对用频率估计概率方法的掌握情况。
2. 课后作业:布置相关的练习题,检验学生对课堂所学知识的应用能力。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们是否能运用概率知识解决实际问题。
七、教学资源:1. 教学PPT:制作精美的PPT,展示频率与概率的关系,以及用频率估计概率的方法。
2. 抛硬币实验材料:准备足够的硬币,用于课堂实验。
3. 实例分析材料:收集相关的实际问题,用于课堂分析。
八、教学进度安排:1. 第1周:讲解频率与概率的关系。
人教版九年级数学上册《用频率估计概率(第1课时)》示范教学设计
用频率估计概率(第1课时)教学目标1.掌握用频率估计概率的具体步骤和适用范围,理解用频率估计概率的合理性和必要性.2.了解频率与概率的区别和联系.教学重点掌握用频率估计概率的具体步骤和适用范围.教学难点1.理解用频率估计概率的合理性和必要性.2.了解频率与概率的区别和联系.教学过程知识回顾1.画树状图法当一次试验要经过3个(或3个以上)步骤或涉及3个(或3个以上)因素时,列表就不方便了,为了不重不漏地列出所有可能的结果,通常采用画树状图法.此外,当一次试验涉及两个因素时,也可用画树状图法.2.概率的定义一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).新知探究一、探究学习【问题】(1)抛掷一枚质地均匀的硬币时,会出现哪些可能的结果呢?(2)它们的概率是多少呢?【师生活动】学生独立思考,然后教师抽取学生代表发言.【答案】(1)出现“正面向上”和“反面向上”两种情况.(2)都是12.【追问】这是否意味着抛掷一枚硬币100次时,就会有50次“正面向上”和50次“反面向上”呢?【师生活动】教师与学生通过实验共同完成新知的探究.【设计意图】让学生带着问题进入本节课的新知学习.【试验】1.把全班同学分成10组,每组同学抛掷一枚硬币50次,整理同学们获得的试验数据,并完成表格.第1组的数据填在第1列,第1,2组的数据之和填在第2列……10个组的数据之和填在第10列.【新知】如果在抛掷硬币n次时,出现m次“正面向上”,则称比值mn为“正面向上”的频率.【师生活动】学生分组按要求试验、思考,完成表格的填写.【答案】【试验】2.根据表格中的数据,在下图中标注出对应的点.【师生活动】教师组织学生整理试验数据,在折线统计图中标出对应的点并连线.【答案】【设计意图】让学生亲身经历抛掷硬币的随机试验,收集和描述数据,培养随机观念,为揭示频率的随机性和稳定性做准备.【问题】(1)图中的横轴、纵轴分别表示什么?(2)过纵轴上刻度为0.5的点有一条水平直线,它的含义是什么?(3)标出的点的含义是什么?【答案】(1)抛掷次数、“正面向上”的频率.(2)“正面向上”的概率为0.5.(3)对应小组试验数据求和后获得的“正面向上”的频率.【设计意图】帮助学生复习与理解图表中各种数据的含义.【材料】历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些试验结果见表格.【思考】结合本班获取的试验数据与材料中的试验数据,试着分析出随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么?【师生活动】学生独立思考,然后师生共同完成归纳.【答案】可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5附近摆动.一般地,随着抛掷次数的增加,频率呈现出一定的稳定性:在0.5附近摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.它与前面用列举法得出的“正面向上”的概率是同一个数值.【归纳】试验中,某事件发生的次数与总次数的比值,称为频率.对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.【设计意图】引导学生发现,尽管频率具有随机性,但在做大量重复试验时,随着试验次数的增加,频率表现出一定的稳定性.二、典例精讲【例1】判断题(1)连续掷一枚质地均匀的硬币10次,结果10次全部是正面,则正面向上的概率是1.()(2)小明掷硬币10 000次,则正面向上的频率在0.5附近.()(3)设一大批灯泡的次品率为0.01,那么从中抽取1 000只灯泡,一定有10只次品.()【师生活动】学生思考、回答,教师点评.【答案】×√×【新知】概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.【设计意图】通过例1,加深学生对概率定义的理解.【例2】下列叙述随机事件的频率与概率的关系中,说法正确的是().A.频率就是概率B.频率是随机的,与试验次数无关C.概率是稳定的,与试验次数无关D.概率是随机的,与试验次数有关【师生活动】学生独立思考,然后回答问题.【答案】C【解析】频率是随机的,随试验而变化,但概率是唯一确定的一个值,在大量重复试验中,随试验次数的增加,频率会逐渐稳定于概率附近.故选C.【归纳】频率与概率的区别和联系【设计意图】通过例2,归纳出频率与概率的区别和联系.【例3】在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜色外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的试验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是试验的部分数据:(1)完成表格的填写.(精确到0.001)(2)估计摸出一个球恰好是白球的概率.(精确到0.01)【师生活动】学生独立完成后,全班交流.【答案】解:(1)填表如下.(2)由题表可估计,摸出一个球恰好是白球的概率是0.25.【归纳】用频率估计概率的具体步骤(1)判断:先判断某个试验所有可能的结果是不是有无限个或各种可能的结果是不是等可能的.(2)试验:大量重复试验直至某种事件发生的频率在某一个固定数的附近摆动.(3)估计:用上述固定的数估计概率.【设计意图】通过例3,归纳出用频率估计概率的具体步骤.三、拓展提升【思考】(1)能否用列举法求出抛掷一枚图钉或一枚质地不均匀的骰子的概率?(2)能否用频率估计它们的概率呢?【师生活动】小组讨论,然后教师讲解.【答案】(1)不能.用列举法求概率仅适用于“各种结果出现的可能性相等”的随机事件.(2)能.用频率估计概率,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.【设计意图】让学生意识到用频率估计概率是一种获得随机事件的概率的新方法,它的使用范围比用列举法求概率更广.课堂小结板书设计一、频率与概率的区别和联系二、用频率估计概率的具体步骤三、用频率估计概率的适用范围课后任务完成教材第144页练习题.。
九年级数学上册《用频率估计概率》教案、教学设计
1.教师介绍频率与概率的概念,强调频率是实验中观察到的结果,而概率是理论上计算出的结果。
2.讲解频率与概率的关系,通过实际例子让学生理解频率可以用来估计概率。
3.介绍频率分布表和频率分布直方图的制作方法,示范如何利用它们分析数据。
4.讲解如何运用概率知识解决实际问题,如根据频率分布表和频率分布直方图进行决策等。
4.培养学生正确的价值观,使学生明白概率知识在实际生活中的重要意义,激发学生为国家和民族的发展贡献自己的力量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有了初步的了解。在此基础上,他们对本章节的学习将面临以下挑战:
1.对频率和概率的关系理解不够深入,需要通过具体实例和实验,引导学生深入理解两者之间的联系;
4.学生活动与练习:
a.学生分小组进行实验,收集数据,制作频率分布表和频率分布直方图;
b.各小组展示实验成果,进行交流讨论,提高数据处理和分析能力;
c.学生尝试运用概率知识解决实际问题,教师给予指导和反馈。
5.教学难点突破:
a.通过具体实例,让学生感受频率与概率的关系,提高理解程度;
b.对频率分布表和频率分布直方图的制作方法进行详细讲解,确保学生掌握;
c.针对不同学生的实际情况,给予个性化指导,帮助他们克服学习难点。
6.课堂小结:对本节课的知识点进行总结,强调频率与概率的关系,以及频率分布表和频率分布直方图在数据分析中的应用。
7.课后作业:布置与课堂内容相关的作业,巩固所学知识,提高学生的实际操作能力。
8.教学评价:采用过程性评价和终结性评价相结合的方式,关注学生在实验、讨论、解决问题等方面的表现,全面评估学生的学习效果。
4.学生在讨论中互相学习,共同提高。
初中数学初三数学上册《用频率估计概率》教案、教学设计
3.学生对概率与频率之间关系的认识,以及在实际问题中的应用。
(三)教学设想
为了突破教学重难点,提高学生的学习效果,我设想以下教学策略:
1.创设情境,激发兴趣:
结合生活实例,如彩票抽奖、球赛预测等,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
4.小组合作,共同探讨以下问题:
a.在实验中,如何判断频率已经足够接近概率?
b.在实际问题中,如何运用频率估计概率?
c.请举例说明频率与概率在实际应用中的区别和联系。
要求各小组整理讨论成果,形成文字报告,以培养学生的团队合作精神和沟通表达能力。
5.阅读拓展资料,了解概率论在生活中的其他应用,如统计学、经济学、心理学等,拓宽学生的知识视野。
作业布置要求:
1.学生在完成作业时,要认真思考,确保作业质量。
2.作业完成后,要进行自查,确保格式规范,表述清晰。
3.教师在批改作业时,要及时给予反馈,指导学生改进。
4.鼓励学生在完成作业过程中,积极提问,主动探讨,提高自身能力。
5.融入信息技术,提高教学效果:
利用多媒体、网络等信息技术手段,展示实验过程、数据分析等,使抽象的数学概念形象化,降低学习难度。
6.注重个体差异,因材施教:
关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,给予关心和支持,提高他们的自信心。
7.反馈评价,促进反思:
教学过程中,及时给予学生反馈,引导学生自我评价,促使学生反思学习过程和方法,提高学习效果。
2.强调频率在实际问题中的应用,让学生认识到数学知识在生活中的价值。
3.鼓励学生主动发现生活中的概率问题,用所学知识解决实际问题,提高学生的数学素养。
《25.3 用频率估计概率》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
《用频率估计概率》教学设计方案(第一课时)一、教学目标:1. 理解频率稳定性,并理解概率和频率之间的关系。
2. 学会使用频率估计概率的方法。
3. 培养观察、分析和解决问题的能力。
二、教学重难点:教学重点:理解频率稳定性,掌握用频率估计概率的方法。
教学难点:如何根据实际情况,灵活运用频率估计概率。
三、教学准备:1. 准备教学PPT和相关图表。
2. 准备实验器材,如小球、骰子等。
3. 准备概率应用案例,以便在实际教学中使用。
四、教学过程:(一)导入新课通过一些简单的实例,引导学生体会频率与概率之间的关系,感受概率的意义。
例如:1. 抛一枚均匀的硬币,落地后正面朝上的概率为0.5,那么连续多次抛掷后,正面朝上的频率是否会一直稳定在0.5左右呢?2. 投掷两枚均匀的骰子,计算朝上一对骰子的点数和为偶数的概率。
每次试验这种事件都会发生吗?它的概率会改变吗?通过这些实例,让学生感受到频率与概率之间的关系,并引出课题。
(二)探索新知通过实验活动,让学生体验如何通过实验来估计概率。
例如:1. 设计一些简单的实验,如摸球、摸卡片、转盘等,让学生自己动手实验,感受实验的次数对估计概率的影响。
2. 讨论如何选择合适的实验方法来估计不同事件的概率。
3. 通过实例让学生了解随机事件发生的频率在多次试验中会有一定的稳定性,可以用来估计某个事件的概率。
4. 探究如何将一个必然事件或不可能事件转化为一个随机事件来估计它的概率。
(三)巩固提高通过一些练习题,让学生应用所学知识解决实际问题,加深对知识的理解。
例如:1. 一些简单的概率计算题。
2. 一些与生活实际相关的概率问题,如彩票中奖率、天气预报的准确率等。
(四)小结作业1. 总结本节课的主要内容,强调频率与概率之间的关系,以及如何通过实验来估计概率。
2. 布置作业,让学生通过作业进一步巩固所学知识,并可以自行设计一些简单的实验来感受概率的意义。
教学设计方案(第二课时)一、教学目标1. 学生能够理解频率稳定值的概率的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.3用频率估计概率(1课时)
一、基本目标
【知识与技能】
1.掌握用随机事件的频率估计事件发生的概率的方法.
2.掌握设计试验来估计比较复杂的随机事件发生的概率,并灵活运用概率的有关知识解决实际问题.
【过程与方法】
经历“猜想——试验——收集数据——分析结果”的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型,理解频率与概率的关系.
【情感态度与价值观】
通过分组合作学习,积累数学活动经验,发展合作交流的意识与能力,逐步建立正确的随机观念,体验数学的价值与学习的乐趣,渗透辩证思想教育.
二、重难点目标
【教学重点】
理解用频率估计概率的条件与方法.
【教学难点】
设计试验来估计比较复杂的随机事件发生的概率.
环节1自学提纲,生成问题
【5 min阅读】
阅读教材P142~P146的内容,完成下面练习.
【3 min反馈】
1.抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性相等,这两个随机事件发生的概率都是0.5.通过试验可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5附近摆动.一般地,随着抛掷次数的增加,频率呈现一定的稳定性:在0.5附近摆动的幅度会越来越小.
2.教材P143“思考”的答案是“正面向上”的频率呈现出稳定性,稳定于0.5.
3.用频率估计概率时必须做足够的试验才能使频率稳定于概率,并且每项试验必须在相
同条件下进行,试验次数越多,得到的频率值就越接近概率,规律就越明显,此时可以用频率的稳定值估计事件发生的概率.
环节2合作探究,解决问题
【活动1】小组讨论(师生互学)
【例1】在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
(2)估计该麦种的发芽概率;
(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100 kg麦种,则有多少千克的麦种可以成活为秧苗?
【互动探索】(引发学生思考)计算出发芽频率,然后利用频率估计概率,用频率估计概率的条件是什么?
【解答】(1)a=1900÷2000=0.95,b=2850÷3000=0.95.
(2)观察发现,随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该麦种的发芽概率约为0.95.
(3)100×0.95×87%=82.65(千克),故有82.65千克的麦种可以成活为秧苗.
【互动总结】(学生总结,老师点评)在大量重复试验中,如果某个事件发生的频率呈现稳定性,此时可以用频率的稳定值估计事件发生的概率.
【活动2】巩固练习(学生独学)
1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是(B)
A.12 B.24
C.36 D.48
2.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
0.6;(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6. 【活动3】 拓展延伸(学生对学)
【例2】均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:
(1)上述试验中“4(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是1
3”的说法正确吗?
(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.
【互动探索】(引发学生思考)结合频率和概率的相关知识,频率和概率有什么区别?(2)问中的说法正确吗?
【解答】(1)1
6
(2)这种说法是错误的.在60次试验中,“2朝下”的频率为1
3并不能说明“2朝下”这
一事件发生的概率为1
3.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件
发生的概率附近.
(3)列表如下:
两次朝下数字之和大于4的结果有10种,故P (两次朝下数字之和大于4)=1016=5
8.
【互动总结】(学生总结,老师点评)试验得出的频率只是概率的近似值,试验次数越多,频率越趋向于概率.
环节3
课堂小结,当堂达标(学生总结,老师点评)
请完成本课时对应练习!。